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Why has ML/AI had so much atte

Some problems are difficult to solve with a directly-coded algorithm
• Don't generalize well
• Can be difficult to scale

There nave Deen Machine Learning (ML) successes in a variety of areas
• Recognizing patterns
• Anomaly detection
• Learning predictive models from data
• Creating surrogate models
• Generating synthetic data that models real data
• Assisting human decision making

These successes have been enabled by
• Large curated (labeled) datasets
• Advancements in computing power
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Sandia's Unique Mission Needs

High-confidence decisions

• Typically designing to "Five 9's" of reliability

• Need to assure trust in our solutions

• Need to understand uncertainty of decisions

• Algorithms need to be explainable
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Many Sandia efforts are premised on idea that Al solutions will be instrumental
in delivering these requirements
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Sandia has a goal of creating a bridge
between the broader world of Al and our

missions

Extending and developing Al algorithms

Evaluating novel hardware and accelerator

Explore brain-inspired sensor technology

Identifying opportunities for novel Al impa

Developing tools and analyses suitable for
widespread adoption of emerging Al

technologies



Sandia Al Capabilities Overview

Capabilities

Challenges

Trusted Al

Consequence

Resourced
Constrained Al

Hardware/Algorithm
Co-Design

--
Diversity Scale



Sandia Al Capabilities Overview

Capabilities

Challenges

Trusted Al

Consequence Diversity Scale



Center for co-design of ARtificial Intelligibighifaii§ed Architectures and Algoritimes

[ ARIAA Objectives

,

>

>

>

>

Co-design novel AI/ML
architectures and
algorithms to enable
traditional and ML-based
DOE applications
Understand potential impact
of AI-focused architectures
on future leadership class
systems
Understand how AI/ML
accelerators can work with
sparse, irregular, and/or
streaming data
Independently evaluate
AI/ML accelerators from
different startups and nudge
them for DOE needs _

Georgia
Pacific Tech
Northwest
NATIONAL LABORATORY

Experiment

I Hardware
(MAERI)

IIIIReal
Hardware
(Testbeds)

i
Data flow
Algorithms

(ARIAA)

Simulation
Tools
(SST)

frAnalytical
Modeling ii,

(MAESTRO)

ARIAA
Codesign
Center

ML
Algorithms

ML
Applications
(DNN, GNN)

raditional
Applications
(Powergrid,

Chemistry

Cybe

Ongoing activities

r Architecture 

_„„„\

N7 SST/MAESTRO integration
strategy

N7 SST accelerator abstractions
N7 Initial evaluation of NVIDIA
DNN accelerator i

Software
N7 Programming abstractions for
representative kernels

N7 Initial integration of MCL
with SST and NVIDIA DNN
accelerator

Applications
N7 Identify first set of ML/Lin
Alg. kernels and algorithms

N7 Graph coloring, all-to-all
hashing (streaming), SchNet

Codesign of AI/ML accelerators with algorithms and applications will enable the
development of this key technology to suite DOE HPC and AI/ML needs



Neural Computing at Sandia Labs Leverages a Large Research Foundation

Neuroscience Theory

IARPA MICrONS
Government Team for
Test & Evaluation of
Neural Models and
Machine Learning

Neural Computing Capabilities

HAANA Grand
hallenge - Flagship
LDRD across

omputing, materials,
cyber security
centers

Neural-enabling Hardware

MESA Fabrication
Facility provides

materials and design
research capabilities
for next generation
neural systems

Neuro-
k informatics

Neural Data
Analytics 

_1 •

Modeling and
Simulation

Computational
Neuroscience 

Formal Neural Computing
Theory

Neural Inspired Neural Machine
Architectures I Learning Algorithms  J

UQ / SA of Neural
Algorithms and Neural

Architectures

N
Micro-sensors j

on-von Neumann

Memory---------,
technology Computing Lab

architectures

Neuromomhic

Mission lmpacts

Enabling Advanced 
Simulation and Computing

• Neural-inspired
communication paradigms

• Adaptive memory
management

• Numerical computing with
neurons

49SE

Deployable National 
Security Applications 

• Cyber Defenses
• Embedded Pattern
Recognition Systems

• Smart Sensor Technologies



Neuromorphic Hardware @ Neura

CI Enables researchers to explore the
boundaries of neural computation

CI Consists of a variety of neuromorphic
hardware & neural algorithms providing a
testbed facility for comparative benchmarking
and new architecture exploration

Intel Loihi

Intel Loihi

SpiNNaker 48
Node Board

IBM TrueNorth* IBM TrueNorth
NS16e*

SNL STPU on Xilinx PYNQ
FPGA FPGA

Nengo FPGA

Intel Neural
Compute Stick

Nvidia Jetson
TX1

Google Coral

Nvidia Jetson
Nano

Google
EdgeTPU

GPU
Workstations

Inilabs DAVIS Georgia Tech
240C DVS FPAA
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D
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*Remote access



Impacting Broad Areas of Compu
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The Remote Computation Challe

Challenges in classic remote sensing

• Growth of sensor technologies outpacing

communication bandwidth

• High Consequence Decisions

• Limited algorithm capabilities

• Limited onboard processing capability

• Rad hard design

RGB Ground Truth Predictionn
• 41•6••

SO •

I ••
fry •
m_ 

0 Impervious

Building

0 Low vegetation

Tree

0 Car

Clutter

Scene
Understandin

•Scene
Segmentation
(i.e. clouds,
land, water,
etc.)

•Track scene
movement
across time

Traditional az
Architectures
•sophisticated Comms.
Serial CPUs Bottleneck

• Binary Processing
• 'Always on'

Event Detection

•Time and
space
localization of
events of
interest

•Time
segmentation
of event
duration

.■011111101°

RA M

Signal
Reconstruction

• Extract
underlying
signal from
noise

• Overcome
pixel
saturation
• Generate
human-
understandable
signatures

Traditional Processing
• Requires Link to Ground
• High Bandwidth

• Slow

Signal
Classification

•Determine if
signal is of
interest or is a
confuser
• Reduce
communication
bandwidth by
rejecting false
alarms

Communicate
Results



The Remote Computation Challe

Compute at the sensor

• Improve bandwidth utilization (send only what

you need)

• Distributed computation avoiding single-point

of failure

• May reduce preprocessing required (e.g.

whitening)

Neuromorphic
Architectures Processor

• Highly Parallel 
in Memory

• Co-localized Memory 000.0

• Event-Driven •••••
• 'On when you need it' 000.0
• Low Energy

Traditional em
Architectures
• Sophisticated & Comms.
Serial CPUs Bottleneck

• Binary Processing
• 'Always on'

Event-Based Spiking Processing
• Added Computation at the Source
• Sparse Communication
• Low Energy/Low Latency

Traditional Processing
• Requires Link to Ground
• High Bandwidth
• Slow

DAVIS 240C
Event-Driven
Camera



Whetstone for Low-Power Spi k .ig Deep Learning

Define Model
(Keras)

11. e••• MIkip

Standard

I

Sharpen
Layer 1

• • •

Sharpen
Layer N

OaSut Model
(Keras)

WHETSTONE

IlEvaluate
erformancel

-Evaluate

ieerformance

r

❑ Automatically converts deep learning networks from
continuous valued neurons to binary activations, making
them compatible with neuromorphic hardware

00pen sourced

❑ Beginning to port onto
neuromorphic platforms

❑ SpiNNaker Results look great

ARTICLES machine intelligence

Training deep neural networks for binary
communication with the Whetstone method

William5evera •, Craig M Vineyard , Ryan Dellana ,Stephenl.Verzi and James Atmone •

The computational cost of deep neural networks presents challenges to broadly deploying these algorithms. Lownower and
embedded neurornorpla processces offer potentlally drayage performance-perivian Improvements over traditional proces-
sors. Flowerer, programming these brak-insplred platforms generally requires plan orm-speollk expanse. It Is therefore &l-
iken to achieve state-ans.-art performance on these platforms. IlnOtIng then applkabillty. Flere rro present Whetstone. a
method lo bridge thls gap by converting deep neural networks to have discrete binary communkatbn. During the training
process, the salvation function at each layer Is progressively sharpened towards a threshold activation with knifed loss
performance. Whetstone sharpened networks do not require a rata code or other spihnbased todIng scheme. thus producing
networks cornea-able In Wiens and sire to conventional artificial neural netanks. We demonstrate %Mastene on a numba
architectures and tears Firth as Image classlf Halloo autoenroders and semantic segmentation Whetstone as momently Mkl>
malted akin the Korea wrapper for TensorFlow and is *ay extendable.
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Whetstone and Vehicle Percep

• Al power draw is a key limiting factor
especially for electric powered vehicles: 3kW
now; HPC-level for fully self-driving

• Prototype vehicles use a trunk full of GPUs

• Forecasting current tech -1Tera0p/Watt

• Neuromorphic Hardware:

• Enables event-driven computation

• Opportunity for extremely low power
consumption

Intelligent
Systems

t t
This

Project

Ultra-Low Energy
Hardware Solution

Amazing Algorithms
Software Solution

SpiNNaker, Univ. of Manchester

Intel Loihi
Photo: intel.com

POC: W. Severa

Example Image
From Berkeley DeepDrive

Spiking Neuron Representation

Pre-synaptic

Neurons

Input spikes

I
Post-synaptic

Neuron
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Graph  Neural Networks
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• Graph Neural Networks (GNNs) are a powerful abstraction for learning embeddings on
graph structured data

• GNNs have been used in several domains including drug discovery, material science,
molecular toxicity prediction

• Evaluate a powerful GNN (Xu et al. 2018) in the presence of noise

•

E4E1P
EXASCRI-G COMPUTING PRO.1GCT



Graph  Neural Networks  -
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1.0
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0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.1 0.0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Noise 0.0 0.05 0_1 0.15 0.2 0_25 0.3 0_35 0.4 0.45 0.5 Noise
Noise

Mode

Baseline

 l Augmented

Test F1 score of GIN model with varying levels
of structural noise added to input graph, across
3 different modes of noise constraint.

Augmented vs. non-augmented training (baseline) for node classification on Gp.
Y-axis is F 1 score, x-axis is random edge addition ratio.

• GNNs can predict the six classes with perfect accuracy with no noise

• The class prediction accuracy drops quite fast even at the presence of small amount of
noisy edges 0.1-0.15

• The prediction accuracy can be improved by training on augmented noisy g • -LM)P
"How Robust are Graph Neural Networks to Structural Noise", J. Fox, S. Rajamanickam,

DLGMA workshop, AAAI 2019.
EXASCRI-G COMPUTING PRO-1GCT



SNAP (Spectral Neighbor Analysis Potentigl): Machingaiirned lnteratsigac

> Continuum models require underlying models of the materials behavior

> QM, MD, KMC, SM: Each method makes different approximations and captures
different physics

> Quantum methods can provide very complete description for 100s of atoms

> Molecular Dynamics acts as the "missing link"
➢ Bridges between quantum and continuum models

➢ Moreover, extends quantum accuracy to continuum length scales; retaining atornistic
information

Current Areas of SNAP Development

>Plasticity in Tantalum

>Plasma-Facing Materials (SciDAC-4): Tungsten/Beryllium, W/Be/H (in progress)

>Radiation Damage in III-V Semiconductors: New Multi-element SNAP formulation
for Indium Phosphide

>SNAP Accuracy: Quadratic SNAP, SNAP + Neural Networks, Better descriptors

>SNAP Computational Speed in LAMMPS: SNAP with KOKKOS (CPU, GPU,...)
[ECP CoPA project], Exploring new GPU algorithms [NERSC/NESAP]

A. P. Thompson , L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker, J. Comp. Phys., 285 316
(2015).

m

s

tts

ns

ps

Time

Common Computational Tools:

POC: A. Thompson

Solid Mechanics,
Hydrodynamics

46,
Kinetic Monte Carlo,

Phase Field

41IL
Atomistic Molecular Dynamics

Electronic Structure

pm nm

Electronic Atomic Meso Continuum

QM.• < 10-3 < 10-511s, MD: < 101 < 101µs,
Meso: —1µs, Continuum: > 1 gm, >

SNAP potential agrees well with DFT calculations

so
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ML-DFT: Accelerating Multiscale Materials Modeling with Machine Learning

MICROSCALE
(nm, fs) II MESOSCALE

(pm, ps)

rillItN ie l.,\

Atomic
descriptors
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-. Fingerprint

generation

Machine

v
learning
Step1

tU ML-LDOS, Feedforward network or
nsupervised BERT

ML-DFT
Experimental design backflow

Machine
learning
Step 2 i

,...—....,

7

e '1 i
.

SNAP
training

Energy
and
forces

\iiii

Physics model,
CNN, or Supervised

BERT

 /

C "N

Mesoscale
simulations
—106 atoms

Semi- 1
mesoscale
simulations
—104 atoms

J

MACROSCALE
(cm, ms)

eMelting 1 f N

curve, solid-
solid phase —0'
transitions

EOS data
  generation,
Vapor dome

Device level
simulations

• Physics-informed Machine Learning (ML) model based Multiscale Materials Modeling (MMM) toolchain.
• Accelerate first-principles data generation, and increase fidelity and robustness of predictive atomistic material

simulations.
• Applications: rad-hard semiconductors, advanced manufacturing, shock compression, and energetic materials.
• ML to accelerate interpolation of microscale data (102 atoms) and enable extrapolation to mesoscale (104 atoms)
• High fidelity training data generation, optimal experimental design to select ML training data, three ML approaches,

and extensions to macroscopic scale.

"Trilinos for (ML-based) Material simulations"



Finding Needles in Noisy Data

Combustion Climate Modeling Fluid Dynamics

Want to find "interesting" events, anomalies, state changes, etc.
Examples may include cyclones, onset of combustion, or other things that the scientists may not prescribe a priori and may be difficult to perform via rule-based
detection

Desired solution would be to take all the data and run the appropriate detection algorithms (e.g., LOF, isolation forests, clustering)

These simulations produce massive amounts of data (problems for storage capacity, bandwidth)

Signatures: A condensed, information-rich, representation of the simulation data on a node (E.g., descriptive statistics, embeddings)

Measure: A representation of how close a signature is to other signatures in the simulation (E.g., distances, densities, estimators)

Decisions: An arbitration of the measures to determine which nodes contain "interesting" data, given the signatures and measures (E.g.,
threshold, momentum)

Slide Courtesy: W. Davis



Finding Needles in Noisy Data

In-Situ Detection is More Accurate and Efficient

Percentage
of data
captured

Turbulent Flow anomaly detection in Mantaflow

Snapshot (Conventional)

Interesting partitions: 10.0%

100

Timeslep

See Flash Talk
by Warren
Davis
tomorrow

200 300

Anomalous cells: 1253 Recall: 10.0%

Percentage
of data
captured

04

100 200 3o0

Timestep Tenestep

Anomaly Detection in Climate Modeling

Interesting partitions: 12.1%

-Situ Detection

le = • '\_?-1". ,

100

QL307 (masked)

200

Anomalous cells: 1253 Recall: 98.3%

100

11mestep
zoo aoo

POC: W. Davis (SNL)



Higher Order Moment Tensors fgr Combustion Analysis.,„MMF

Hypothesis and proposed solution

• Information of anomalous events present in higher order statistical moments, e.g. kurtosis.
• Identify principal vectors of kurtosis (analogous to PCs in PCA) in the variable (a.k.a feature) space.
• Anomalies manifest as principal kurtosis vectors (PKVs) that are "distinct".

POC: H. Kolla

Simple Moment-Tensor Decomposition

• Motivated by connections to Independent Component Analysis (ICA).

• Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Cornon & Jutten 2010, Anandkumar et al. 2014)

• M4 := IE [x IE IE ki3xi4] IE IE [xi2xi4] IE IE ki2xid

• A simple way to decompose M4: matricize and SVD (Anandkumar et al. 2014):

• mat(M4) = M= Ei Ksi ai vec(ai0 ai0 ai)

1 ■

■

■

0

■

■

■

0
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Putting It Together: HCCI Data Set
POC: H. Kolla

• Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.
• Transform PKVs to a "moment (kurtosis) metric per feature (variable)".
• Moment metrics quantify contribution of a feature to overall kurtosis.
• Normalized (between 0-1), and also sum to 1 (like a discrete distribution).
• Compare moment metrics across MPI ranks (Hellinger distance).

• For anomaly detection in scientific data, statistical models based on higher order moments may be promising.

• Use of "principal vectors of Kurtosis" as indicators of anomalous events.

• Metrics quantify change in the principal kurtosis vectors and identify anomalous subdomains.

• Construction of PKVs as a symmetric tensor decomposition problem.

K. Aditya, H. Kolla, W. P. Kegelmeyer, T. M. Shead, J. Ling, Warren L Davis IV, 2019, "Anomaly
detection in scientific data using joint statistical moments", Journal of Computational Physics, vol.
387, pp:522.



Data Compression based on m
for Combustion

P

Challenge: Reduce the size of the massive data generated during
a numerical simulation on the fly without missing important
features

Current Practice: Store a snapshot of the 3d field of some
quantity of interest every few time steps based, Apply Tucker
MPI to compress on all the stored snapshots to reduce the size of
the stored data

Concerns: The frequency of the storage snapshots might be
insufficient to capture all the important features of the
simulation. Moreover, Tucker MPI is not accurate and hence
require that the Q0l of interest is known before running the
simulation. For new Q0I, we need to re-run the expensive
simulation

l tion—
POC: M. Ebeida

EXRECRLE COMPUTING PROJECT



Data Compression
for Combustion

Our Approach: We adaptively sample the four-dimensional
spatio-temporal space as time evolves, and we utilize the
implicit Voronoi Cells around each of these samples to
construct a local surrogate that approximate the underlying
field with a user-input desired global accuracy.

Merits:
.,

1. The adaptive sampling automatically decides where a
Eand how to approximate the generated data rt.,

throughout the 4 dimensional space. This should 0
Lrl
IN

eliminate the current heuristic intermittent storage of
generated data.

2. Since out approach guarantees accuracy, we apply it to
the primitive data directly not the Q01. This enable
using the compressed data in future analysis.

3. In addition, our local surrogates can provide analytical
derivatives of the approximated surface.

I tion—
POC: M. Ebeida
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¡nitial Results of a prototype imp ementation:

Temperature field Temp. Compressed CH3 field CH3 compressed OH field

POC: M. Ebeida

OH compressed

• A prototype implementation of our proposed approach was applied to three primitive fields
(Temperature, CH3 and OH) generated by two-dimensional combustion simulation

• We were able to achieve 3 orders of magnitude in compression ratio. The code was executed in
210 seconds.

• The combustion team reported that they found these results promising and that they couldn't get
comparable accuracy with Tucker MPI.

• We are currently working on implementing a Voronoi Compression Tool based on kok P
EXRECRLE COMPUTING PROJECT
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