

Exceptional service in the national interest

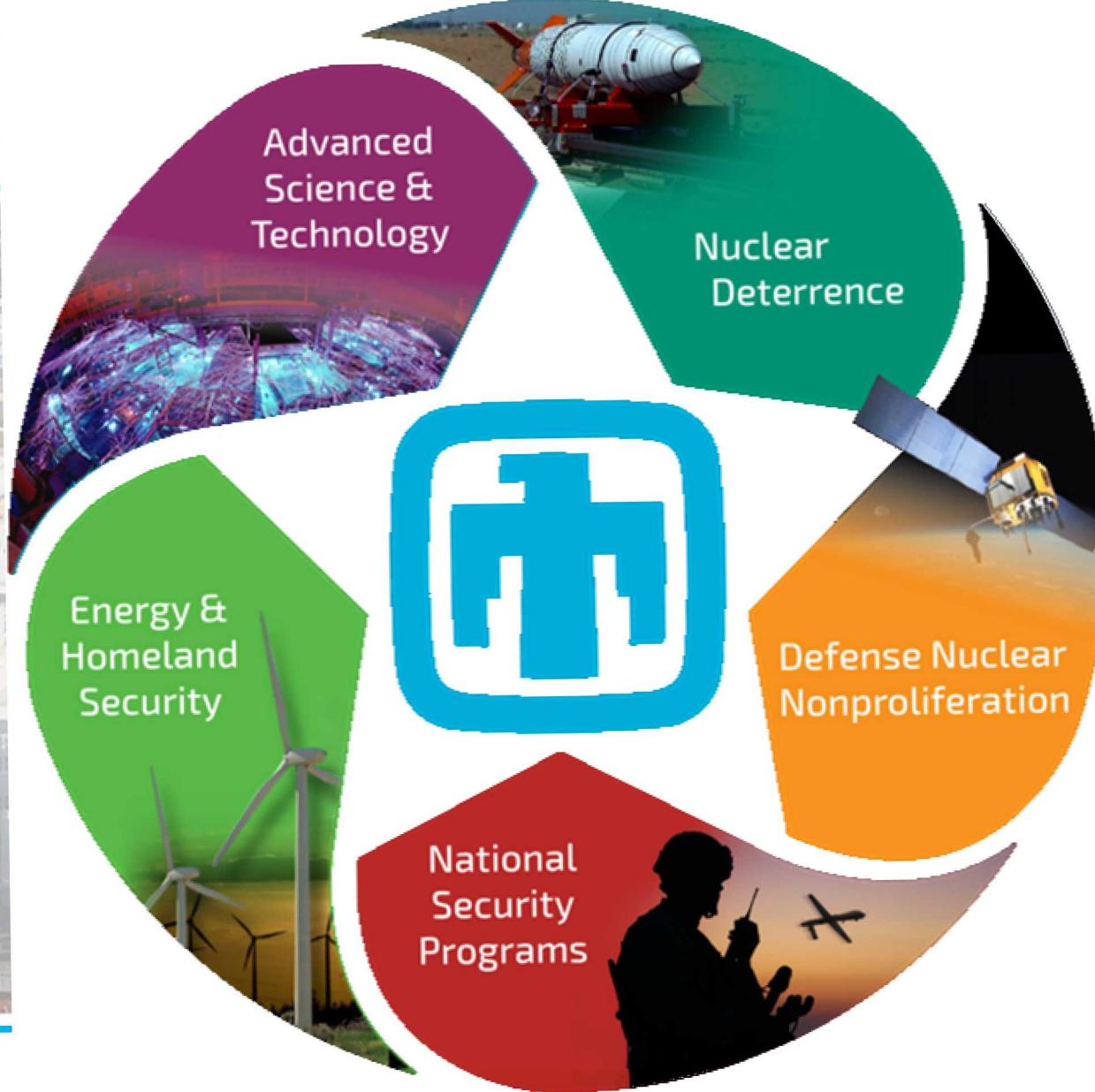
Selected AI/ML Efforts At Sandia National Laboratories

Machine Learning in the Presence of Noise : Early Experiments

Presented by: Siva Rajamanickam
srajama@sandia.gov

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

SANDIA HAS FIVE MAJOR PROGRAM PORTFOLIO



Some problems are difficult to solve with a directly-coded algorithm

- Don't generalize well
- Can be difficult to scale

There have been Machine Learning (ML) successes in a variety of areas

- Recognizing patterns
- Anomaly detection
- Learning predictive models from data
- Creating surrogate models
- Generating synthetic data that models real data
- Assisting human decision making

These successes have been enabled by

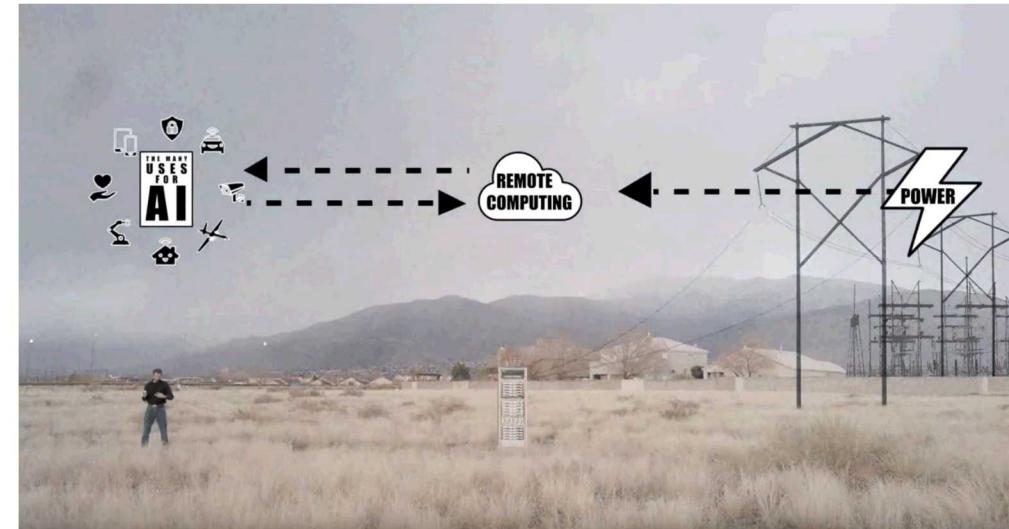
- Large curated (labeled) datasets
- Advancements in computing power

Diversity

Scale

Consequence

Diversity



Scale

Consequence

Diversity

Life-or-Death Applications

Scale

Data Provenance and Quality

Consequence

Ethics

Explainability

Uncertainty Quantification

Low Signal-to-Noise

“One-shot” experiments and experiences

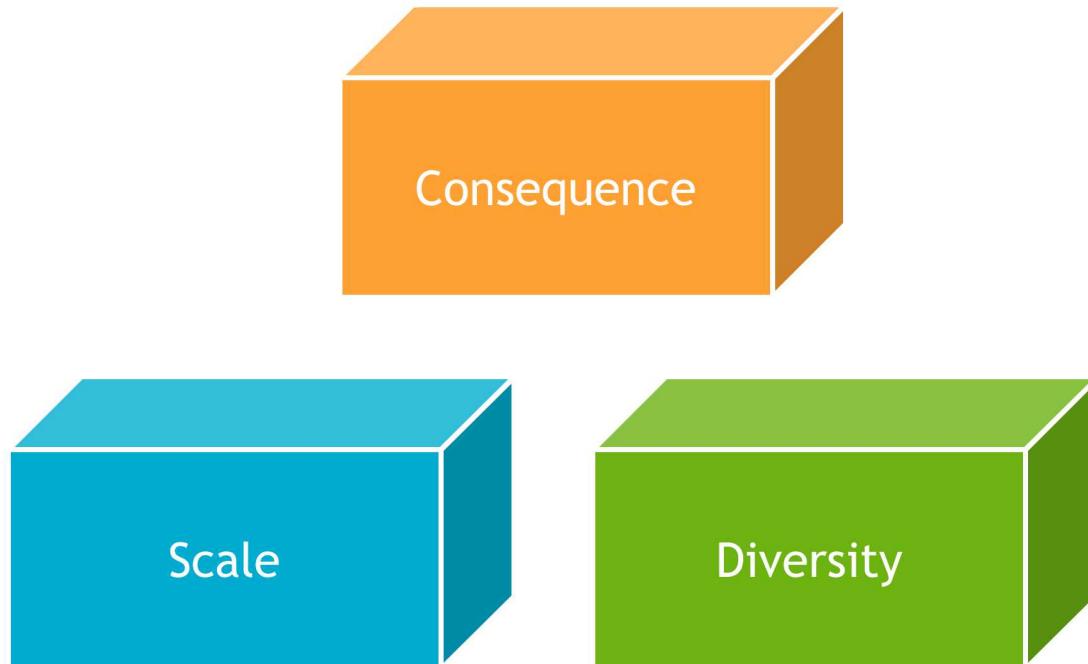
High-confidence decisions

- Typically designing to “Five 9’s” of reliability
- Need to assure trust in our solutions
- Need to understand uncertainty of decisions
- Algorithms need to be explainable

█ classified as rifle
█ classified as other

Synthesizing Robust
Adversarial Examples,
Athalye, et.al., 2018

Many Sandia efforts are premised on idea that AI solutions will be instrumental in delivering these requirements



Sandia has a goal of creating a bridge between the broader world of AI and our missions

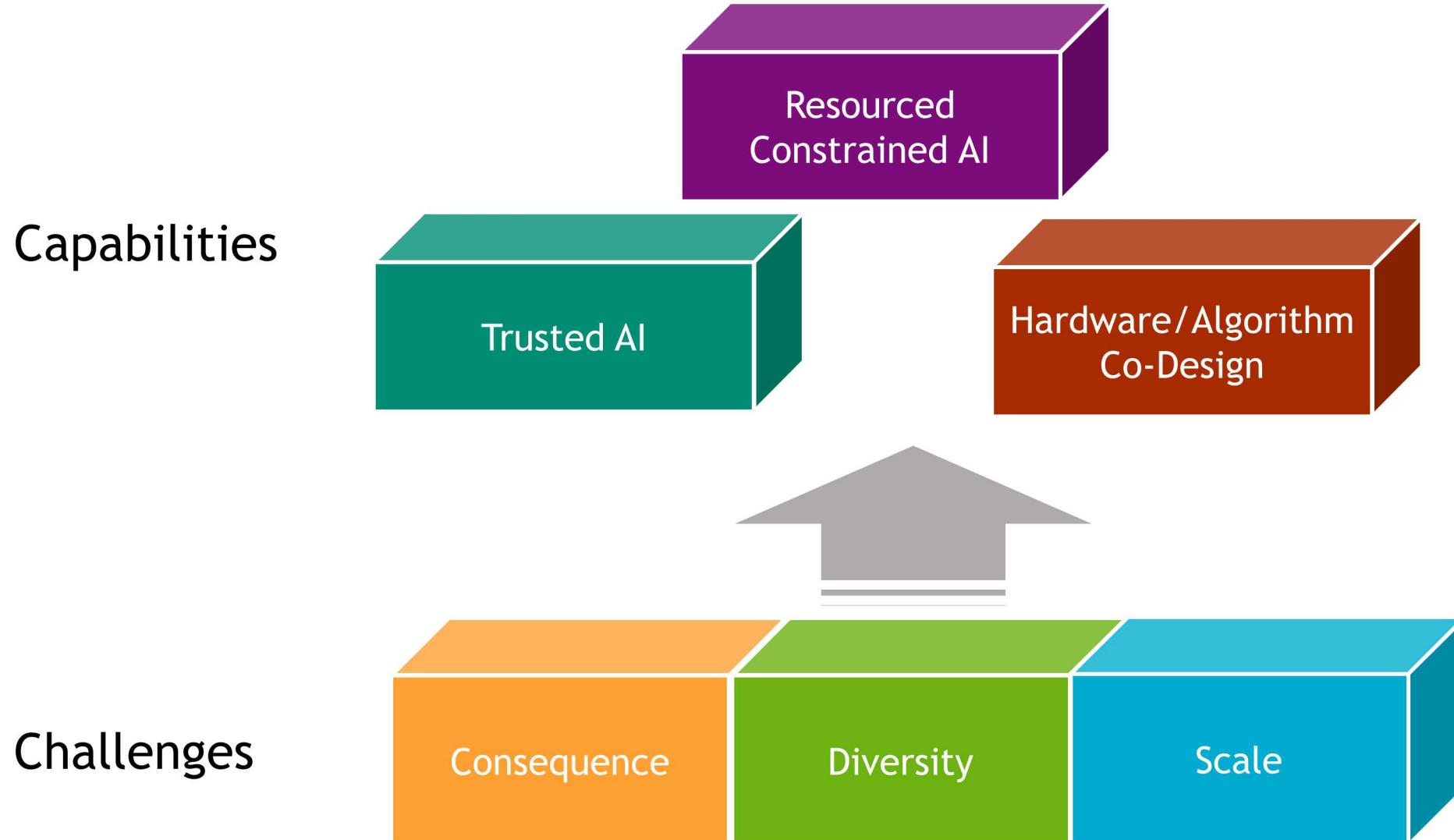
Extending and developing AI algorithms

Evaluating novel hardware and accelerators

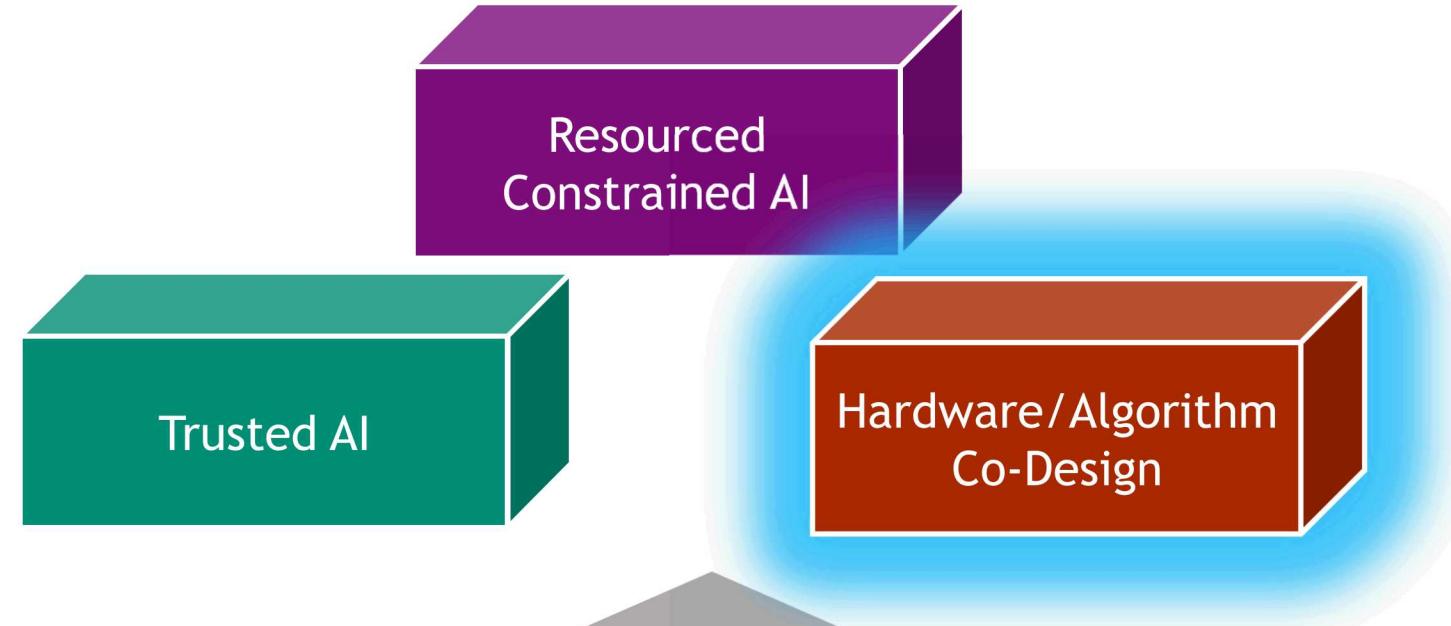
Explore brain-inspired sensor technology

Identifying opportunities for novel AI impact

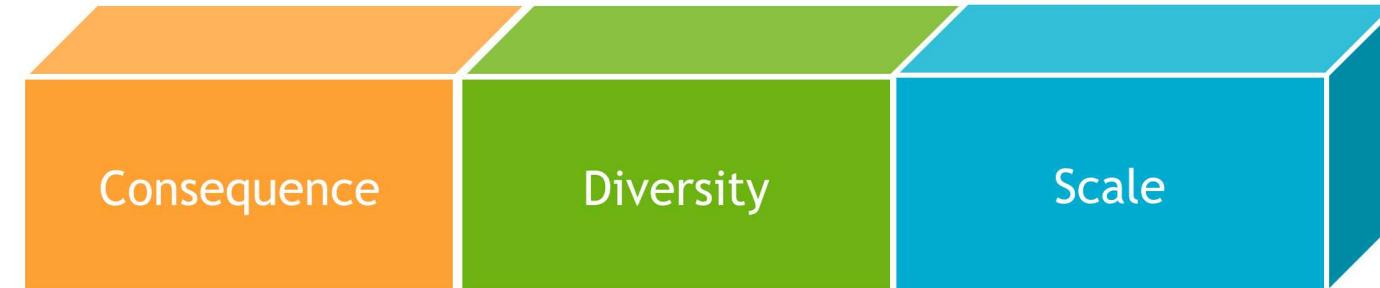
Developing tools and analyses suitable for widespread adoption of emerging AI technologies



Capabilities



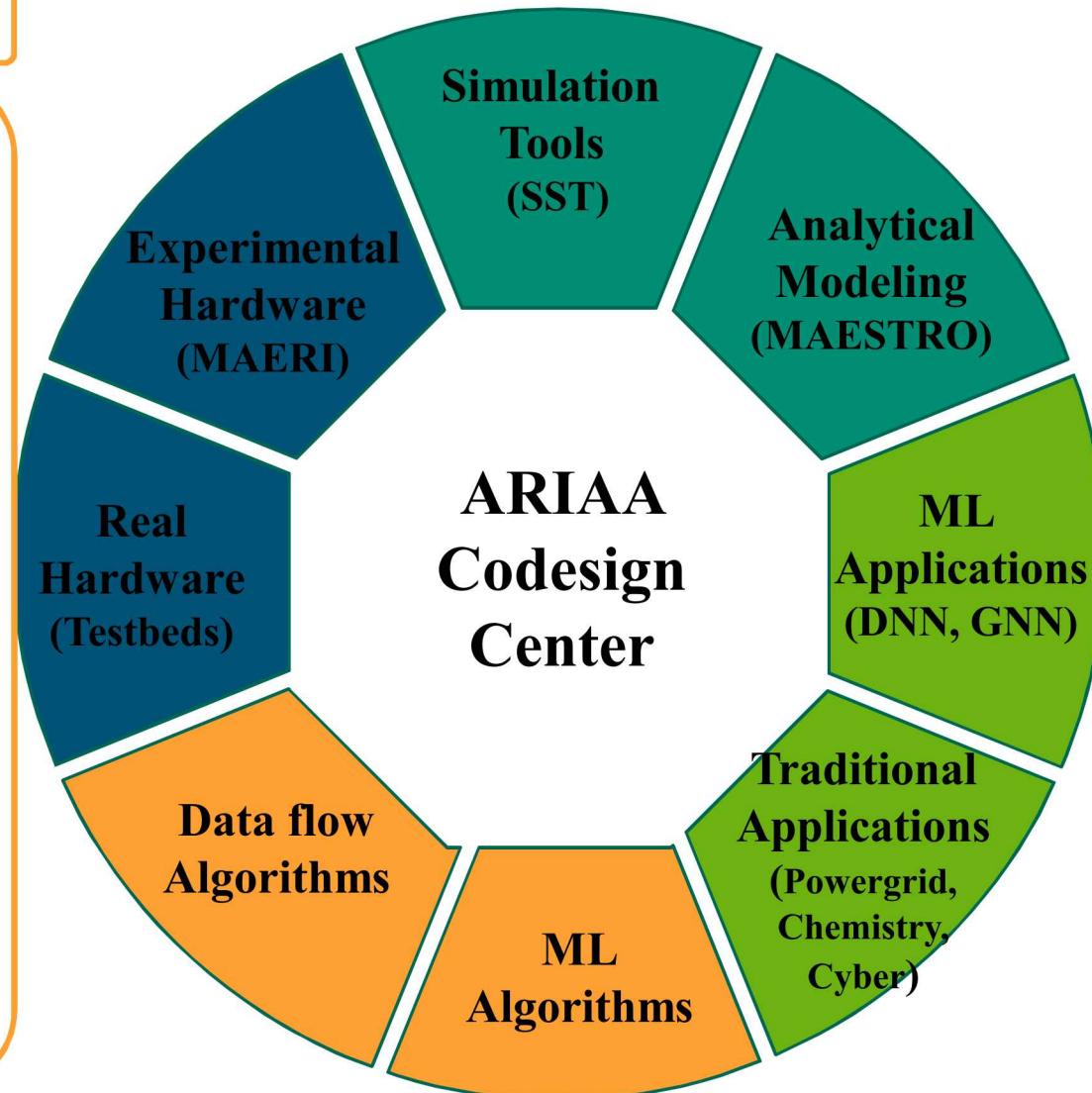
Challenges



(ARIAA)

ARIAA Objectives

- Co-design novel AI/ML architectures and algorithms to enable traditional and ML-based DOE applications
- Understand potential impact of AI-focused architectures on **future leadership class systems**
- Understand how AI/ML accelerators can work with **sparse, irregular, and/or streaming data**
- **Independently evaluate** AI/ML accelerators from different startups and **nudge them for DOE needs**



Ongoing activities

Architecture

- ✓ SST/MAESTRO integration strategy
- ✓ SST accelerator abstractions
- ✓ Initial evaluation of NVIDIA DNN accelerator

Software

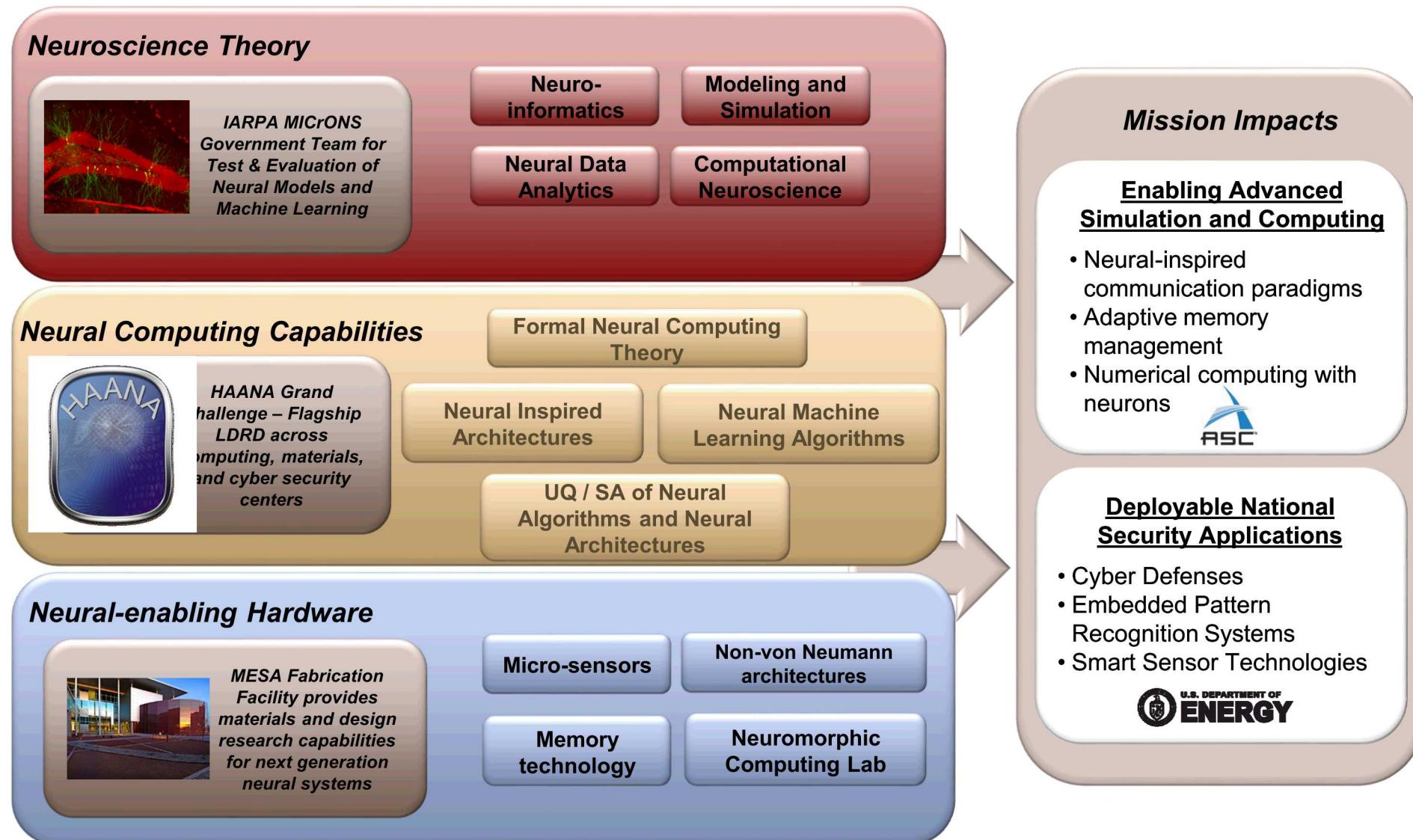
- ✓ Programming abstractions for representative kernels
- ✓ Initial integration of MCL with SST and NVIDIA DNN accelerator

Applications

- ✓ Identify first set of ML/Lin Alg. kernels and algorithms
- ✓ Graph coloring, all-to-all hashing (streaming), SchNet

Codesign of AI/ML accelerators with algorithms and applications will enable the development of this key technology to suite DOE HPC and AI/ML needs

Neural Computing at Sandia Labs Leverages a Large Research Foundation

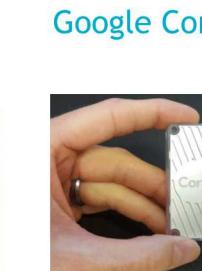


- ❑ Enables researchers to explore the boundaries of neural computation
- ❑ Consists of a variety of neuromorphic hardware & neural algorithms providing a testbed facility for comparative benchmarking and new architecture exploration

Intel Loihi

SpiNNaker 48
Node Board

IBM TrueNorth*

IBM TrueNorth
NS16e*Intel Neural
Compute Stick

Google Coral

Google
EdgeTPUInilabs DAVIS
240C DVSGeorgia Tech
FPAAs

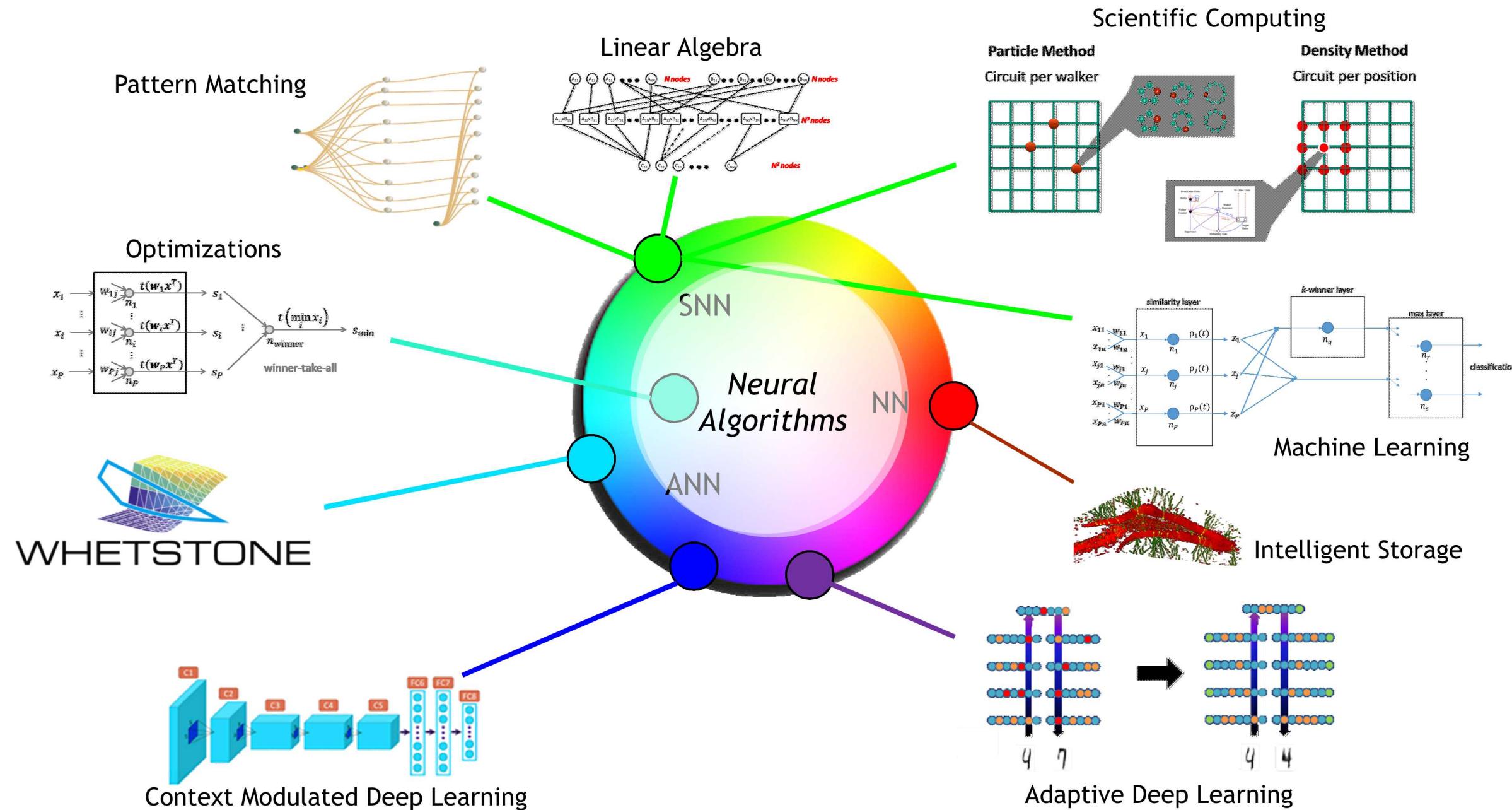
Intel Loihi

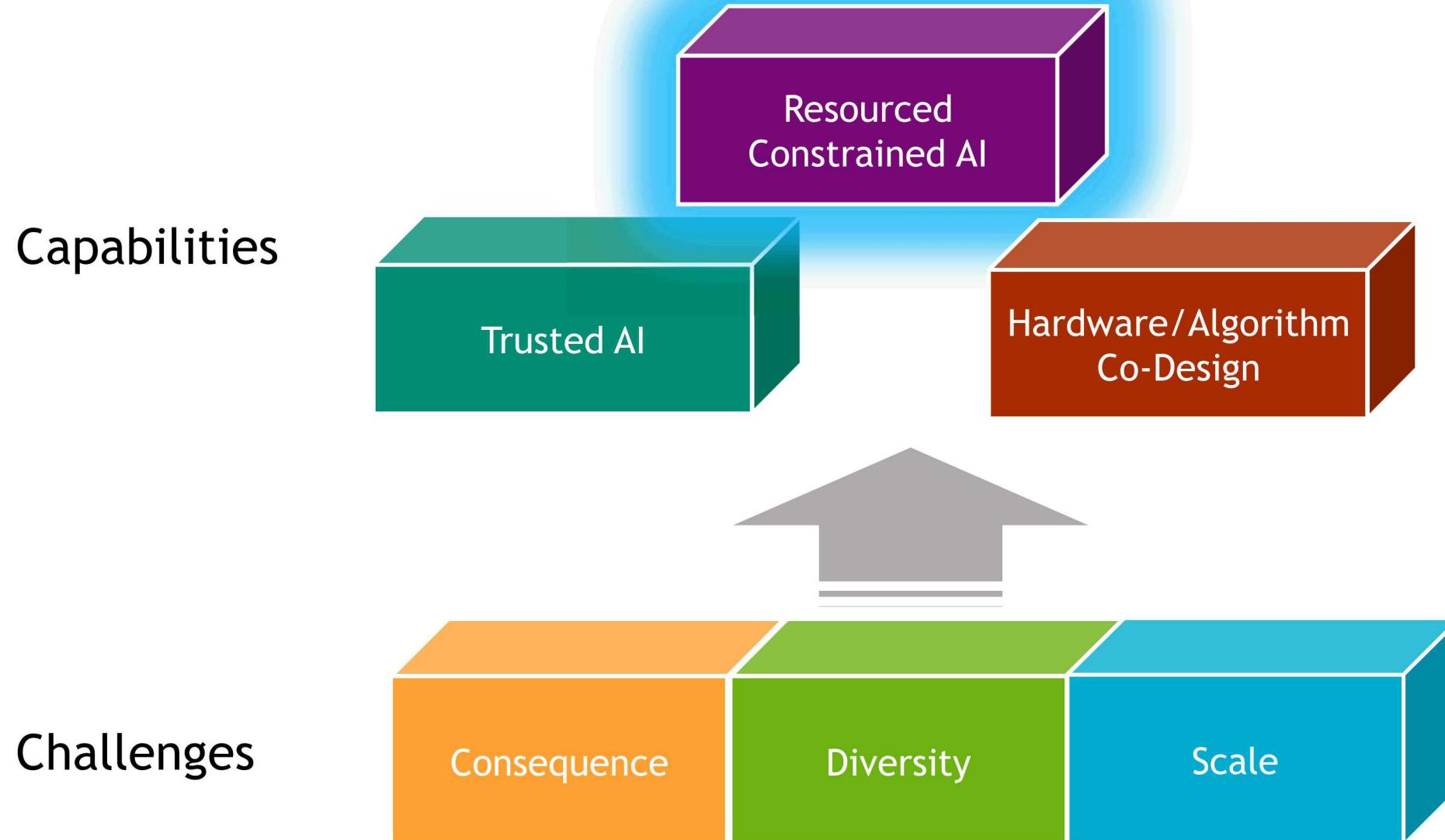
SNL STPU on
FPGAXilinx PYNQ
FPGA

Nengo FPGA

Nvidia Jetson
TX1Nvidia Jetson
NanoGPU
WorkstationsCognimem
CM1KKnuPath
Hermosa

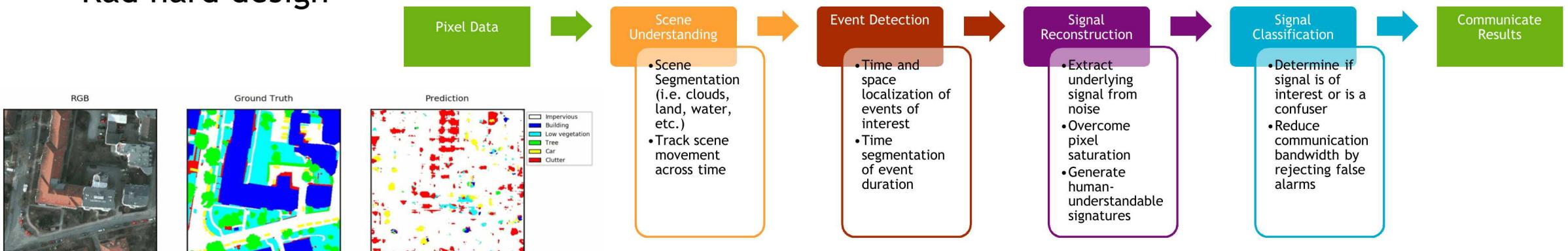
*Remote access





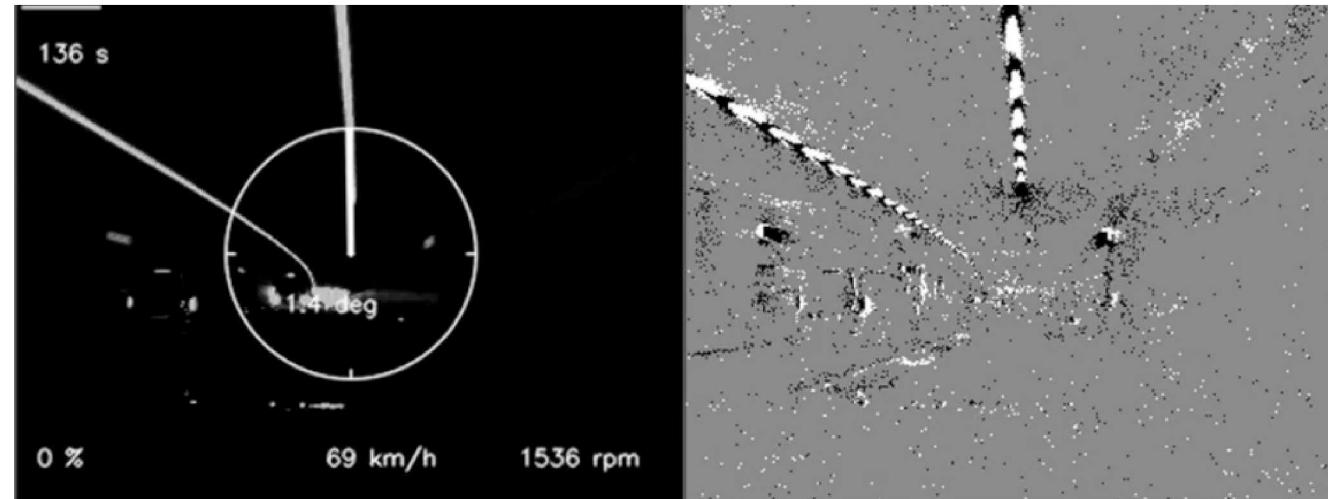
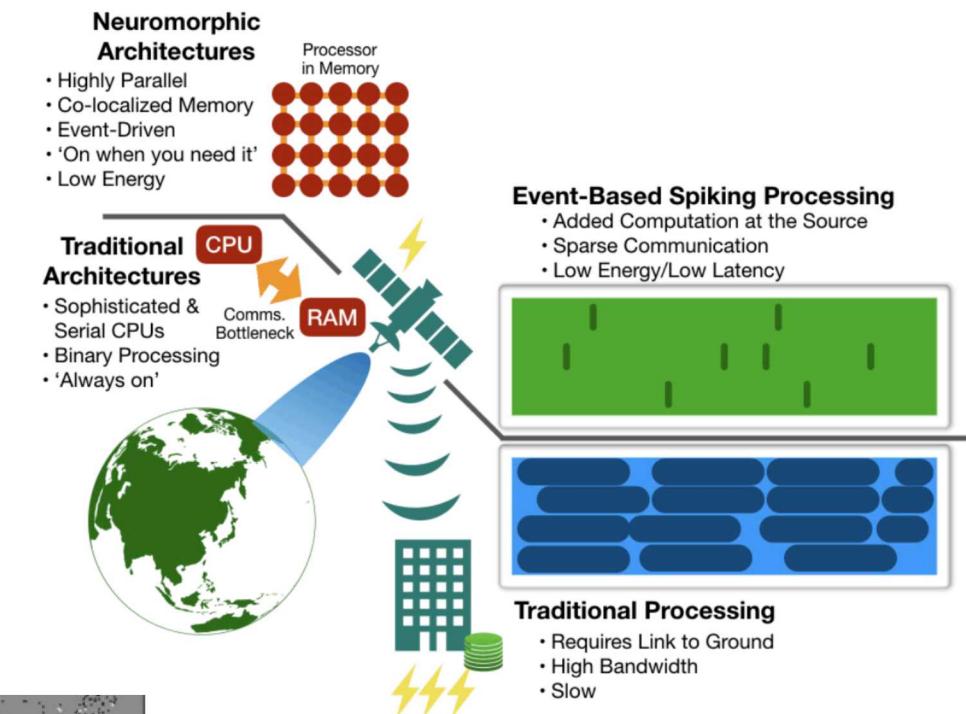
Challenges in classic remote sensing

- Growth of sensor technologies outpacing communication bandwidth
- High Consequence Decisions
- Limited algorithm capabilities
- Limited onboard processing capability
- Rad hard design

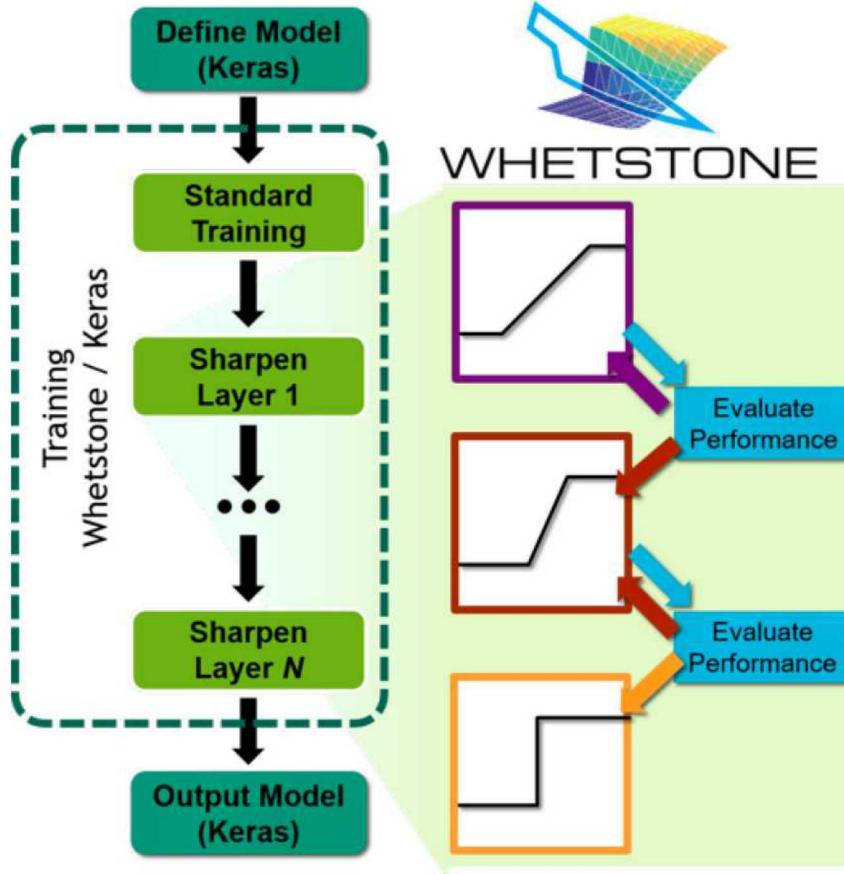


Compute at the sensor

- Improve bandwidth utilization (send only what you need)
- Distributed computation avoiding single-point of failure
- May reduce preprocessing required (e.g. whitening)



DAVIS 240C
Event-Driven
Camera



- ❑ Automatically converts deep learning networks from continuous valued neurons to binary activations, making them compatible with neuromorphic hardware

- ❑ Open sourced

- ❑ Beginning to port onto neuromorphic platforms
- ❑ SpiNNaker Results look great

ARTICLES
<https://doi.org/10.1038/s42256-018-0015-y>

nature
 machine intelligence

Training deep neural networks for binary communication with the Whetstone method

William Sevora *, Craig M. Vineyard , Ryan Dillana , Stephen J. Verzi and James B. Aimore

The computational cost of deep neural networks presents challenges to broadly deploying these algorithms. Low-power and embedded neuromorphic processors offer potentially dramatic performance improvements over traditional processors. However, programming these brain-inspired platforms generally requires platform-specific expertise. It is therefore difficult to achieve state-of-the-art performance on these platforms, limiting their applicability. Here we present Whetstone, a method to bridge this gap by converting deep neural networks to hard discrete, binary communication. During the training process, the activation function at each layer is progressively refined towards a threshold activation with minimal loss in performance. This automation allows networks to achieve a memory rate comparable to other coding schemes, thus producing networks comparable in timing and space to conventional neural networks. We demonstrate Whetstone on a number of architectures and tasks such as image classification, autoencoders and semantic segmentation. Whetstone is currently implemented within the Keras wrapper for TensorFlow and is widely extensible.

A rtificial neural network (ANN) algorithms, specifically deep convolutional networks (DCNs) and other deep learning methods, have become the state-of-the-art techniques for a number of machine learning applications^{1–3}. While deep learning models can be expensive both in time and energy to operate and evaluate, they are well suited for a number of high-level fundamental analytics tasks such as image classification and audio processing has made their use essential in many domains.

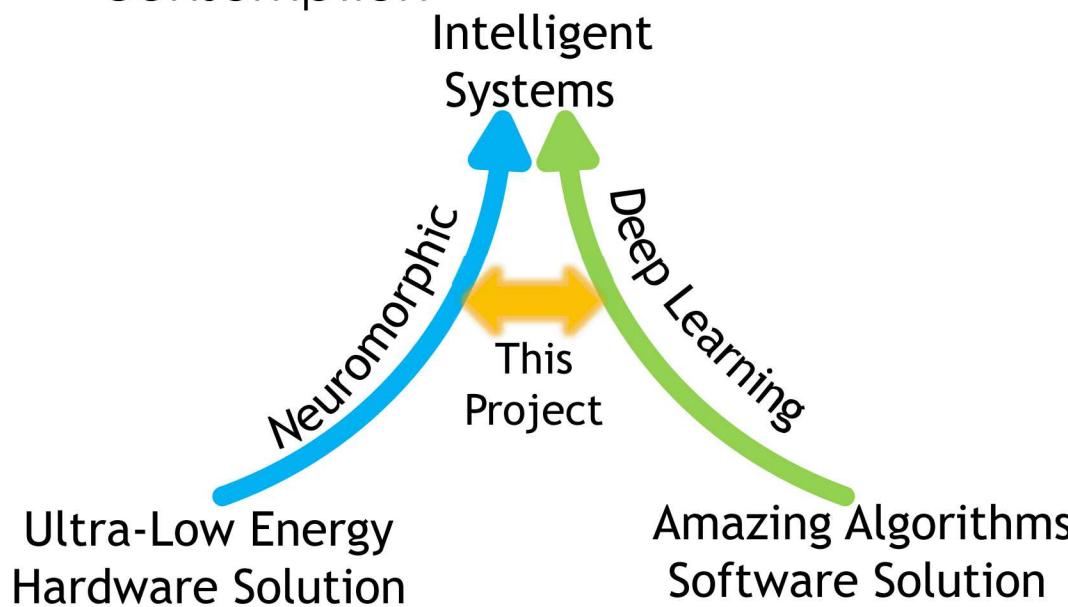
Some applications can rely on remote servers to perform calculations, however, for many applications such as onboard processing, autonomous learning, self-driving cars, drones and smart phones, the resource requirements of running large ANNs may still prove to be prohibitive⁴. Large ANNs with many parameters require a significant storage capacity that is not always available, are more memory intensive than smaller networks, and require the computation, making large ANNs intractable⁵. Additionally, onboard processing capabilities are often limited to meet energy budget requirements, further complicating the challenge. Other factors such as privacy and data sharing are also a major concern for performing computation locally rather than on a remote server.

The development of specialized hardware to enable more efficient computation, however, is part of the solution. One algorithm that simply requires the deployment of an inference-only network. A common approach today is to optimize key computational kernels of ANNs in application-specific integrated circuits (ASICs)^{6–10}. However, while these ASICs can provide substantial acceleration, their power costs are still too high for some embedded applications and often lack flexibility for implementing alternative ANN architectures.

Brain-inspired neuromorphic hardware offers an alternative to conventional DC accelerators, and has been shown to be capable of running ANNs with potentially orders-of-magnitude lower power consumption (that is, performance-per-watt)^{11–13}. The landscape of neuromorphic hardware is rapidly evolving^{14–16}; however, increasingly these approaches leverage spiking to achieve substantial energy reduction in the training process.

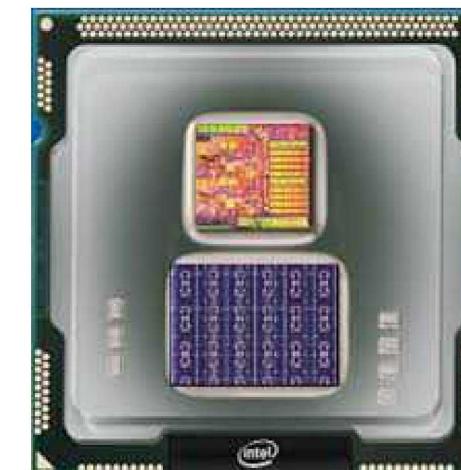
Results
 The Whetstone algorithm converts general ANNs to SNNs. The Whetstone algorithm operates by incorporating the conversion into binary activations directly into the training process. Because most techniques to train ANNs rely on stochastic gradient descent methods, it is necessary that the activation of individual neurons be discrete during the training process. However, as networks become trained, the training process is able to incorporate additional constraints, such as targeting discrete communication between nodes. With this shift of the optimization target in

- AI power draw is a key limiting factor especially for electric powered vehicles: 3kW now; HPC-level for fully self-driving
- Prototype vehicles use a trunk full of GPUs
- Forecasting current tech ~1TeraOp/Watt
- Neuromorphic Hardware:
 - Enables event-driven computation
 - Opportunity for extremely low power consumption



SpiNNaker, Univ. of Manchester

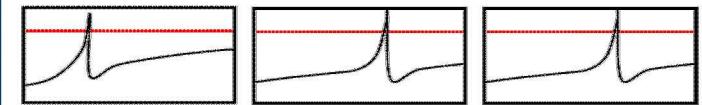
Example Image
From Berkeley DeepDrive



Intel Loihi
Photo: intel.com

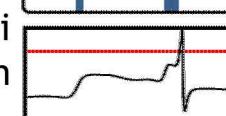
POC: W. Severa

Spiking Neuron Representation

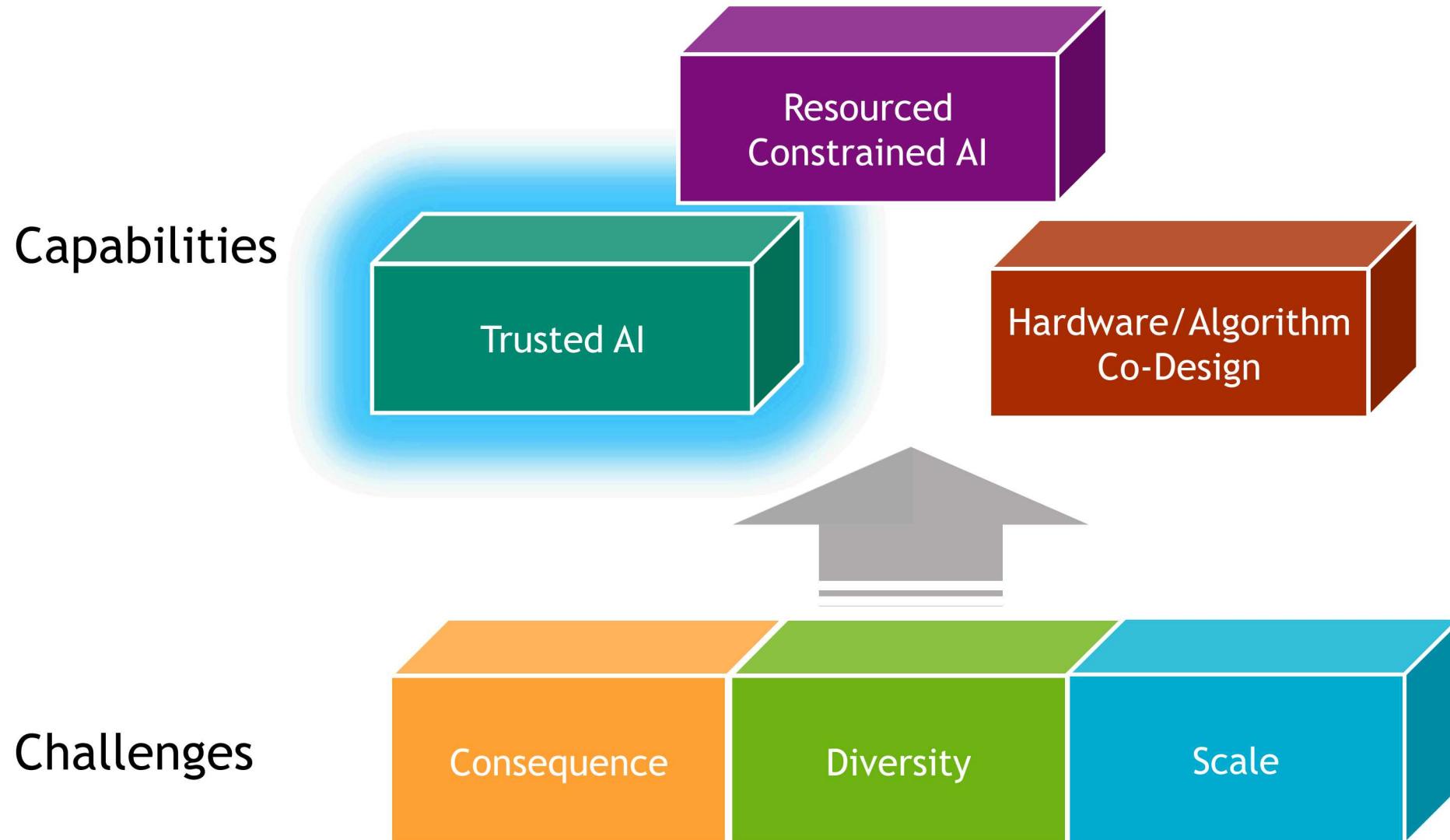


Pre-synaptic
Neurons

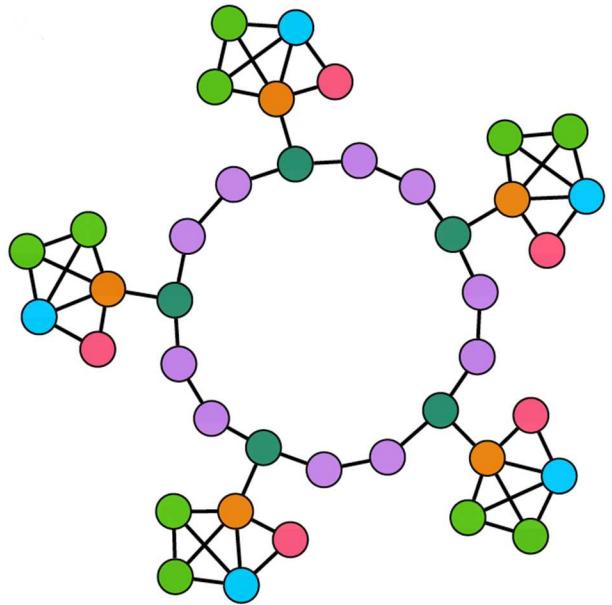
Input spikes



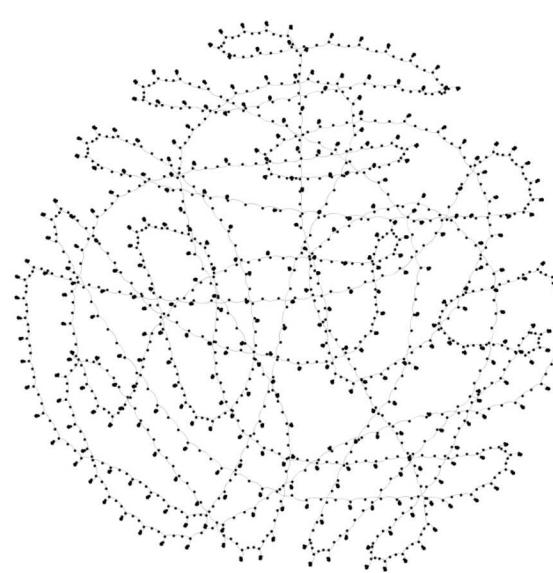
Post-synaptic
Neuron



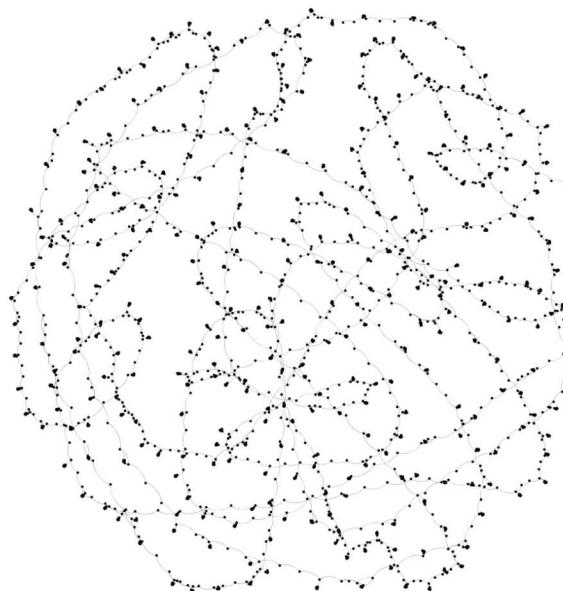
Graph Neural Networks



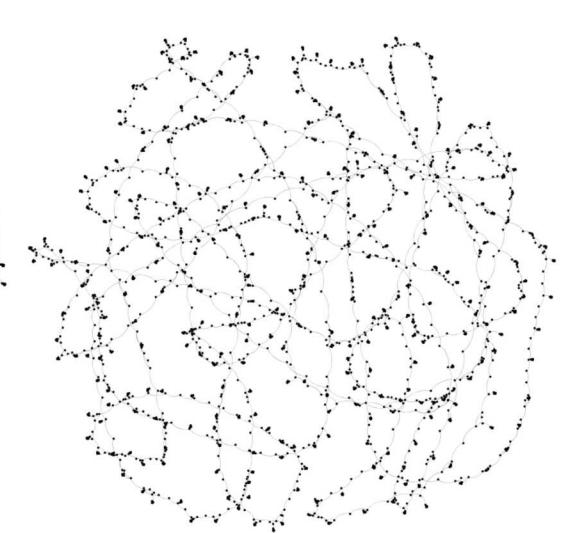
Ring of Houses



Larger graph



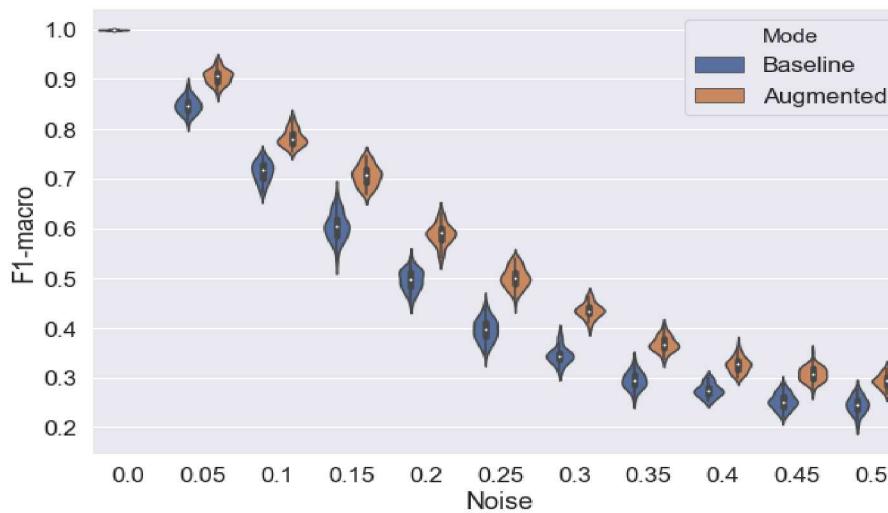
Distance-2 noise



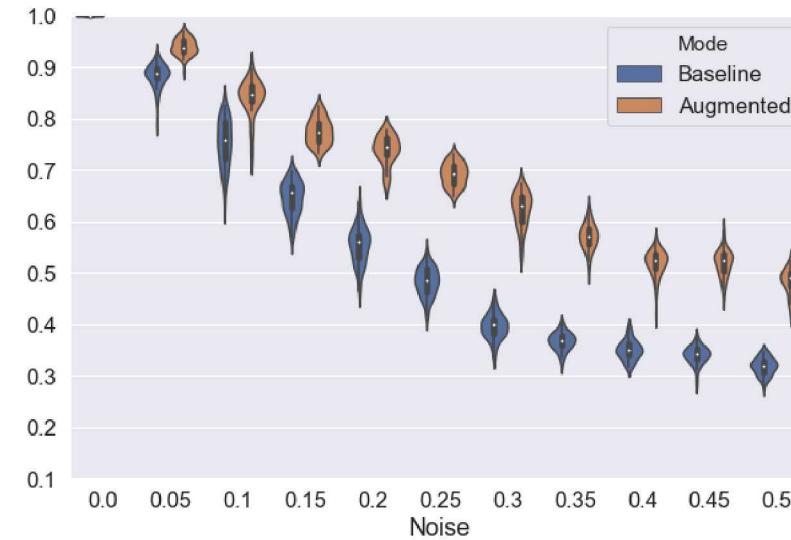
Distance-3 noise

- Graph Neural Networks (GNNs) are a powerful abstraction for learning embeddings on graph structured data
- GNNs have been used in several domains including drug discovery, material science, molecular toxicity prediction
- Evaluate a powerful GNN (Xu et al. 2018) in the presence of noise

Graph Neural Networks – Noisy Data



Test F1 score of GIN model with varying levels of structural noise added to input graph, across 3 different modes of noise constraint.



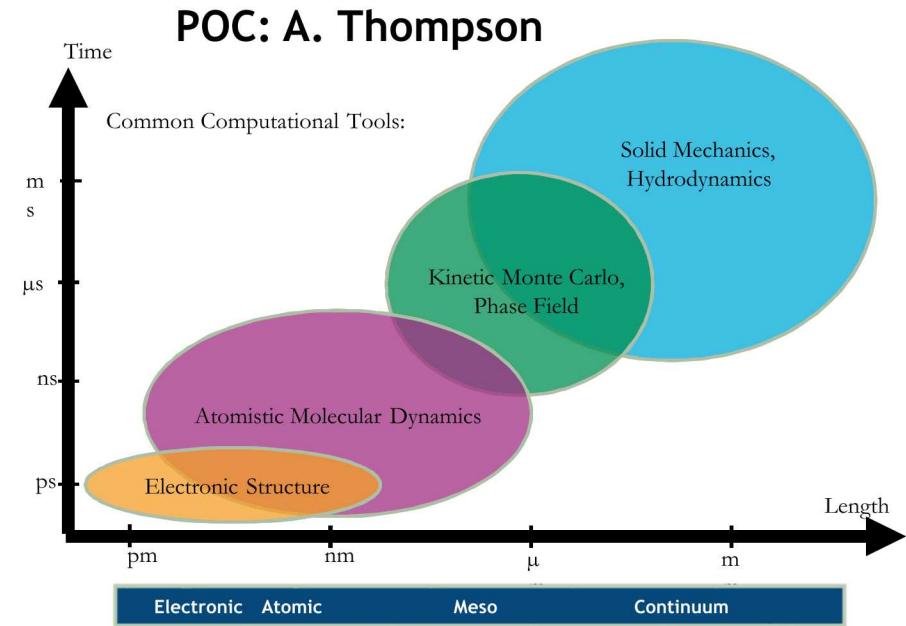
Augmented vs. non-augmented training (baseline) for node classification on Gp. Y-axis is F1 score, x-axis is random edge addition ratio.

- GNNs can predict the six classes with perfect accuracy with no noise
- The class prediction accuracy drops quite fast even at the presence of small amount of noisy edges 0.1-0.15
- The prediction accuracy can be improved by training on augmented noisy graphs

- Continuum models require underlying models of the materials behavior
- QM, MD, KMC, SM: Each method makes different approximations and captures different physics
- Quantum methods can provide very complete description for 100s of atoms
- Molecular Dynamics acts as the “missing link”
 - Bridges between quantum and continuum models
 - Moreover, extends quantum accuracy to continuum length scales; retaining atomistic information

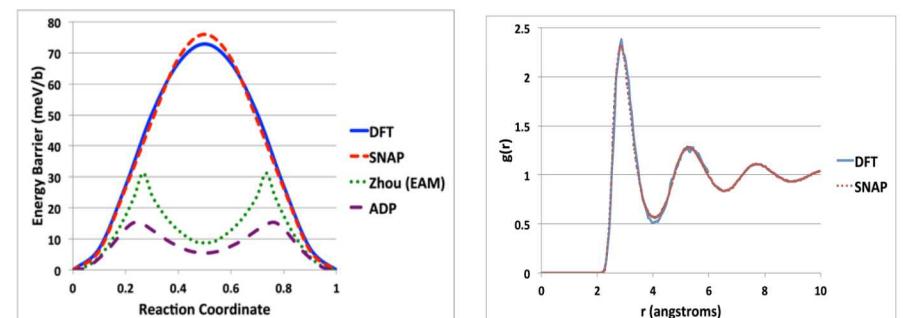
Current Areas of SNAP Development

- Plasticity in Tantalum
- Plasma-Facing Materials (SciDAC-4): **Tungsten/Beryllium**, W/Be/H (in progress)
- Radiation Damage in III-V Semiconductors: **New Multi-element SNAP formulation for Indium Phosphide**
- SNAP Accuracy: **Quadratic SNAP**, SNAP + Neural Networks, Better descriptors
- SNAP Computational Speed in LAMMPS: **SNAP with KOKKOS (CPU, GPU,...)** [ECP CoPA project], Exploring new GPU algorithms [NERSC/NESAP]

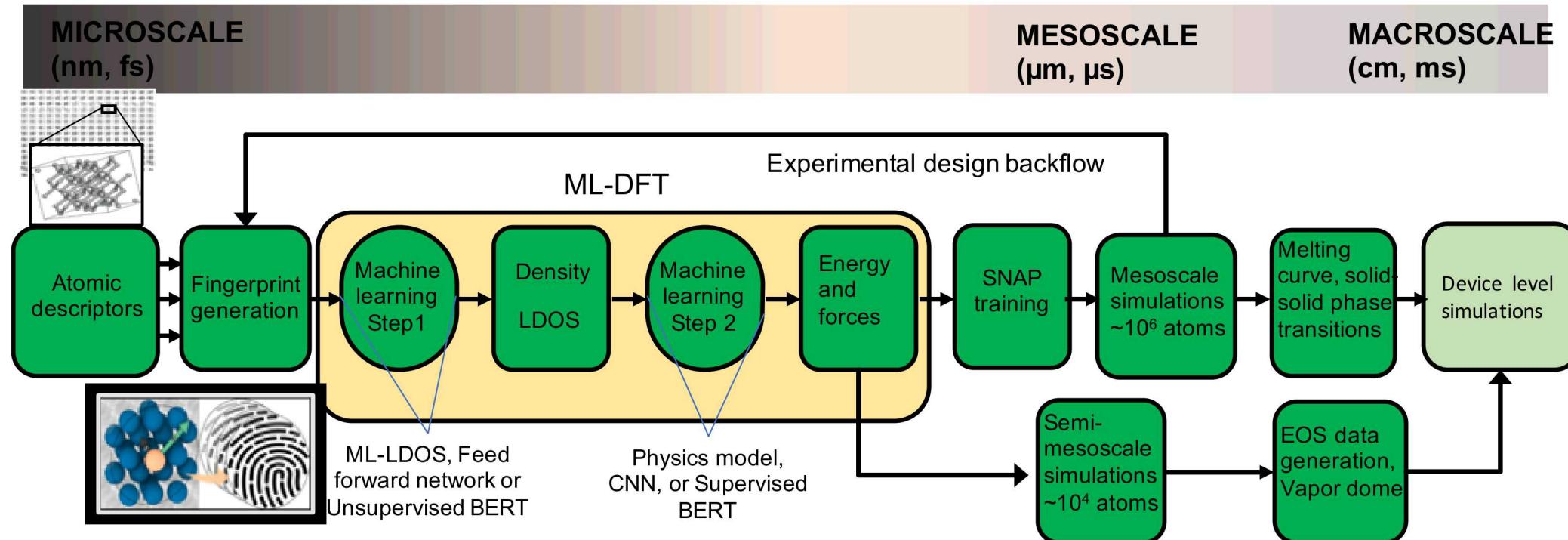


QM: $< 10^{-3} \mu\text{m}$, $< 10^{-5} \mu\text{s}$, MD: $< 10^1 \mu\text{m}$, $< 10^1 \mu\text{s}$, Meso: $\sim 1 \mu\text{m}$, $\sim 1 \mu\text{s}$, Continuum: $> 1 \mu\text{m}$, $> 1 \mu\text{s}$

SNAP potential agrees well with DFT calculations

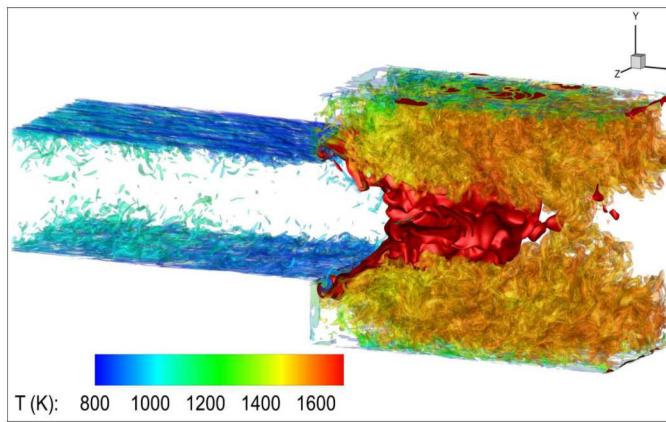


ML-DFT: Accelerating Multiscale Materials Modeling with Machine Learning

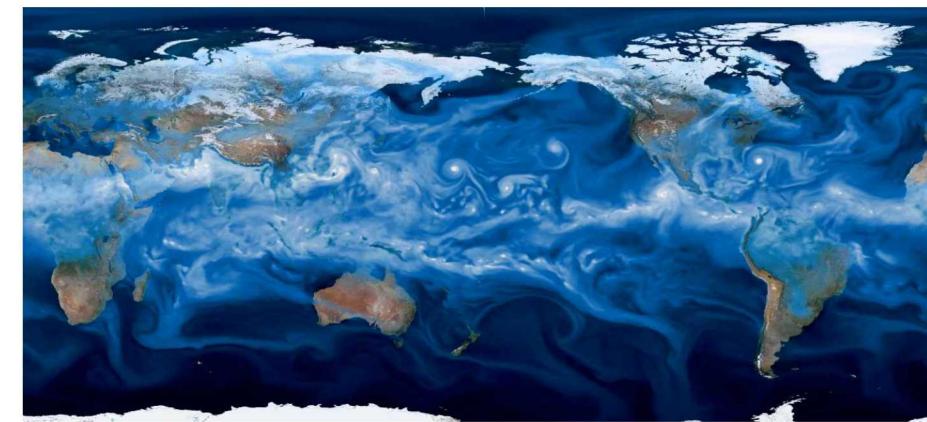


- **Physics-informed Machine Learning (ML) model based Multiscale Materials Modeling (MMM) toolchain.**
- Accelerate first-principles data generation, and increase fidelity and robustness of predictive atomistic material simulations.
- **Applications:** rad-hard semiconductors, advanced manufacturing, shock compression, and energetic materials.
- ML to accelerate *interpolation* of microscale data (10^2 atoms) and enable *extrapolation* to mesoscale (10^4 atoms)
- *High fidelity training data generation, optimal experimental design to select ML training data, three ML approaches, and extensions to macroscopic scale.*

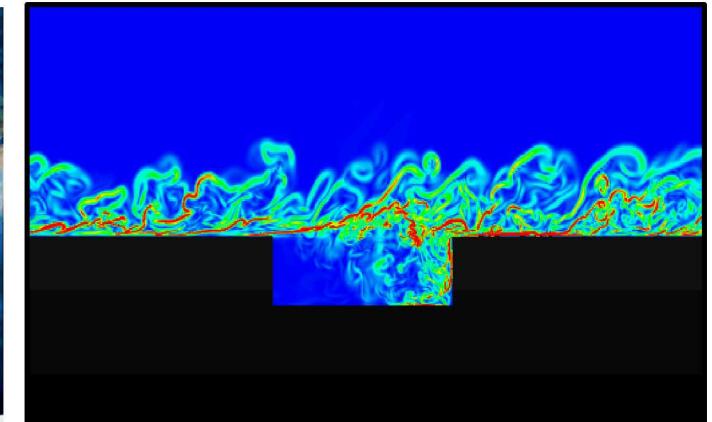
“Trilinos for (ML-based) Material simulations”



Combustion



Climate Modeling



Fluid Dynamics

Want to find “interesting” events, anomalies, state changes, etc.

Examples may include cyclones, onset of combustion, or other things that the scientists may not prescribe a priori and may be difficult to perform via rule-based detection

Desired solution would be to take all the data and run the appropriate detection algorithms (e.g., LOF, isolation forests, clustering)

These simulations produce massive amounts of data (problems for storage capacity, bandwidth)

Signatures: A condensed, information-rich, representation of the simulation data on a node (E.g., descriptive statistics, embeddings)

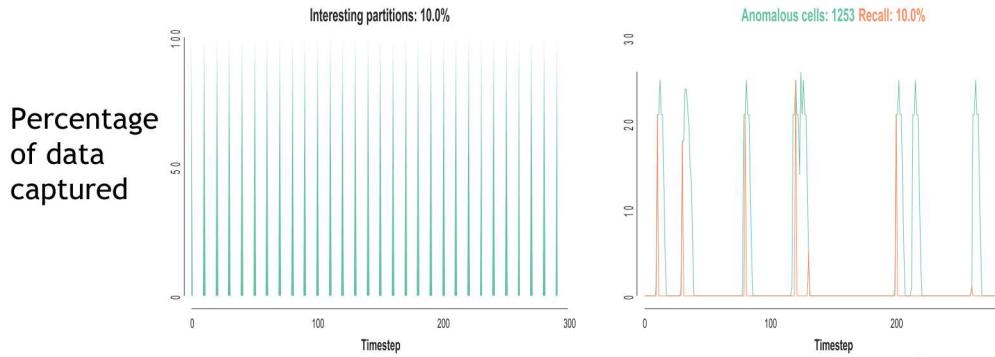
Measure: A representation of how close a signature is to other signatures in the simulation (E.g., distances, densities, estimators)

Decisions: An arbitration of the measures to determine which nodes contain “interesting” data, given the signatures and measures (E.g., threshold, momentum)

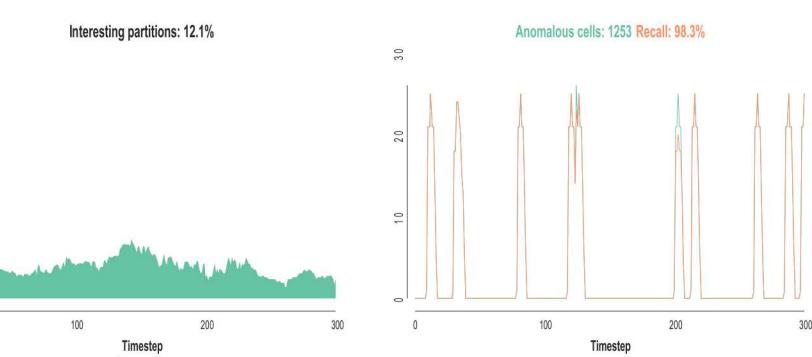
In-Situ Detection is More Accurate and Efficient

Turbulent Flow anomaly detection in Mantaflow

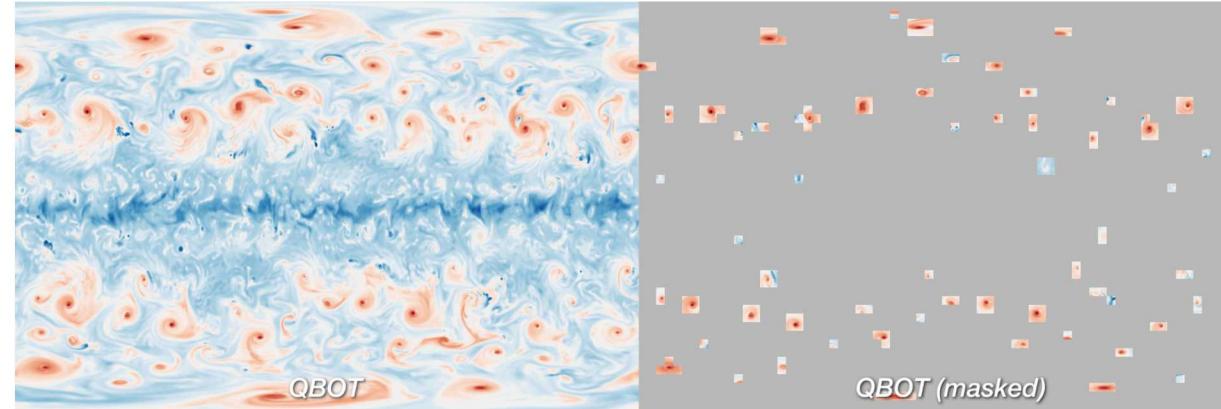
Snapshot (Conventional)



In-Situ Detection



Anomaly Detection in Climate Modeling



See Flash Talk
by Warren
Davis
tomorrow

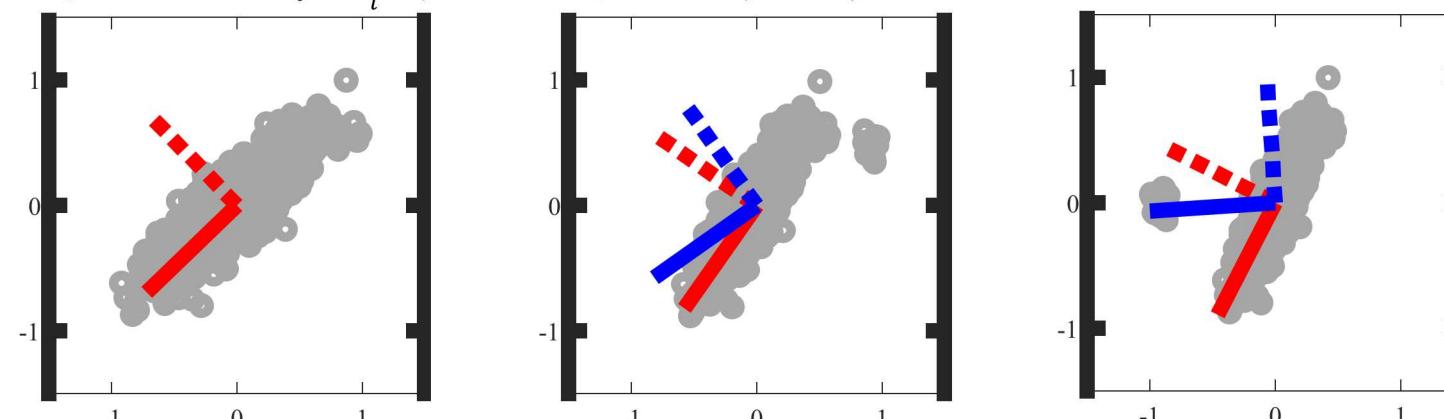
POC: W. Davis (SNL)

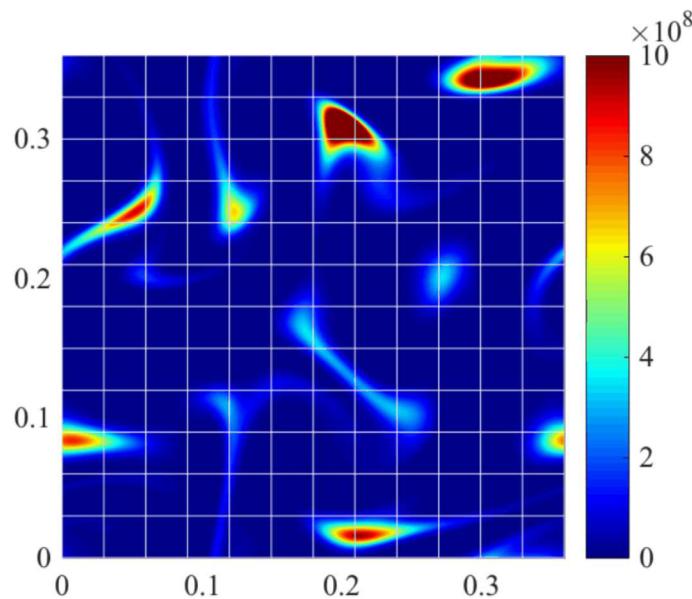
Hypothesis and proposed solution

- Information of anomalous events present in higher order statistical moments, e.g. kurtosis.
- Identify principal vectors of kurtosis (analogous to PCs in PCA) in the variable (a.k.a feature) space.
- *Anomalies manifest as principal kurtosis vectors (PKVs) that are “distinct”.*

Simple Moment-Tensor Decomposition

- Motivated by connections to Independent Component Analysis (ICA).
- Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010, Anandkumar *et al.* 2014)
 - $\mathcal{M}_4 := \mathbb{E}[x \otimes x \otimes x \otimes x] - \mathbb{E}[x_{i1}x_{i2}] \mathbb{E}[x_{i3}x_{i4}] - \mathbb{E}[x_{i1}x_{i3}] \mathbb{E}[x_{i2}x_{i4}] - \mathbb{E}[x_{i1}x_{i4}] \mathbb{E}[x_{i2}x_{i3}]$
- A simple way to decompose \mathcal{M}_4 : matricize and SVD (Anandkumar *et al.* 2014):
 - $\text{mat}(\mathcal{M}_4) = \mathbf{M} = \sum_i \kappa_{S_i} a_i \otimes \text{vec}(a_i \otimes a_i \otimes a_i)$





Putting It Together: HCCI Data Set

- Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.
- Transform PKVs to a “moment (kurtosis) metric per feature (variable)”.
- Moment metrics quantify contribution of a feature to overall kurtosis.
- Normalized (between 0-1), and also sum to 1 (like a discrete distribution).
- Compare moment metrics across MPI ranks (**Hellinger distance**).

- For anomaly detection in scientific data, statistical models based on higher order moments may be promising.
- Use of “principal vectors of Kurtosis” as indicators of anomalous events.
- Metrics quantify change in the principal kurtosis vectors and identify anomalous subdomains.
- Construction of PKVs as a symmetric tensor decomposition problem.

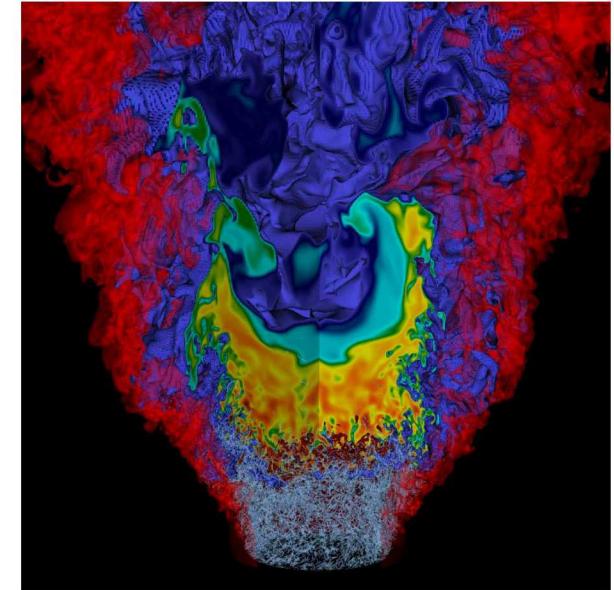
Data Compression based on Implicit Voronoi Tessellation for Combustion

POC: M. Ebeida

Challenge: Reduce the size of the massive data generated during a numerical simulation on the fly without missing important features

Current Practice: Store a snapshot of the 3d field of some quantity of interest every few time steps based, Apply Tucker MPI to compress on all the stored snapshots to reduce the size of the stored data

Concerns: The frequency of the storage snapshots might be insufficient to capture all the important features of the simulation. Moreover, Tucker MPI is not accurate and hence require that the QOI of interest is known before running the simulation. For new QOI, we need to re-run the expensive simulation

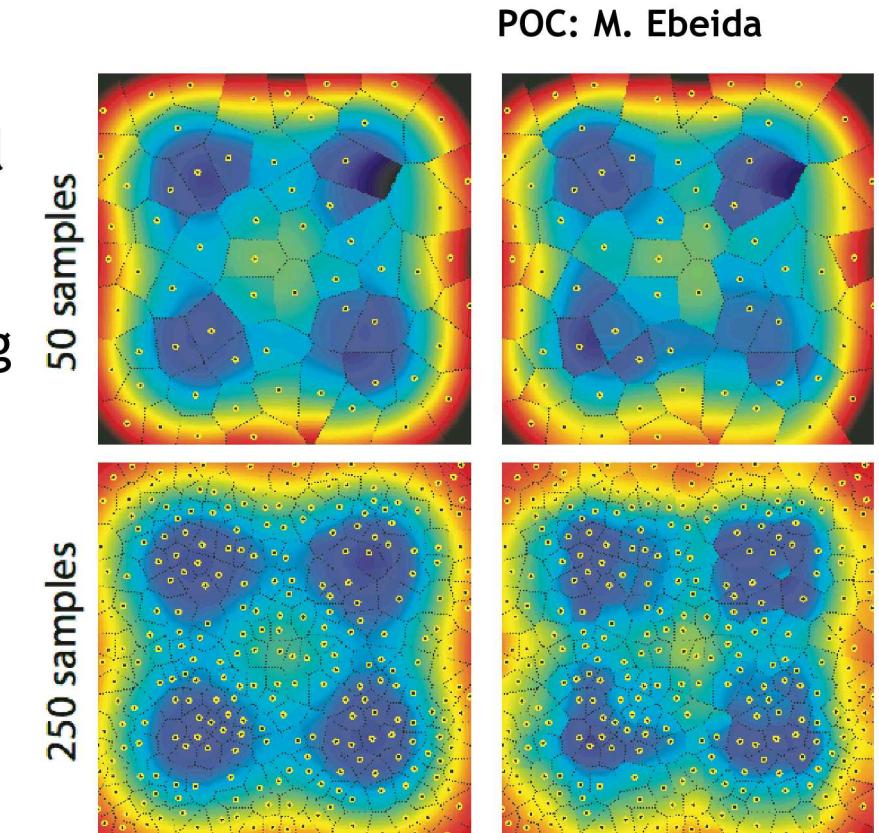


Data Compression based on Implicit Voronoi Tessellation for Combustion

Our Approach: We adaptively sample the four-dimensional spatio-temporal space as time evolves, and we utilize the implicit Voronoi Cells around each of these samples to construct a local surrogate that approximate the underlying field with a user-input desired global accuracy.

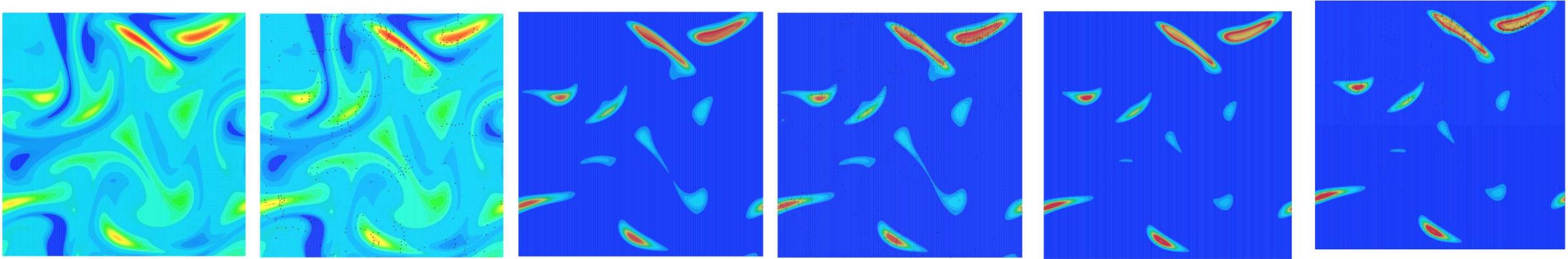
Merits:

1. The adaptive sampling automatically decides where and how to approximate the generated data throughout the 4 dimensional space. This should eliminate the current heuristic intermittent storage of generated data.
2. Since our approach guarantees accuracy, we apply it to the primitive data directly not the QOI. This enables using the compressed data in future analysis.
3. In addition, our local surrogates can provide analytical derivatives of the approximated surface.



Initial Results of a prototype implementation:

POC: M. Ebeida



Temperature field Temp. Compressed

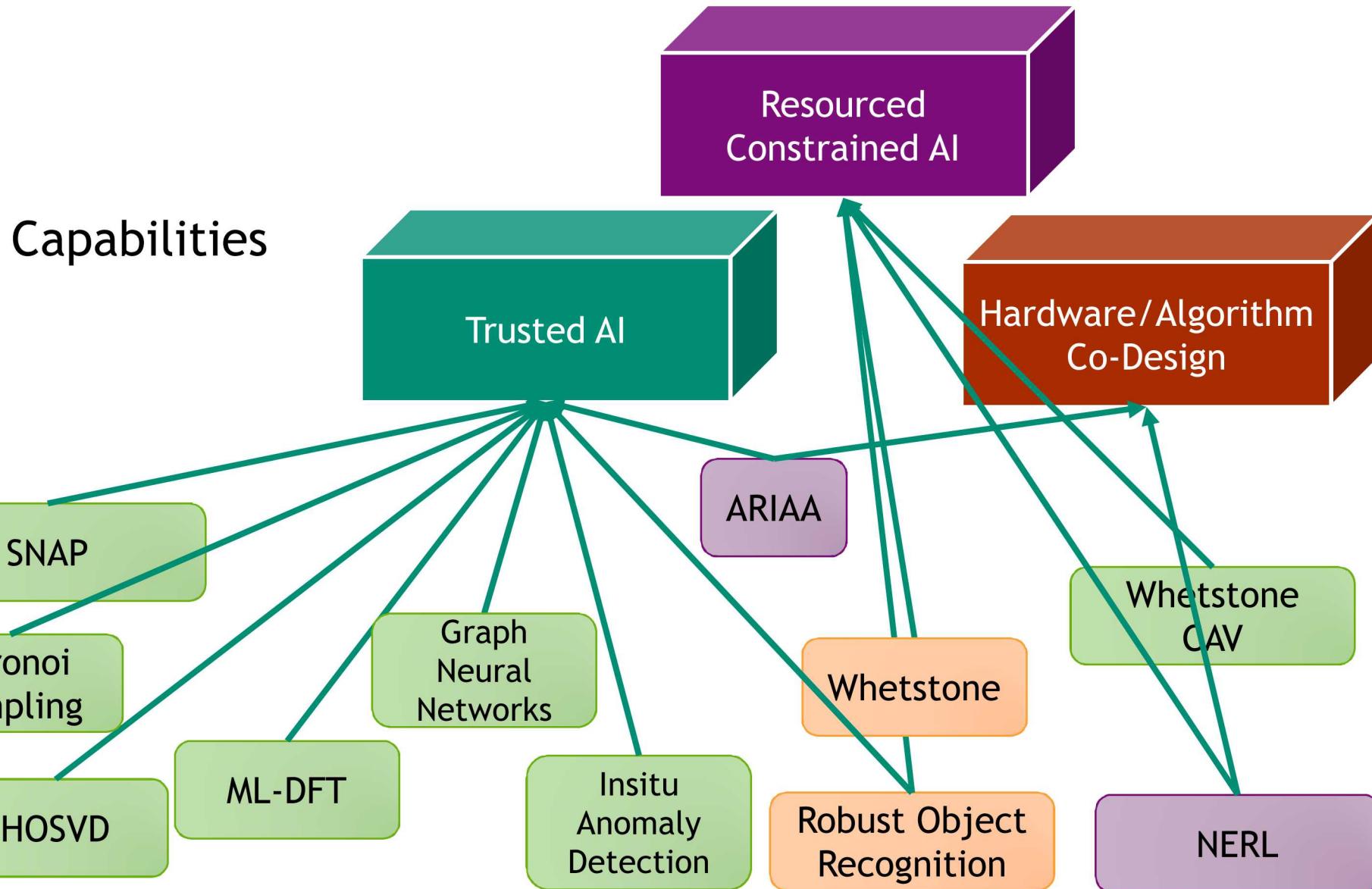
CH3 field

CH3 compressed

OH field

OH compressed

- A prototype implementation of our proposed approach was applied to **three primitive fields** (Temperature, CH3 and OH) generated by two-dimensional combustion simulation
- We were able to **achieve 3 orders of magnitude in compression ratio**. The code was executed in 210 seconds.
- The combustion team reported that they found these results promising and that they couldn't get comparable accuracy with Tucker MPI.
- We are currently working on implementing a **Voronoi Compression Tool** based on **kokkes**.



Thanks! Questions?

Exceptional service in the national interest