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Why has ML/AIl had so much atte_

Some problems are difficult to solve with a directly-coded algorithm
« Don’t generalize well
» Can be difficult to scale

There have been Machine Learning (ML) successes in a variety of areas
« Recognizing patterns
 Anomaly detection
* Learning predictive models from data
» Creating surrogate models
» Generating synthetic data that models real data
« Assisting human decision making

These successes have been enabled by
» Large curated (labeled) datasets
« Advancements in computing power
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Sandia’s Unique Mission Needs _

High-confidence decisions

Typically designing to “Five 9’s” of reliability

Need to assure trust in our solutions

Need to understand uncertainty of decisions

Algorithms need to be explainable

B classified as rifle
M classified as other

Synthesizing Robust:
Adversanial Examples,
Athalye, et.al., 2018

Research



Many Sandia efforts are premised on idea that Al solutions will be instrumental
in delivering these requirements

Sandia has a goal of creating a bridge
between the broader world of Al and our
missions

Consequence
Extending and developing Al algorithms

Evaluating novel hardware and accelerators

Explore brain-inspired sensor technology

Diversity |dentifying opportunities for novel Al impact

Developing tools and analyses suitable for
widespread adoption of emerging Al
technologies
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Center for co-design of ARfificial IntcliSRNSSNNINSINSNNESRL .

ARIAA Objectives

Co-design novel AI/ML
architectures and
algorithms to enable
traditional and ML-based
DOE applications
Understand potential impact
of Al-focused architectures
on future leadership class
systems

Understand how AI/ML
accelerators can work with
sparse, irregular, and/or
streaming data
Independently evaluate
AI/ML accelerators from
different startups and nudge
them for DOE needs

National Pacific
Laboratories Northwest

NAL LABORATORY

& =

Data flow
Algorithms

(ARTAA)

ARIAA
Codesign
Center

ML
Algorithms

Ongoing activities

Architecture
v'SST/MAESTRO integration
strategy
v SST accelerator abstractions
v Initial evaluation of NVIDIA
DNN accelerator

i Software A

v’ Programming abstractions for
representative kernels
v Initial integration of MCL
with SST and NVIDIA DNN
\_ accelerator Yy,
~

r

Applications
v Identify first set of ML/Lin
Alg. kernels and algorithms
v Graph coloring, all-to-all

. hashing (streaming), SchNet

Codesign of AI/ML accelerators with algorithms and applications will enable the
development of this key technology to suite DOE HPC and AI/ML needs



Neuroscience Theory
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Government Team fo:f

HAANA Grand
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'Neural Computing Capabilities

Neural Inspired
Architectures

MESA Fabrication
Facility provides

. Formal Neural Computing ‘
1 heon

UQ / SA of Neural
Algorithms and Neural

Architectures

Neural Machine
Learning Algorithms

\

Neural Computing at Sandia Labs Leverages a Large Research Foundation

Mission Impacts

Enabling Advanced \
Simulation and Computing

* Neural-inspired
communication paradigms

« Adaptive memory
management

* Numerical computing with
neurons

At

Deployable National
Security Applications

* Cyber Defenses

* Embedded Pattern
Recognition Systems

* Smart Sensor Technologies

© ENERGY Y.




Neuromorphic Hardware @ Neural SIS )

(J Enables researchers to explore the
boundaries of neural computation

1 Consists of a variety of neuromorphic
hardware & neural algorithms providing a
testbed facility for comparative benchmarking
and new architecture exploration

Inilabs DAVIS Georgia Tech
C DVS

Fa

Intel Loihi SpiNNaker 48 IBM TrueNorth* IBM TrueNorth Intel Neural Google Coral Google
Node Board NS16e* Compute Stick EdgeTPU 240
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Intel Loihi SNL STPU on Xilinx PYNQ Nengo FPGA Nvidia Jetson GPU Cognimem KnuPath
FPGA FPGA i TX1 Nano Workstations CM1K Hermosa

*Remote access



Impacting Broad Areas of Compu NN Y

Scientific Computing
Linear Algebra Particle Method Density Method

Circuit per walker Circuit per position
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Challenges in classic remote sensing Roiieired. \o,

* Sophisticated &
Serial CPUs Bnnrlng:ck

« ‘Always on’
~

» Growth of sensor technologies outpacing + Binary Processing 4

communication bandwidth

~”’
» High Consequence Decisions ol
| W |
* Limited algorithm capabilities H  Traditional Processing

% * Requires Link to Ground
* High Bandwidth

* Limited onboard processing capability - Siow

- Signal . Communicate
Classification Results
«Determine if

» Rad hard design

Event Detection Signal

Reconstruction

Pixel Data .

*Scene
Segmentation space underlying signal is of
(i.e. clouds, localization of signal from interest or is a
Br | i land, water, events of noise confuser
*F T - s T etc.) m}erest .Oyercome «Reduce o
Tree «Track scene «Time pixel communication
o movement segmentation saturation bandwidth by
across time of event «Generate rejecting false
duration human- alarms
understandable
signatures

-~ /o N




Compute at the sensor Neuromorphic

Architectures Processor

: M . :HEth){::iazr:"e' emo .i‘h’ﬁemow'.
* Improve bandwidth utilization (send only what B OGSO
: S)r\:v \Aér:zrr\g);ou need it’ :::::
you need) ke Compthartn e e Sasce
Traditional §&g% « Sparse Communication
. . . — . . Architectures "’ + Low Energy/Low Latency
» Distributed computation avoiding single-point *Soptietosted . Bgmk’(," _
+ Binary Processing —
. « ‘Always on’
of failure " aondlW =
° . s ) v |
» May reduce preprocessing required (e.g. ~
III1
whitening) i I

* High Bandwidth
+ Slow
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WHETSTONE

J Automatically converts deep learning networks from
continuous valued neurons to binary activations, making
them compatible with neuromorphic hardware

JOpen sourced

J Beginning to port onto
neuromorphic platforms

 SpiNNaker Results look great

ARTICLES

ttps/fdol.org/10.9038/542256-018-0015-y

nature . .
machine intelligence

Training deep neural networks for binary
communication with the Whetstone method

William Severa > *, CraigM. Vineyard 7, Ryan Dellana ), Stephen J. Verzi > and JamesB. Aimone ' *

mmmluauupnnlmmaununmmmmmu
embedded processors offer potentlally dramatic performance-per-watt

improvements over traditional proces-

sors. However, programming thes brain-inspired platforms generally requires platform-specific expartise. It Is therefore dif-
ficult to achleve state-of-the-art performance on these platforms, limiting their applicability. Here we present Whetstone, a
method to bridge this gap by converting deep neural networks to have discrete, binary communication. During the training

process, the activation function at each ayer Is progressively

towards a threshold activation, with limited loss In

sharpened
rate code or other spike-based coding scheme, thus producing

‘Whetstone Is currently imple-

apper for y

rificial neural network (ANN) algorithms, specifically deep
Amnmlmmml networks (DCNs) and other deep lesrning
ethods, have become the state-of-the-art technique:

number of machine learning applications' . While deep kumng
models can be expensive both in time and energy to operate and
even more expensive 10 train, their exceptional accuracy on funda
mental analytics tasks such as image classification and audio pro-
cessing has made their use essential in many domains

Some applications can rely on remote servers o perform deep
learning calculations; however. for many applications such a5
onboard processing in autonomous platiorms like self-driving cars,
drones and smart phones, the resource requirements of running
large ANNs may still prove to be probibitive. Large ANNs with
many parameters require a significant storage capacity that is not
abways availsble, and data movement energy costs are greater than
that of performing the computation, making large ANNs intracts.
ble". Additionally. onboard processing capabilities are often limited
10 meet encrgy budget requirements, further complicating the chal
lenge. Other factors such as privacy and data sharing also provide
a motivation for performing computation locally rather than on &
remote server

The development of specialized hardware to enable more effi
cient ANN calculations secks to facilitate moving ANNs into
resource-constrained environments, particularly for trained
rithms that simply require the deployment of an inference-ready
network. A common approach today is to optimize key computa-
tional kernels of ANN in application-specific integrated circults
(ASICs)"*. However, while these ASICs can provide substantial
acceleration. their power costs are stll oo high for some embedded
applications and often lack flexibility for implementing aliernative
ANN architectures.

Brain-inspired newromorphic hardware presents an alternative
1 conventional ASIC accelerators, and has been shown to be capa-
ble of running ANNs with potentially orders-of-magnitude lower
power consumption (that i, performance-per-watt). The landscape
of neuromarphic huscware i apidly evolving " howere,increas-
ingly these .

savings. Neuromorphic spiking, which emulates all-or-none action
potentials in biological neurons. limits communication in hardware
only to discrete events. For spiking newromorphic hardware to be
useful, however, i is necessary to convert an ANN, for which com
munication between artificial neurons can be high-precision. t0 2
spiking neural network (SNN). Supplementary Note I provides fur
ther details of spiking and ANN acceleration

The conversion of ANNs to SNNs—whatever their form—is
non-trivial, as ANNs depend on gradient-based backpropagation
training algorithms, which require high-precision communication,
and the resultant networks effcctively assume the persistence of that
precision. While there are methods for converting existing ANNs
10 SNNs, these transformations ofien require using representa
tions that diminish the benefits of spiking, Here, we describe 3 new
approach to training SNNs, where the ANN training is 1o not only
learn the task, but o produce a SNN in the process. Specifically, if
the training procedure can include the eventual objective of low-
precisson communication between nodes. the training process of a
SNN can be nearly as effective as a comparable ANN. This m}m L
which weterm Whetstone (i 1) inspired by the ool (o sharpen a
dull knife, is intentionally agnostic to both the type of ANN being
trained and the targeted neuromorphic hardware. Rather, the intent
i to provide 3 straightforward interface for machine kearning
researchers o leverage the powerful capailities of low-power neu
romorphic hardware on a wide range of decp learning applications
(see section ‘Implementation and software package details)

Results
Whetstone method converts 5ﬂml ANNs to SNNs. The
Whetstone algorithm operates by incorporating the conver-
sion into binary activations directly into the training process
Because most techniques to train ANNs rely on stochastic gradi
ent descent methods, it is necessary that the activations of new
rons be differentisble during the training process. However, as
setworks become traied.the taiing proces i bl b0 incorpe-
rate addi as

b i optimization target in

Center for Computing Research, Sandia National Laboratortes, Albuquarque. NM, USA. “e-mat: winse

P~ WATURE MACHING INTELLIGENCE | VOL 1| FEBRUARY 2019 86-94 | waw s

POC: W. Severa
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Whetstone and Vehicle Percep (G Y

Al power draw is a key limiting factor

especially for electric powered vehicles: 3kW

now; HPC-level for fully self-driving

Prototype vehicles use a trunk full of GPUs
Forecasting current tech ~1TeraOp/Waftt

Neuromorphic Hardware:
« Enables event-driven computation

« Opportunity for extremely low power

consumption
Intelligent

Systems

This %,
Project &

Ultra-Low Energy
Hardware Solution

Amazing Algorithms
Software Solution

SpiNNaker, Univ. of Manchester
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From Berkeley DeepDrive

% Spiking Neuron Representation
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Graph Neural Networks

Ring of Houses Larger graph Distance-2 noise Distance-3 noise
« Graph Neural Networks (GNNs) are a powerful abstraction for learning embeddings on
graph structured data

GNNs have been used in several domains including drug discovery, material science,
molecular toxicity prediction

» Evaluate a powerful GNN (Xu et al. 2018) in the presence of noise X\
ECP

EXASCALE COMPLUTING PROJECT



F1-macro

Graph Neural Networks — No—
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of structural noise added to input graph, across Augmented vs. non-augmented training (baseline) for node classification on Gp.

3 different modes of noise constraint.

“How Robust are Graph Neural Networks to Structural Noise”, J. Fox, S. Rajamanickam, &

Y-axis is F1 score, x-axis is random edge addition ratio.

GNNs can predict the six classes with perfect accuracy with no noise

The class prediction accuracy drops quite fast even at the presence of small amount of
noisy edges 0.1-0.15

The prediction accuracy can be improved by training on augmented noisy gra@

CP

EXASCALE COMPLUTING PROJECT

DLGMA workshop, AAAI 2019.



SNAP (Spectral Nlghbor Analysis PotentiJSNEENINENEMINESCEO. )

POC: A. Thompson

Time

» Continuum models require underlying models of the materials behavior

» QM, MD, KMC, SM: Each method makes different approximations and captures
different physics o

Common Computational Tools:

» Quantum methods can provide very complete description for 100s of atoms

» Molecular Dynamics acts as the “missing link”
» Bridges between quantum and continuum models

ns

» Moreover, extends quantum accuracy to continuum length scales; retaining atomistic
information

Current Areas of SNAP Development P o b "

» Plasticity in Tantalum
OM: <103 um, < 103us, MD: < 10! um, < 10!ps,

»Plasma-Facing Materials (SciDAC-4): Tungsten/Beryllium, W/Be/H (in progress) Meso: ~1um, ~1us, Continuum: > 1pm, > 1us
»Radiation Damage in III-V Semiconductors: New Multi-element SNAP formulation SNAP potential agrees well with DFT calculations
for Indium Phosphide

~
S

3

»SNAP Accuracy: Quadratic SNAP, SNAP + Neural Networks, Better descriptors

=—DFT
==SNAP
***Zhou (EAM)
= ADP

8 8

»SNAP Computational Speed in LAMMPS: SNAP with KOKKOS (CPU, GPU,...)
[ECP CoPA project], Exploring new GPU algorithms [NERSC/NESAP]

Energy Barrier (meV/b)
8

~N
S

-
15

o

0 02 04 0.6 08 1

A. P. Thompson , L.P. Swiler, C.R. Trott, S.M. Foiles, and G.J. Tucker, J. Comp. Phys., 285 316 Reaction Coordinate

(2015).



ML-DFT: Accelerating Multiscale Materials Modeling with Machine Learning

MESOSCALE MACROSCALE
(um, ps) (cm, ms)

Experimental design backflow
ML-DFT

Device level
simulations

Y} V

ML-LDOS, Feed Physics model,
forward network or CNN, or Supervised
Unsupervised BERT BERT

Physics-informed Machine Learning (ML) model based Multiscale Materials Modeling (MMM) toolchain.
Accelerate first-principles data generation, and increase fidelity and robustness of predictive atomistic material
simulations.

Applications: rad-hard semiconductors, advanced manufacturing, shock compression, and energetic materials.

ML to accelerate interpolation of microscale data (10? atoms) and enable extrapolation to mesoscale (10* atoms)
High fidelity training data generation, optimal experimental design to select ML training data, three ML approaches,
and extensions to macroscopic scale.

“Trilinos for (ML-based) Material simulations”
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Combustion Climate Modeling Fluid Dynamics

Want to find “interesting” events, anomalies, state changes, etc.

Examples may include cyclones, onset of combustion, or other things that the scientists may not prescribe a priori and may be difficult to perform via rule-based
detection

Desired solution would be to take all the data and run the appropriate detection algorithms (e.g., LOF, isolation forests, clustering)
These simulations produce massive amounts of data (problems for storage capacity, bandwidth)

Signatures: A condensed, information-rich, representation of the simulation data on a node (E.g., descriptive statistics, embeddings)
Measure: A representation of how close a signature is to other signatures in the simulation (E.g., distances, densities, estimators)

Decisions: An arbitration of the measures to determine which nodes contain “interesting” data, given the signatures and measures (E.g.,
threshold, momentum)

Slide Courtesy: W. Davis



In-Situ Detection is More Accurate and Efficient

Snapshot (Conventional)

Interesting partitions: 10.0%

Percentage
of data o
captured

See Flash Talk
by Warren
Davis
tomorrow

AP A W 1N P

Turbulent Flow anomaly detection in Mantaflow

In-Situ Detection

Interesting partitions: 12.1%

i Percentage
: of data
captured
‘ T Y b L AL .
| 4 e
0 100 200 300 300
Timestep Timestep Timestep

Anomaly Detection in Climate Modeling
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POC: W. Davis (SNL)



Higher Order Moment Tensors fdiGUIBNSHONINSNSIINN )

POC: H. Kolla

Hypothesis and proposed solution

Information of anomalous events present in higher order statistical moments, e.g. kurtosis

Identify principal vectors of kurtosis (analogous to PCs in PCA) in the variable (a.k.a feature) space
Anomalies manifest as principal kurtosis vectors (PKV’s) that are “distinct”

Simple Moment-Tensor Decomposition

Motivated by connections to Independent Component Analysis (ICA).

Operate on fourth cumulant tensor (Lathauwer & Moore 2001, Comon & Jutten 2010, Anandkumar et al. 2014)

= M,=E[x ® x® x @ x] - E[x;1x;,] E[x;3%;4] - E[x;1x:3] E[x;px14] - E[x;124] E[x;5%3]

A simple way to decompose M, : matricize and SVD (Anandkumar ez al. 2014):
= mat(M,) —M i KS a; ® U€C(CLL® a; ® a;)

1
%
* T
. '~
0 /
-1
| |




Higher Order Moment Tensors fdiGORBUSHONINSNSISINNN

POC: H. Kolla
10" Putting It Together: HCCI Data Set
- 10
 EENEE SNEEEE
======= ’ = Extract Principal Kurtosis Vectors (PKVs) on each MPI rank.
A

= Transform PKVs to a “moment (kurtosis) metric per feature (variable)”.

= Moment metrics quantify contribution of a feature to overall kurtosis.

14 = Normalized (between 0-1), and also sum to 1 (like a discrete distribution).
=  Compare moment metrics across MPI ranks (Hellinger distance).

"
0.2

o AHAEEEL YRR
el HHNNEJNN.

0
0 0.1 0.2 0.3

= For anomaly detection in scientific data, statistical models based on higher order moments may be promising,

(8]

0

= Use of “principal vectors of Kurtosis™ as indicators of anomalous events.
= Metrics quantify change in the principal kurtosis vectors and identify anomalous subdomains.

= (Construction of PKVs as a symmetric tensor decomposition problem.

K. Aditya, H. Kolla, W. P. Kegelmeyer, T. M. Shead, J. Ling, Warren L Davis IV, 2019, “Anomaly
detection in scientific data using joint statistical moments”, Journal of Computational Physics, vol.
387, pp:522.




Data Compression based on \mp“cl%! %u‘on— -

for Combustion ——rl

Challenge: Reduce the size of the massive data generated during
a numerical simulation on the fly without missing important
features

Current Practice: Store a snapshot of the 3d field of some
quantity of interest every few time steps based, Apply Tucker
MPI to compress on all the stored snapshots to reduce the size of
the stored data

Concerns: The frequency of the storage snapshots might be
insufficient to capture all the important features of the
simulation. Moreover, Tucker MPI is not accurate and hence
require that the QOI of interest is known before running the
simulation. For new QOI, we need to re-run the expensive
simulation




Data Compression based on Implicl Ton

for Combustion e

Our Approach: We adaptively sample the four-dimensional
spatio-temporal space as time evolves, and we utilize the
implicit Voronoi Cells around each of these samples to
construct a local surrogate that approximate the underlying
field with a user-input desired global accuracy.

@ . =

50 samples

Merits:

1. The adaptive sampling automatically decides where
and how to approximate the generated data
throughout the 4 dimensional space. This should
eliminate the current heuristic intermittent storage of
generated data.

2. Since out approach guarantees accuracy, we apply it to
the primitive data directly not the QOI. This enable "';‘\
using the compressed data in future analysis. E (C\}P

3. In addition, our local surrogates can provide analytical \\--
derivatives of the approximated surface.

250 samples

EXASCALE COMPLUTING PROJECT
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POC: M. Ebeida

Temperature field Temp. Compressed CH3 field CH3 compressed OH field OH compressed

A prototype implementation of our proposed approach was applied to three primitive fields
(Temperature, CH3 and OH) generated by two-dimensional combustion simulation

«  We were able to achieve 3 orders of magnitude in compression ratio. The code was executed in
210 seconds.

«  The combustion team reported that they found these results promising and that they couldn’t get
comparable accuracy with Tucker MPI. -

;\\\
«  We are currently working on implementing a Voronoi Compression Tool based on kokkE\(\g ) I

EXASCALE COMPUTING PROJECT
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