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Introduction
A series of rare earth 2,5-dihydroxyterephthalic acid
(RE-DOBDC) metal organic frameworks (MOFs) are
investigated for their ability to robustly function as a

separation material within harsh acid gas
environments. Currently synthesized RE-MOFS, where
RE=Y,Eu,Tb,Yb, have demonstrated a unique and

strong optical response to the presence of NOx and
have shown sustained crystallinity following 24 hr acid

gas exposure. Here, density functional theory (DFT)

methods are used to investigate the underlying
mechanisms of interactions of acid gases within the
RE-MOF frameworks at the atomistic level. Individual
gas molecules are calculated to have varying binding

energies and interaction types with the RE-MOF
framework, indicating binding site selectivity. The
results from understanding currently synthesized RE-

MOFs will help to guide the design of new materials
with tunable properties for gas separations and
sensing.

Computational Methods
• Spin polarized ground state geometries and ab initio

molecular dynamics calculated using Density Functional
Theory (DFT) as implemented in the Vienna Ab initio
Simulation Package (VASP).

• Calculation parameters:
• Plane wave basis set.
• Projector augmented wave potentials.
• Exchange correlation functional of Perdew-Burke-Ernzerhof

designed for solids (PBEsoI).

• Van der Waals interactions included using method of
Grimme (D3) with Becke-Johnson damping.

• One Electron Kohn-Sham Equation
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• Calculated Optical Absorption
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Conclusions

• Multiple binding sites exist at unsaturated metal sites

and linker positions. Binding energies of individual
gases indicate a selectivity of S02 > H20 > NO2.

• In humid NOx environments H20 preferentially binds to
metal sites and NOx binds to organic ligands.

• NOx exposure decreases photoluminescence in all

synthesized RE-DOBDC MOFs due to interaction with
DOBDC ligands.

• The percentage of intramolecular H-bonds produce a
shift in the calculated optical properties of Y-DOBDC.

• Ab initio molecular dynamic trajectories are used to

study complex acid gas mixtures in nanoconfined pore
spaces.

Future Work

• Predicting new unsynthesized RE-DOBDC MOFs for acid
gas separation and sensing.

• Analyzing new gas species formed via reaction due to
complex gas mixtures.

• Identifying impact of nanoconfinement on gas
interactions due to size of MOF pore.

• Provide large data sets, generated from ab initio

molecular dynamic trajectories, for machine learning
analysis.

Introduction to RE-DOBDC MOI[p
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Acid Gas Binding Energies in RE-DOBDC MOFs
Unsaturated Metal Adsorption Sites
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Binding Energy: -70.27 kJ/mol Binding Energy: -62.52 kJ/mol Binding Energy: -21.87 kJ/mol

• Gas adsorption energies are dependent on metal location and local coordination environment.
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RE-DOBDC Acid Gas Adsorption
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RE-DOBDC Optical Response in Humid NO.

Experimental Photoluminescence
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Calculated Optical Absorption
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Transition Charge Densities
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• Intrinsic RE-DOBDC MOF photoluminescence is reduced only upon exposure to NOx.

Tuning H-bonds in Y-DOBDC
H-Bond Coordination
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• H-bonding required to maintain measured geometry.
• Increased H-bonding induces red shift of primary optical absorption.

Y-DOBDC H-Bonding Optical Absorption
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