SAND2019- 13692

SANDIA REPORT

ﬁan_dia I
ationa
Printed September 2019 Laboratories

Information-Theoretically Secure
Distributed Machine Learning

Timothy M. Shead, Jonathan Berry, Cynthia Phillips, Jared Saia

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering: http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

NS

MNational Nyclear Security Admrinisiration

ABSTRACT

A previously obscure area of cryptography known as Secure Multiparty Computation (MPC) is
enjoying increased attention in the field of privacy-preserving machine learning (ML), because
ML models implemented using MPC can be uniquely resistant to capture or reverse engineering
by an adversary. In particular, an adversary who captures a share of a distributed MPC model
provably cannot recover the model itself, nor data evaluated by the model, even by observing the
model in operation. We report on our small project to survey current MPC software and judge its
practicality for fielding mission-relevant distributed machine learning models.

CONTENTS

1. Motivation
2. Analysis
References

References

10
14

14

1. MOTIVATION

Consider a group of bureaucrats in a meeting, who want to know how much the meeting will cost
to conduct. To do so, they need to sum the hourly pay rate of each meeting participant, and
multiply the total by the meeting duration. One way to accomplish this would be for each person
to announce their pay rate aloud to the room; however, we assume that most people (even
bureaucrats) wish to keep this information private. An alternate approach would be to identify a
person outside the group who is trusted by each participant. The participants privately reveal their
pay rates to the trusted outsider, who completes the calculation and announces the results to the
group. In this case everyone learns the result of the computation, while no one other than the
trusted outsider learns any private information. Unfortunately, finding an outsider who is trusted
by every participant will necessarily be difficult, with the difficulty increasing rapidly as the
number of participants increases. Further, the trusted outsider could become a significant liability
if they betray the trust of the meeting participants by revealing or misusing their private
information, whether intentionally or by accident.

Fortunately, a third alternative already exists, using a previously obscure area of cryptography
known as Secure Multiparty Computation (MPC), the fundamentals of which have been known
for decades [15][11][7][6]. The core concept in MPC is secret sharing, where a piece of data - the
secret - which is known to only one player in a group of players, is split into a set of shares that
are distributed among all players. Combined, the shares reveal the secret entirely, but any proper
subset of the shares provably reveals nothing. Conceptually, it is as if the secret has been written
on a piece of paper which is divided into pieces and distributed to all of the players. Only when
the players cooperate to combine the pieces can the secret be revealed. More practically, if the
secret is a number, it can be split into a set of randomly-chosen numbers that equal the secret
value when summed, a strategy known as additive secret sharing. A player with access to every
share can sum them to reveal the secret, but so long as any of the shares is missing, the secret
remains unknowable. Note that in secret sharing, unlike other forms of cryptography, there is no
key to break.

MPC builds upon this foundation by introducing the ability to perform computations on secret
shares. That is, MPC allows players to cooperatively compute sums, products, and other
mathematical operations on shares without knowing the underlying secrets. For example, to
compute the sum of two additively secret-shared numbers, each player simply adds their shares of
the two operands. The result of this computation is an additive secret share of the result, so that
the final sum is only knowable if all players agree to reconstruct it by combining their shares.
Thus, players can exchange shares of their secrets and use them for computation, without
revealing the original secrets or intermediate results to one another. Additional protocols to
perform operations other than addition (most notably multiplication) are well understood and will
be introduced shortly. Once a computation is complete, the players can agree to reveal their

7

shares of the result to one, a few, or all players, so that only the players that receive every share
learn the final result.

Returning to the meeting in session, we now have a solution that should be satisfactory to
everyone: each bureaucrat secret shares their pay rate with the other participants (which does not
reveal their private information) and the group uses MPC to collaboratively compute the cost of
the meeting. No trusted third party is required, and the final result can be shared with the group
without revealing the private information that was used to compute it. Problem solved, we will
leave the bureaucrats to continue with the rest of their agenda.

Despite the powerful protections that MPC can afford, practical implementations have only
appeared in the past few years, due to the hardware and communication resources required, which
are considerable - note that, unlike normal computation, MPC requires significant network
communication between players, both for the initial sharing of secrets, and every non-trivial
mathematical operation thereafter. For these reasons, the earliest known practical application of
MPC occurred in 2008, in a nationwide auction of sugar beet contracts conducted in Denmark [8].
Since then, there has been significant interest in the application of MPC in a variety of contexts,
including privacy preserving machine learning (ML).

A privacy preserving ML algorithm using MPC is appealing because it would have the following,
novel properties: First, the algorithm could be trained using MPC on secret-shared data,
guaranteeing that players cannot access each other’s training data, allowing them to pool
information that they otherwise couldn’t or wouldn’t. Second, because the resulting trained model
would itself be a shared secret, it could only be used when every player uses their shares of the
model cooperatively. A compromised player cannot reveal the model or related details. Third,
new observations from individual players can also be evaluated collaboratively without sharing:
one player (“Alice”) generates shares for a new observation and distributes them. Next, all players
use their shares of the model and observation to jointly compute a prediction. Shares of the
prediction are sent to Alice, who alone knows the result. A player that is compromised does not
have access to Alice’s observation, or the model’s predictions thereof.

The desirability of the above properties was the motivation for our small project to determine
whether MPC enabled machine learning had advanced to a point where it could be practically
applied to national security missions. To do so, we conducted a software survey focused on two
mission use-cases, which we will refer to as “institional” and “remote sensing’”:

In the institutional use-case, imagine a group of analysts who would like to maximize the utility
of their data by pooling it to train ML models, but are prevented from doing so by need-to-know,
policy, security, privacy, provenance, licensing, or other issues. As described above, using MPC
enabled ML could make it possible for the analysts to create a joint model that benefits from the
union of each analyst’s data, while maintaining privacy. This case assumes a small number of
players (analysts) working with large existing datasets located in datacenter environments.

For the remote sensing use-case, consider a sensor network using ML to make decisions,
choosing when to discard observations, when to share them, where to focus the network’s
attention, and so on. In denied environments, nodes in the network may be captured or
compromised by adversaries, and we want to minimize the damage if this happens. If the
observations made by individual nodes and the network model are secret-shared, we can

8

guarantee that a compromised node cannot be used to reveal the decision making model, nor
exfiltrate observations from the other members of the network. This case assumes a relatively
large number of players (sensor nodes) exchanging frequent observations over unreliable
networks in challenging environments.

2. ANALYSIS

As alluded to earlier, MPC has unusual communication requirements compared to more
traditional computing frameworks. First among these are the communication required to share
secrets among players before computation can begin. Suppose a group of N players wish to
perform a computation requiring one input from each player. Since there will be a share of each
secret for each player, the total number of messages exchanged in this case will be N2, and this
will be necessary every time a computation requires inputs from all players.

Second, MPC requires per operation communication for certain mathematical operations. In our
earlier example using additive secret sharing, addition was a purely local computation, i.e. once
the operands for the addition had been secret-shared among players, each player could compute
their share of the result by simply adding the local shares. In this case (addition), communication
is only necessary to reveal the results, and then only if the addition isn’t part of some larger
computation. The same is true for subtraction and, thanks to the distributive property, it is also
true in the case where a secret-shared value is multiplied by a public value (a non secret-shared
value known to all players): given a secret-shared value (x) and public value €, €(x) can be
computed by having each player multiply their local share of (x) by €.

Unfortunately, this is not the case for other operations, most notably multiplication of two
secret-shared values. In this situation it is common to use Beaver multiplication [6], which
requires a set of friples to perform the operation. Here, a triple is a set of three secret-shared
values (a), (b), and (c) where a and b are chosen at random and ¢ = ab. Given a triple, two
secret-shared values (x) and (y) can be multiplied as follows:

(x)—{a
() — (b
(a) +€(b)+{c)+¢€d

)
)

S o ™
Il

)) =

Note that communication is required to secret share the triple before computation can begin, and
that € and 9, though computed locally using subtraction, are publicly shared with all players,
requiring two additional rounds of all-to-all communication. The final step in the computation is
purely local, since it uses only addition, secret X public multiplication, and public x public
multiplication. Note that triples are a type of one time pad that cannot be re-used in subsequent
calculations; thus, the rate at which multiplications can be performed is limited by the rate at
which new triples can be generated. It would be difficult to overstate the performance
implications, as the communication involved is orders of magnitude slower than traditional
computing involving modern CPUs performing on-chip calculations.

10

Nevertheless, once addition and multiplication have been defined, it becomes possible to
implement nearly any algorithm using MPC, including ML algorithms. In practice, and unlike
more typical computing tasks, an MPC computation is usually performed using a single program
that runs simultaneously on multiple hosts, one for each player. In this respect, MPC programs
are quite similar to programs written using the Message Passing Interface (MPI) [2] which is a de
facto standard in high performance computing.

Much recent work in MPC is focused on addressing the bottlenecks, leading to an explosion in
the number and variety of protocols, each typically optimized for a specific use-case, such as the
type of secret sharing, the number of players (sometimes just two or three) and a specific set of
supported computations. As one example, the SecureNN [16] protocol expands upon the popular
SPDZ protocol [10] to provide efficient secret-shared addition and multiplication of matrices and
a secret-shared approximation to the nonlinear ReLLU function, which are important building
blocks needed to create privacy preserving neural network models.

In addition to performance challenges, MPC introduces new opportunities for failure - data that is
distributed among players using additive secret sharing is vulnerable to the loss of any one player,
becoming unrecoverable by design. This can be a blessing or a curse, depending on circumstance:
for a datacenter environment and the institutional use case this tradeoff would likely be
acceptable, since the hardware can be monitored and maintained to reduce the likelihood of
failure, and restarting a failed computation can be relatively easy. For the remote sensing
use-case, the ramifications of MPC integration are more significant: here, devices can fail, run out
of power, or be lost; and radio networks are inherently unreliable and vulnerable to range,
line-of-sight, atmospheric conditions, or other issues, even when hardware is functioning
properly. Alternative secret sharing techniques can (partially) address this issue, by making it
possible to recover a secret using a strict subset of all players. For example, the secret sharing
scheme of Shamir [15] represents a secret as a point on a randomly chosen degree-M polynomial,
distributing additional points from the same polynomial as shares. To recover the polynomial (and
thus the secret) requires a minimum of M shares (points). So long as M <= N, then any subset of
M players can recover the secret, and the system can absorb the loss of up-to N — M players
before the secret becomes unrecoverable.

In parallel with new protocols, many new MPC implementations have appeared in the past few
years. We divide these implementations into three categories: domain-specific languages (DSLs),
add-ons to existing machine learning platforms, and commercial MPC platforms. Since the focus
of this project was on the practicality of MPC, we examined several of these implementations in
detail.

For an overview of MPC DSLs, see [12]. Typically, these languages support general-purpose
MPC computation by supplementing traditional computer programming language syntax with
MPC-oriented language primitives such as explicit type checking for public and private
(secret-shared) values. As a representative example, the following code fragment computes the
inner product of two secret-shared values using SCALE-MAMBA [3], which implements a
runtime virtual machine executing bytecodes compiled from a subset of the Python language:

11

sum = sint (0)
for i in range (3):

x1l = sint (1)

X2 = sint (i%2)
prod = x1 x x2
sum = sum + prod

print_In("%s", sum.reveal ())

While the syntax is recognizably that of Python, note the addition of the nonstandard sint type,
which is used to store a secret-shared integer. By explicitly distinguishing secret-shared values
from public values, the code can detect and eliminate a large class of progamming errors, while
hiding many of the details of MPC computation behind traditional arithmetic syntax. In the final
line of code, the reveal method gathers the shares of the secret shared “sum” variable, combining
them to reveal the final answer. Like most of the solutions surveyed, SCALE-MAMBA provides a
mechanism for running a single program across multiple processes, one process for each player.

A majority of the DSLs were based on C or C++ syntax, with custom compilers and varying
support for number of players, MPC protocols, operations, and-so-on. It was clear that the DSLs
were primarily research codes, poorly documented, with extremely limited support for I/O,
making integration into real-world workflows difficult at best. We were sorry to see that none of
the DSLs examined recognized the similarities between MPC and MPI computing, as many
practical solutions developed in the HPC community (API design, job startup, batch management
tools) could be extremely useful in managing MPC computations. Notably, none of the DSLs we
examined had support for exceptions or other application layer error-handling mechanisms: that
is, the implementations assumed at a language level that an operation (such as multiplication)
would always succeed. Even SCALE-MAMBA - which has optional support for Shamir secret
sharing and in theory could continue computation despite the failure of a subset of players - fails
immediately when any one of its player processes stops functioning. While this assumption might
be acceptable for computations running in a datacenter for the institutional use-case, we
considered it a fatal flaw for the remote sensing use-case where nodes or networking could fail at
any time, including in the middle of a mathematical operation.

We then turned to several add-ons for existing machine learning platforms, beginning with
Tensorflow Encrypted (TFE) [9], which implements a variant of the SPDZ protocol [10] atop the
Tensorflow toolkit [5]. Unlike the previously described DSLs where MPC players are peers, the
TFE implementation uses a fixed-topology network consisting of two MPC servers and a
cryptographic server responsible for generating Beaver triples. Rather than sharing secrets with
each other, players in a TFE computation are clients, secret-sharing their data with the two
servers, which are solely responsible for performing MPC computations and returning results.
TFE does include much more flexible I/O capabilities, thanks to the Tensorflow toolkit upon
which it is built. Unfortunately, like the DSLs we had examined previously, the loss of any TFE
process caused the immediate failure of all others. Further, because Tensorflow (and thus TFE) is
based on a static computational graph that is defined before computation begins, it is extremely
impractical to react to errors at an application level. Thus, we found that while TFE could be a
workable solution for the institutional use-case and a comfortable experience for existing
Tensorflow users, it wasn’t a realistic architecture for the remote-sensing case.

12

The PySyft [14] project adds cryptographic computing to the popular PyTorch [13] toolkit and
has aspirations similar to those of TFE, but their MPC implementation was not working at the
time we examined it.

Sharemind [4] is a commercial platform that uses secret sharing to encrypt data stored in a
distributed database and a proprietary DSL for specifying MPC computations. It did not include
ML capabilities at the time of our study.

Fortuitously, and three weeks after the formal end of this project, the Crypten [1] project was
released by Facebook Research as open source software, also providing MPC computation atop
PyTorch. Importantly, while Crypten doesn’t explicitly support unreliable hardware or
communications out-of-the-box, it is the first MPC toolkit we’ve examined whose design does not
preclude the kind of application level error handling necessary to address those challenges
head-on. Notably, the Crypten and PyTorch APIs are explicitly aware of and inspired by MPI
communication patterns, opening up interesting avenues for future integration and reducing
programmer cognitive load.

Due to its importance as a mission use case and its lack of support in the current MPC literature
and implementations, we plan to focus our future work on the remote sensing use case, using
Crypten for our development. We have also begun development of an ML focused MPC protocol
of our own with an emphasis on low bandwidth and high reliability, to be published in the coming
year. For agencies interested in the institutional use case, we would recommend that developers
use either Crypten or Tensorflow Encrypted, based on their personal affinity for PyTorch or
Tensorflow respectively, as both provide a rich set of MPC-enabled ML primitives.

13

REFERENCES

[1]

(2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

Crypten. https://github.com/facebookresearch/CrypTen. Accessed:
2019-11-04.

Mpi forum. https://www.mpi-forum.org. Accessed: 2019-11-04.

Scale-mamba software. https://homes.esat.kuleuven.be/~nsmart/SCALE.
Accessed: 2019-10-29.

Sharemind technical overview. https://repo.cyber.ee/sharemind/www/

files/technology/sharemind-technical-overview.pdf. Accessed:
2019-09-16.

Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian
Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz,
Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda
Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and
Xiaoqgiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems,
2015. Software available from tensorflow.org.

Donald Beaver. Efficient Multiparty Protocols Using Circuit Randomization. In Advances in
Cryptology — CRYPTO ’91, pages 420-432. Springer, Berlin, Heidelberg, Berlin,
Heidelberg, August 1991.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings of the twentieth
annual ACM symposium on Theory of computing, pages 1-10. ACM, 1988.

Peter Bogetoft, Dan Lund Christensen, Ivan Damgard, Martin Geisler, Thomas Jakobsen,
Mikkel Krgigaard, Janus Dam Nielsen, Jesper Buus Nielsen, Kurt Nielsen, Jakob Pagter,
Michael Schwartzbach, and Tomas Toft. Secure multiparty computation goes live. In Roger
Dingledine and Philippe Golle, editors, Financial Cryptography and Data Security, pages
325-343, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

Morten Dahl, Jason Mancuso, Yann Dupis, Ben Decoste, Morgan Giraud, Ian Livingstone,
Justin Patriquin, and Gavin Uhma. Private machine learning in tensorflow using secure
computation. arXiv preprint arXiv:1810.08130, 2018.

14

[10]

[11]

[12]

[13]

[14]

[15]
[16]

Ivan Damgard, Valerio Pastro, Nigel Smart, and Sarah Zakarias. Multiparty computation
from somewhat homomorphic encryption. In Annual Cryptology Conference, pages
643-662. Springer, 2012.

O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In Proceedings
of the Nineteenth Annual ACM Symposium on Theory of Computing, STOC ’87, pages
218-229, New York, NY, USA, 1987. ACM.

M. Hastings, B. Hemenway, D. Noble, and S. Zdancewic. Sok: General purpose compilers
for secure multi-party computation. In 2019 IEEE Symposium on Security and Privacy (SP),
pages 479496, Los Alamitos, CA, USA, may 2019. IEEE Computer Society.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NIPS Autodiff Workshop, 2017.

Theo Ryffel, Andrew Trask, Morten Dahl, Bobby Wagner, Jason Mancuso, Daniel Rueckert,
and Jonathan Passerat-Palmbach. A generic framework for privacy preserving deep
learning. arXiv preprint arXiv:1811.04017, 2018.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612—613, 1979.

Sameer Wagh, Divya Gupta, and Nishanth Chandran. Securenn: Efficient and private neural
network training. IJACR Cryptology ePrint Archive, 2018:442, 2018.

15

DISTRIBUTION

Hardcopy—External

Hardcopy—Internal

Email—Internal I

Technical Library 01177 libref@sandia.gov

17

Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

