This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed
in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

SAND2020- 0869C

uRAI: Securing Embedded Systems with Return
Address Integrity

Naif Saleh Almakhdhub
Purdue University and
King Saud University
nalmakhd @purdue.edu

Abraham A. Clements

aacleme @sandia.gov

Abstract—Embedded systems are deployed in security critical
environments and have become a prominent target for remote
attacks. Microcontroller-based systems (MCUS) are particularly
vulnerable due to a combination of limited resources and low
level programming which leads to bugs. Since MCUS are often
a part of larger systems, vulnerabilities may jeopardize not just
the security of the device itself but that of other systems as well.
For example, exploiting a WiFi System on Chip (SoC) allows an
attacker to hijack the smart phone’s application processor.

Control-flow hijacking targeting the backward edge (e.g.,
Return-Oriented Programming-ROP) remains a threat for
MCUS. Current defenses are either susceptible to ROP-style
attacks or require special hardware such as a Trusted Execution
Environment (TEE) that is not commonly available on MCUS.

We present uRAI ', a compiler-based mitigation to prevent
control-flow hijacking attacks targeting backward edges by en-
forcing the Return Address Integrity (RAI) property on MCUS.
uRAI does not require any additional hardware such as TEE,
making it applicable to the wide majority of MCUS. To achieve
this, 4RAI introduces a technique that moves return addresses
from writable memory, to readable and executable memory. It re-
purposes a single general purpose register that is never spilled,
and uses it to resolve the correct return location. We evaluate
against the different control-flow hijacking attacks scenarios
targeting return addresses (e.g., arbitrary write), and demonstrate
how pRAI prevents them all. Moreover, our evaluation shows that
uRALI enforces its protection with negligible overhead.

I. INTRODUCTION

Network connected embedded systems, which include the
Internet of Things (IoT), are used in healthcare, industrial
IoT, Unmanned Aerial Vehicles (UAVs), and smart-home
systems [1]. Although these devices are used in security
and privacy critical applications, they are vulnerable to an
increasing number of remote attacks. Attacks on these systems
have caused some of the largest Distributed Denial-of-Service
(DDoS) attacks [2], [3], hijacked the control of UAVs [4], [5],
and resulted in power grid blackouts [6] among others.

A significant, yet particularly vulnerable portion of em-
bedded devices are microcontroller-based embedded systems

Thttps://github.com/embedded-sec/uRAI

Network and Distributed Systems Security (NDSS) Symposium 2020
23-26 February 2020, San Diego, CA, USA

ISBN 1-891562-61-4

https://dx.doi.org/10.14722/ndss.2020.24016
www.ndss-symposium.org

Sandia National Laboratories

Saurabh Bagchi
Purdue University
sbagchi @purdue.edu

Mathias Payer
EPFL
mathias.payer @nebelwelt.net

(MCUS). MCUS run a single binary image either as bare-
metal (i.e., with no OS), or are coupled with a light-weight
OS (e.g., Mbed-OS or FreeRTOS [7], [8]). Existing solutions
to protect MCUS [9]-[20], are still not deployed as they either
require special hardware extensions, incur high overhead, or
have limited security guarantees. So far, deployed MCUS lack
essential protections that are available in their desktop coun-
terparts [16]-[18], such as Data Execution Prevention (DEP),
stack canaries [21], and Address Space Layout Randomization
(ASLR). More importantly, vulnerabilities of these systems
are not confined to the device itself, but can be a prominent
attack vector to exploit a more powerful system. For example,
a WiFi System-on-Chip (SoC) can be used to compromise
the main application processor of a smart phone as shown by
Google’s PO [22]. These attacks gain arbitrary code execution
by hijacking the control-flow of the application.

Control-flow hijacking on MCUS and desktop systems
originates from memory safety or type safety violations that
corrupt indirect control-flow transfers. This can be through
the forward edges (i.e., function pointers, and virtual table
pointers) or backward edges (i.e., return addresses). On MCUS,
Control-Flow Integrity (CFI) [23] can be applied to protect
forward edges as was done in desktop systems [24], [25].
These mechanisms reduce the attack surface of forward edges
since the target set of indirect calls for CFI is much smaller on
MCUS (.e., the highest is five in our evaluation). In contrast,
return addresses remain prime attack targets for adversaries
on MCUS. This is because return addresses are plentiful in
any application, easier to exploit, and more abundant than
forward edges. When DEP is enforced, attackers leverage
Return-Oriented Programming (ROP) [26] to launch attacks.
ROP is a code reuse attack targeting backward edges, allowing
an attacker to perform arbitrary execution. ROP remains a
viable attack vector even in presence of other defenses such
as stack canaries [20], [21], and randomization [17].

Protecting MCUS from control-flow hijacking attacks tar-
geting backward edges, imposes unique challenges compared
to desktop systems. MCUS have constrained resources (i.e., a
few MBs Flash and hundreds of KBs RAM) and lack essential
features required to enforce standard desktop protections. For
example, desktop randomization-based defenses (e.g., ASLR)
rely on the OS to randomize the location of the stack and code
layout for each run of the application . However, MCUS use
a single static binary image that is responsible for controlling
the application logic, configuring hardware (e.g., setting read,
write, and execute permissions), and enforcing security mech-

Sandia National Laboratoriesis a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.



anisms. This single binary image—containing the application,
all libraries, and a light-weight OS—is loaded once onto the
device and has a single address space. Changing the stack
location for each run is not possible without re-flashing the
firmware to the device. Even then, the stack is located in RAM
which only has tens to hundreds of KBs of physical memory, as
opposed to GBs of virtual memory on a desktop system. Thus,
an attacker can have at least approximate prior knowledge of
the device’s physical address space.

While researchers proposed several techniques to improve
MCUS security, existing techniques cannot prevent control-
flow hijacking attacks on all backward edges unless they
incur prohibitive runtime overhead. Current defenses protect
from control-flow hijacking through randomization [17], [19],
[20], memory isolation [16], [18], [19], or CFI [10], [11].
However, these defenses only reduce the attack surface, but
remain bypassable by ROP style attacks [27]-[31]. For ex-
ample, applying CFI for backward edges limits the attacker’s
ability to divert the control-flow to an over-approximated
target set, but is still vulnerable to control-flow bending style
attacks [28]. An alternative approach is to rely on information
hiding. However, information hiding based defenses [17], [19],
[20] are vulnerable to information disclosure [31], [32] and
profiling [33] attacks. Ultimately, the security guarantees of
information hiding remain limited by the small amount of
memory available on MCUS. For example, randomizing the
location of a safe-stack [17], [34] only results in a few bits
of entropy. A safe stack protected through Software Fault
Isolation (SFI) [35], [36] removes the need for information
hiding, but will incur high overhead [37].

Defenses also limit their applicability by requiring spe-
cial hardware extensions that are not available for the wide
majority of MCUS such as a Trusted Execution Environment
(TEE) [20]. In order to enforce stronger guarantees to protect
return addresses one option is to use a shadow stack [37],
[38]. However, a shadow stack requires hardware isolation to
protect it from information disclosure [37], [39]. One option
is using the Memory Protection Unit (MPU), and thus require
a system call to access the protected shadow stack region at
each function return [40]. The other option is to rely on a
TEE such as ARM’s TrustZone [10], [41]. Both will result in
high overhead (e.g., 10-500% [10]). More importantly, TEEs
are not commonly available on MCUS [20]. The most common
architecture currently and for the foreseeable future is ARMv7-
M, which does not provide a TEE. Moreover, ARMv7-M is
still actively used and deployed in new MCUS designs [42]-
[46], requiring protections via software updates [47], [48].
Without such protections, control-flow hijacking attacks such
as ROP remain a threat to the vast majority of MCUS.

In order to prevent ROP style attacks against many cur-
rently deployed MCUS, a defense must enforce the Return
Address Integrity (RAI) property without relying on extra
hardware (e.g., TEE) or incurring large overhead. The RAI
property ensures that return addresses are never writable except
by an authorized instruction. All control-flow hijacking attacks
targeting backward edges require corrupting the return address
by overwriting it. Enforcing RAI eliminates all such attacks
since return addresses are never writeable by an attacker. This
is different from existing defenses such as CFI implementa-
tions [23], randomization, or stack canaries. These defenses do

not enforce RAI since return addresses remain writable. Such
defenses only limit the use of a corrupted return address, and
thus remain vulnerable to ROP.

Enforcing the RAI property on MCUS without a TEE is
challenging as return addresses reside in writable memory
(e.g., pushed to or popped from a stack). This leads to three
options to enforce RAI on MCUS and protect return addresses.
The first is enforcing SFI or allocating a protected privileged
region of return addresses (e.g., shadow stack [40]) for the
entire execution of the application. However, this requires
isolating large parts of memory and results in high runtime
overhead (i.e., 5-25% [37], [40], [49]). If SFI is used within
the application, it should be limited. An alternative option is
to keep return addresses in a reserved register that is never
spilled to memory or modified by unauthorized instructions.
The reserved register cannot be corrupted directly since it is
not memory mapped. However, folding the entire control-flow
chain at runtime within a single register is challenging. The
final option is to remove the need for return addresses by
inlining the entire code (i.e., since code is in R+X memory).
However, this will lead to code size explosion and require
determining all execution paths statically.

Our Solution: This paper presents ;RAI, a mechanism that
prevents all control-flow hijacking attacks targeting backward
edges by enforcing the RAI property on MCUS, with a
low runtime overhead. yRAI only requires an MPU and the
exclusive use of a general purpose register, both of which are
readily available on modern MCUS. pRAI inserts a list of
direct jumps in the code region of each function (i.e., in R+X
memory), where each jump corresponds to a possible return
target (i.e., a call site) for the function. All functions have a
finite set of call sites, and thus have a finite set of possible
return targets. By adding the set of possible return targets for
each function as direct jumps (i.e., in R+X memory, rather
than writable stack memory), a function can return by using
the correct direct jump according to the program execution.

The key to enforce the RAI property is to resolve the
correct return target from the appended list of direct jumps
during runtime. At runtime, RAI provides each function a
uniquely encoded ID (e.g., a hash value) each time the function
is executed. This ID value is unique and corresponds only to
one of the possible return targets. A function returns by reading
the provided ID, and executing the direct jump corresponding
to the given ID. Intuitively, the unique ID uRAI provides must
also be protected by the RAI property (i.e., the ID is only
readable), as an attacker can modify the provided ID to divert
the execution of the application. Moreover, it must be encoded
efficiently without incurring high runtime overhead.

1RAI provides each function with its ID by re-purposing
and encoding a general purpose register—hereafter known as
the State Register (SR). As shown in Figure 1, the SR is
encoded through an XOR chain with hard-coded keys before
each call and XORed again with the same hard-coded key after
returning from each call to restore its previous value. SR is a
dedicated register to uRAI only and is never spilled. By our
design an adversary can have full knowledge of what the used
keys are, yet cannot corrupt the SR.

Moreover, uRAI enforces the RAI property even within
the execution context of exception handlers (i.e., system calls



SR is initialized to C SR =C @ keyl \SR =C@®keyl ® key2\

4 . SR ® keyl . SR @ key2 .Functions read

SRI= G SR to resolve
the correct

SR @ key3 return location

SR = C ® keyl @ key3

Fig. 1. Illustration of encoding SR through an XOR chain. Arrows indicate
a call site in the call graph. SR is XORed each time an edge is walked.

Unprivileged
A

Corrupt
return

g address
/
°
]
o
2 < funcé func7
2
T
: e (
FUNce)
\_ — Corrupt return address

or sensitive MMI10/data

(a) Default application.

(b) uRAI application.

: SR encoding protection
:’2‘, : Exception handler SFI

QO: Regular function  []: Sensitive privileged data or MMIO
A\ : Function called in exception handler context (privileged)

Fig. 2. Tllustration 4RAI’s protections. uRAI prevents exploiting a vulnerable
function (e.g., func8) to corrupt the return address or disable the MPU in
privileged execution by coupling its SR encoding with exception handler SFIL.

and interrupts). Exception handlers execute in privileged mode,
and can execute asynchronously (i.e., interrupts). As shown
in Figure 2(a), enforcing the RAI property for a function called
within an exception handler requires more than just protecting
return addresses. For example, an attacker can exploit an
arbitrary write during an exception to disable the MPU, thus
eliminating any defense relying on the MPU (e.g., DEP).
To overcome this limitation, ©RAI enforces SFI on sensitive
privileged Memory Mapped I/O (MMIO) such as the MPU, in
addition to encoding SR as shown in Figure 2(b). Enforcing
SFI within an exception handler context only has negligible
overhead since these are only a limited portion of the entire
application, unlike applying SFI for the entire application.

As shown in Figure 3, we implement pRAI as an LLVM
extension that takes the unprotected firmware and produces
a hardened binary that enforces the RAI property. While our
prototype focuses on attacks targeting backward edges, we also
couple our implementation with a type-based CFI [50]-[52]
to demonstrate its compatibility with techniques protecting
forward edges. uRAI can ensure its security guarantees and
reason about the complete state of application at compile
time since it targets MCUS that have a smaller code size
compared to their desktop counter parts. We evaluate pRAI
on five representative MCUS applications and the CoreMark
benchmark [53]. 4RAI shows an average overhead of 0.1%.
In summary, our contributions are:

1) Return Address Integrity property: We propose the
RAI property as a fundamental invariant to protect MCUS
against control-flow hijacking attacks targeting backward
edges. The RAI property ensures absence of such attacks
without requiring special hardware extensions.

2) Exception handler context protection: We enforce the

r A ,""‘ (2] (3)
- 5 Call Graph Analyzer Encoder

Generates the Generates function keys
Source code

' callers/callees for and encodes the
LLVM: Compile Source| |

each function. state register.
H
:
0 = -
+
kS

LLVM IR MRAI [2)

An overview of uRAI’s workflow.

Instrumentation

Fig. 3.

RAI property even for privileged and asynchronous executions
of interrupts without special hardware extension by coupling
SFI with our SR encoding mechanism.

3) uRAI: We design and implement a prototype that en-
forces the RAI property on MCUS. We evaluate our implemen-
tation on CoreMark [53], representative MCUS applications,
and proof-of-concept attacks. Our results show that puRAI
enforces the RAI property with a runtime overhead of 0.1%.

II. THREAT MODEL

We assume an attacker with arbitrary read and write prim-
itives aiming to hijack the control-flow (e.g., via ROP [26])
of the execution and gain control of the underlying device.
Unlike information hiding techniques, we also assume the
attacker knows the code layout. We target MCUS as our
underlying system, which execute a single statically linked
binary image. We assume the application is compiled and
loaded to the underlying system safely, i.e., the application
is buggy, but not malicious. We do not assume the presence
of any randomization-based techniques (e.g., ASLR) or stack
canaries, due to their shortcomings in our target class of
devices as mentioned above. We assume the device has an
MPU enforcing DEP (i.e., Write & eXecute) and supports two
privilege levels of execution (i.e., privileged and unprivileged).

We complement our prototype with a type-based CFI [50]—
[52] to protect forward edges and show our technique is
compatible with forward-edge defense mechanisms, however,
our focus is on protecting backward-edges. The attacker’s
aim is to corrupt a backward-edge to divert control flow. We
assume pRAI controls the entire system (i.e., the application
is compiled with pRAI). Since we protect against attacks
targeting code-pointers, attacks targeting non-control data such
as Data-Oriented Programming (DOP) are out of scope [54].

III. BACKGROUND

MCUS use different architectures with different registers
and calling conventions. However, to understand the imple-
mentation of uRAI, we focus our discussion on our target
architecture, the ARMv7-M [55]. ARMv7-M is applied to
Cortex-M (3,4,7) processors, the most widely-deployed pro-
cessor family for 32-bit MCUS [47], [48].

Memory layout: As shown in Figure 4, ARMv7-M uses
a single physical address space for all code, data, and pe-
ripherals. It uses MMIO to access peripherals and external
devices. The memory model defines 4GB (32bit) physical
address space, however, devices are only equipped with a small
portion of it. A high-end Cortex-M4 [56] has only 2MB Flash
for its code region, and only 320KB for RAM.



0x20000000 0x60000000 0xE0100000

Code SRAM Peripherals| External Private Vendor
RAM/ devices| Peripheral | specific
Bus memory

(OS, Apps) |(Heap, Stack, etc)
0.5GB

(MPU, VTOR, etc)
0.5GB 1MB

0.5GB 2GB 511MB

0x00000000 0x40000000 0xE0000000

Fig. 4. ARMv7-M memory layout.

TABLE 1. A SUMMARY OF CALL INSTRUCTIONS IN ARMV7-M.
Description Instruction
Direct branch b <Label>
Direct branch and link bl <Label>

Indirect branch
Indirect branch and link

bx <Register>
blx <Register>

Memory Protection Unit: To enforce access controls (i.e.,
read, write, and execute) on memory regions, ARMv7-M
uses an MPU. Unlike the Memory Management Unit (MMU)
present in desktop systems, an MPU does not support virtual
addressing, but rather enforces permissions of physical address
ranges. Moreover, MPUs only support enforcing a limited
number of regions (e.g., eight in ARMv7-M [55]).

Privilege modes: ARMv7-M supports two modes of ex-
ecution: privileged and user mode. Exception handlers (i.e.,
interrupts and system calls) are always executed in privileged
mode. User mode can execute in privileged mode by executing
a Supervisor call (SVC), the ARMv7-M system call. In both
privileged and user (i.e., unprivileged) mode, the accessible
memory regions can be configured by the MPU. One exception
to the MPU configuration is the System Control Block (SCB),
which is only accessible in privileged mode and remains
writable even if the MPU sets the permissions as read only.
The MPU and Vector Table offset Register (VTOR) both reside
in the SCB, and thus remain writable in privileged mode.

Core registers: ARMv7-M provides 16 core registers. Reg-
isters RO-R12 are general purpose registers. The remaining
three registers are special purpose registers. Register 13 is the
Stack Pointer (SP). Register 14 is the Link Register (LR), and
register 15 is the Program Counter (PC). LR is used to store
the return address of functions and exception handlers. If a
function does not require pushing the return address to the
stack (i.e., has no callees), the program can use LR to return
directly from the function. This method is more efficient than
pushing and popping the return address from the stack. Since
LR is initially reserved for return addresses by ARMv7-M,
uRAI uses it as its choice for the state register, SR.

Call instruction types: A call instruction in ARMv7-M has
four possible types, shown in Table I. Both direct and indirect
calls can automatically update LR to hold the return address
(i.e., the instruction following the call site) by using any of the
branch and link instructions in Table I. Subsequent functions
push LR on the stack to store the return address in case they
use another branch and link instruction to call another function.

IV. DESIGN

1RAI enforces the RAI property by removing the need
to spill return addresses to the stack (i.e., writable memory).
Instead, uRAI uses direct jump instructions in the code region
(i.e., R+X only memory) and the SR to determine the correct
return location. Both the direct jump instructions and the SR
are not writable, and therefore cannot be corrupted by an
attacker. This protects against control-flow hijacking attacks

that corrupt return addresses (e.g., ROP [57], [58]), even if the
code or its layout is completely disclosed to an adversary.

1RAI achieves this by modifying the program at the
function level. Each function will always have a finite set of
possible return targets within the whole application. Such a
target set is obtained through analyzing the firmware’s call
graph [59] statically. At runtime, a function can only have
one unique correct return location from the collected target
set corresponding to a given call in the control flow. uRAI
adds a list of direct jumps to the possible return targets as part
of the function itself at compile time. At runtime, the unique
return location from the list is resolved by using the SR.

A key insight in designing pRAI is that no matter how
large the list of possible return targets, uRAI still provides
the same security guarantee. This is in contrast to CFI mech-
anisms [23], where the security guarantees are reduced by
over-approximating the valid target set. There is no known
method to statically compute a fully precise target sets for
CFI [23], while dynamic methods [60] require special hard-
ware extensions that are not available on MCUS. Thus, an
attacker can perform a control-flow bending style attack by
over-writing the return address with a return target within the
over-approximated target set and divert the control-flow [28],
[61]. Unlike CFI implementations, pRAI does not allow di-
verting the control-flow. For uRAI, corrupting the control-flow
requires either: (1) over-writing the direct jump uRAI uses to
return, which is not possible as the direct jump is in R+X
memory; or (2) corrupting the SR. This is again not possible
as the SR is never spilled, but only modified through XOR
instructions using hard-coded values in R+X memory.

For pRAI, minimizing the possible return targets only
affects the memory overhead. 4RAI encodes SR with a unique
value for each possible return target. Each function adds a
direct jump corresponding to each unique value of the SR
when the function is entered as shown in Figure 5. Over-
approximating the target set increases the list direct jump
instructions for the function. However, the direct jumps from
over-approximation are never executed since, during execution,
the SR will never be encoded with their corresponding values.
In the following sections, we describe in detail how the SR
uniquely encodes each return target.

A. pRAI Terminology

Before discussing the details of yRAI’s design, we first
define its main components, which are illustrated in Figure 5.

Function Keys (FKs): These are hard-coded values to
encode the value of the SR at runtime. The SR is XORed
with the key before the call to encode the call location, and
after the call to retrieve the previous value of the SR.

Function IDs (FIDs): These are the possible valid encoded
values of the SR when entering each function. Each FID value
corresponds only to a single return target in the application.
A function cannot have two FIDs with the same value corre-
sponding to different return locations. The FID values depend
on which FKs we embed in the code (i.e., FID = SR & FK).

Function Lookup Table (FLT): FLT is the list of possible
FIDs for the function and their respective return targets.



SR[Enc] = C (Some initial value) SR [Enc] =[
C ®@keyl 1,# for funcl 1
. C @ keyl 2 # for funcl 2
Called by some function 0 @ 1
e ) SR[Rec] > 0 # for func2 1
Address <funcl>: —¢
SR[Enc] = SR[Enc]® keyl 1 @ Address <func2>:
call func2
y funcl 1 SR[Enc] = SR[Enc]® keyl 1 @ — SR [Rec] ++ @
Function keys S N T 5 - call func2
(FKs) s SR[Enc] = SR[Enc]® keyl 2 func2_1  SR[Rec]--
call func2 IF SR[Rec] > 0 ﬂ
funcl 2 SR[Enc] = SR[Enc]@® keyl 2 jump func2_ 1
o $5% .. Else
FID Return Target FID Return Target e
Function Lookup Table c Jiitip, TEtUrA 1ogationt C @ keyl 1 Jump funcl 1
(FLT) = C ® keyl 2 Jump funcl_ 2
ELSE |Jump ERROR ELSE Jump ERROR

Fig. 5.

Target Lookup Routine (TLR): TLR is the policy used
to resolve the correct return location. TLR must be designed
with care to maintain negligible runtime overhead.

B. Encoding The State Register

A central component in designing #RAI is the use of the
SR to enforce the RAI property. As shown in Figure 5, within
each function, every FID in the FLT is associated with a direct
jump to a return target. At runtime, a function resolves the
correct return location by reading the value of the SR, and
executing the direct jump where FID = SR. At the beginning
of the application, tRAI initializes the SR to a known value
(i.e., C at @). For the rest of the application, uRAI dynamically
encodes the SR according to two methods.

The first is with an XOR chain at each call site. Before
the call site, the SR is XORed with a hard-coded key (@)
to provide each function a list of unique values of the SR
(i.e., FIDs), where each FID corresponds to a direct jump to
the correct return location (SR = C & keyl_1 at ®). To
return from a function, the application reads the current value
of the SR and uses the direct jump associated with it (FID =
C @ keyl_1 — Jump funcl_1 at @). After returning,
the SR is XORed again with the same hard-coded key (®)
to restore its previous value (i.e., C). The same process is
done for the following call sites, and the callee function can
resolve the correct return location by only reading the value
or the SR. For example, if SR = C @ keyl_2 at @, then
func2 was called from the second call site. Thus, funcl_2
is the correct return location and pRAI executes the Jump
funcl_2 instruction.

The second use of the SR is a special case when handling
recursive functions. Recursive calls may cause a collision in the
values of the SR (i.e., FIDs) inside the recursive function. For
example, func2 in Figure 5 is a recursive function. Assume
func?2 is called from the first call site in funcl (i.e., SR =
C @ keyl_1). Then, func2 calls itself twice at ® (i.e., SR
= C & keyl_ 1 & any_key @ any_key), the value of
the SR willbe C ¢ keyl_1, thus colliding with the existing
FID, and func?2 is not able to distinguish between the call
at ® and @®. Thus, uRAI reserves some predetermined bits
in the SR that serve as a recursion counter. pRAI identifies
recursive call sites, and adjusts its instrumentation. Instead of
an XOR instruction, yRAI increments the recursion counter

Mlustration of uRATI’s design. Enc: Encoded SR. Rec: Recursive SR.

Recursion Counter(s)
(Higher N bits)

Encoded value(s)
(Lower 32-N bits)

Segment M |

Segment 1 Segment K | Segment 1

Fig. 7. TIllustration segmenting the state register.

bits in the SR before the call (®). After the returning from the
call, uRAI decrements the recursion counter (@). When the
recursion counter reaches zero, the recursive function can re-
turn normally using the FLT. Otherwise, it means the function
is still in a recursive call, and returns to itself to decrement the
recursion counter in the SR. We note that recursion is generally
avoided in MCUS since they have fixed memory, and should
only occur with a known maximum bound [17], [40]. uRAI
allows bits reserved for the recursion counter to be adaptable
according to the underlying application.

Using the SR as a single value however is prone to path-
explosion and thus large increases in the FLT. It also cannot
handle corner cases for recursive calls (e.g., indirect recursion).
1RALI resolves these issues by partitioning the SR.

C. SR Segmentation

To encode the SR, uRAI needs to determine the possible
call sites (i.e., return targets) of each function. Thus, the first
step in uRAI’'s workflow (i.e., Figure 3) is to construct the
firmware’s call graph [59]. uRAI uses the call graph to obtain
the possible return targets for each function in the FLT. As
mentioned previously in Section IV, over-approximating the
possible return targets because of imprecisions in the call graph
does not affect the security guarantees of uRAIL

The number of return targets for the function in the call
graph provides a minimum limit for the size of the function’s
FLT. That is, if a function is called from three locations, its
FLT can be greater or equal to three, but never less than
three. However, the actual FLT (i.e., FIDs) can be larger
than the actual possible call sites of a function because of
path-explosion. Consider the simple call graph in Figure 6(a),
func3 is called from two locations (i.e., funcl and func?2).
Ideally, func3 would have only two possible values of the
SR (i.e., FIDs), and thus an FLT size of two. However, the
FLT size is four in Figure 6(a), since it can be reached by
multiple paths (i.e., two paths from main—funcl or two
paths from main—func2). While this does not affect the
security guarantees of uRAI, it affects the memory overhead.



SR[Rec]| SR[Enc]
0 [ CoFK1, CeFK2]
SR[Enc] @ FK1

SR[Enc] @ FK5
SR[Enc] @ FK

SR[E @ FK3
[Enc] SR[Enc] @ FK6

SN RE| SR[Enc]
0 c

R[Enc] @ FK4

SR[Rec] SR[Enc]
[
SR[Rec]| SR[Enc]
Ol [ CoFk3, CoFka] e
CoFK3®FK6,
CoFK4®FK6

1
(a) SR without segmentation

Fig. 6.

To generate efficient FLTs and minimize the effects of path-
explosion, uRAI divides the SR into multiple segments. As
shown in Figure 6(b), the SR is divided into two segments.
Each function only uses its specified segment. All functions use
segment Encl, while func3 uses Enc2. Thus, when either
funcl or func? call func3, only the second segment (i.e.,
Enc?2) is encoded. This reduces the size of func3’s FLT to
two, as opposed to four without segmentation.

Segmenting SR also enables uRAI to resolve the correct
return location in case of multiple recursive functions in a call
path, as each function can use a segment as a separate recursion
counter. In addition, it allows handling other special cases for
recursion (e.g., functions with multiple recursive calls). As
mentioned in Section IV-B, recursion is rare in MCUS [17],
[40]. Since recursion is discouraged on MCUS, we provide the
details for handling special cases of recursion in Appendix A.

Figure 7 shows an overview of the SR. Each part can be
divided to multiple segments. RAI automatically enables the
number and size of segments to be adaptable depending on
the underlying application. In the next sections, we will use
the encoded value for our discussion as it is the more general
case in MCUS. The concepts however cover both cases.

D. Call Graph Analysis and Encoding

uRAI performs several analyses on the call graph to: (1)
calculate the number and size of the SR segments; (2) generate
the FKs for each call site to populate the FLTs with its FIDs. To
calculate the size and number of segments needed, 4RAI uses
a pre-defined value of the maximum possible FLT size within
an application—which we refer to hereafter as F'LT);,,. This
value can be set by the user or is a limit defined by the
underlying architecture. Since each segment in the SR can be
equal to or lower than F'LT;,., pRAI divides the SR into
equal segments each log,(F' LT, ) bits.

To assign each function a segment in the SR, pRAI
performs a Depth First Search (DFS) of possible call paths
for the application to calculate the FLT size for each function
without segmentation. When uRALI finishes the DFS analysis,
it checks the FLT size for each function. Functions with an FLT
size < F'LTy,, are assigned to the first segment of the SR.
Other functions with FLT > F LT, are marked to use the
next segment, and DFS is repeated only on marked functions
and their callees to calculate their new FLT size when using the
second segment. As shown in Figure 6, segmentation reduces

BIGEY|  SR[Enc] 0|

SR[Enc]
| [ CoFK1, CoFK2]

ISR[Rec]|
0 0

SR[Encl] ®FK1

SR [Enc2] ®FK5
SR[Encl] ®FK2

SR [Encl] ®FK3 SR [Enc2] ®FK6

SR[Rec] SR[Enc]
[ [FK5, FK6]| Not used

SR[Encl] ®FK4
0 Enc2=0 Encl1=C
SIEE |
0 0

(b) Segmented SR

SR[Enc] 7
| [ CoFK3, CoFK4]

Ilustration of using SR segmentation to reduce path explosion. Segmentation reduced the possible SR values for func3 by half.

the size of the FLT in marked functions (i.e., 50% for func3’s
FLT). When the DFS analysis completes, the FLT size for
each marked functions is rechecked. Marked functions with
an FLT size < F LT, are assigned to the second segment,
and other functions are marked for the next iteration of DFS.
The analysis is repeated until all functions are assigned to a
segment and each function has an FLT size < F' LT 4.

However, since the number of segments in the SR is
ultimately limited, it is possible that some call graphs will
require more segments than is available in the SR. Consider the
call graph illustrated in Figure 8, both func10 and funcll
require additional segments in the SR, or an FLT with size
> FLTarrq:. To overcome this limitation, uRAI partitions
the call graph. pRAI instruments calls to these functions
with an inlined system call to: (1) save the current SR to a
privileged and isolated region—which we call hereafter as the
safe region; (2) reset the SR to its initial value. The system call
only occurs when calling into func10 and funcl1, however
callees of func10 and funcll do not require a system call,
and are instrumented normally. When returning to the prior
partition, another system call restores the previous SR to enable
func7 and func8 to return correctly. Thus, 4RAI can scale
to any call graph, regardless of path explosion. However, it is
desirable to minimize such system call transitions in order to
maintain a low overhead.

Next, uRAI generates the FKs and populates the FLT for
each function with its FIDs. Each FID results from XORing the
SR with an FK before the call site to encode the SR. The FID
values for each function must be unique (i.e., no collisions).
Therefore, FKs are chosen to avoid repeating FIDs within each
function. However, collisions are allowed across functions. For
example, if key1_1 is chosen as zero in Figure 5, funcl and
func2 can have the same FID value of C (i.e., func2 will
have FIDs of C and C & keyl_2). These FIDs correspond
to different return targets within each function.

To generate the FKs and FIDs efficiently, ©RAI uses
a modified Breadth First Search (BFS). puRAI records the
possible depths of each function in the call graph (e.g., root
functions have a depth of zero) from its previous DFS analysis.
It traverses each function in the call graph once by ordering
functions according to their maximum call depth. Starting from
root functions (i.e., depth zero), uRAI generates the FKs for
each call site such that the result will not cause a collision.
Once the FKs for all functions in the current depth level



are generated, uRAI generates the FKs for the next level
until all the FKs and FID are generated. Using our method
is more efficient than performing DFS again to generate the
FKs and FIDs. Applying DFS to generate the FKs and FIDs
can cause large delays in compile time, since once a collision
occurs, DFS must be performed recursively starting from the
violating call site to update all its callees (i.e., until reaching
the call graph’s leaves). However, using our modified BFS,
any collision is directly resolved between the caller and callee
functions, without the need for a costly updating process.
Since applications on MCUS are smaller in size, our analysis
explores the possible states of the call graph.

E. Securing Exception Handlers and The Safe Region

An important aspect for defense mechanisms targeting
MCUS is enabling protections for exception handlers. Inter-
rupts execute asynchronously, making their protection more
challenging than regular code. An interrupt can execute during
any point in the application, thus it is not possible to find a par-
ticular caller for an interrupt. However, this makes interrupts,
and exception handlers in general appear as root functions
in the call graph, since there is no exact call location in the
call graph, but rather they execute responding to an external
event (e.g., a user pushing a button). Consider Figure 8; root
functions other than main are exception handlers.

At exception entry, uRAI saves the SR to the safe region,
and resets the SR to its initial value. Thus, at any time the
exception handler executes, it will always have the same SR
value (i.e., the initial SR value). Callees of exceptions handlers
are then instrumented the same way regular functions are
instrumented. At exception exit, uRAI restores the saved SR
value from the safe region so that code prior to the exception
executes correctly, and exits the exception context normally as
defined by the underlying architecture.

However, in order for uRAI to enforce the RAI property for
exception handlers, it needs to ensure the safe region is never
corrupted within an exception handler. The safe region resides
in a privileged region, and thus cannot be corrupted in user
(i.e., unprivileged) mode. However, protecting the safe region
during exception handlers (i.e., privileged) requires additional
measures since an arbitrary write within an exception handler
can access the safe region.

To protect the safe region, uRAI marks exception han-
dler functions and any function that can be called within
an exception handler context. uRAI then masks every store
instruction in the marked functions to enforce SFI [35], [36]
of the safe region (e.g., clear most significant bit of the
destination). This makes the safe region only accessible at
exception entry and exit, which are handled by yRAIL An
attacker cannot divert the control-flow to pyRAI’s exception
entry and exit instructions that access the safe region since
exception execution is protected by pRAI through the SR
and type-based CFI. As shown in Figure 8, functions called
within an exception handler amounts to only a limited portion
of the functions in the application. This is because interrupts
must execute quickly and in fixed time, so that the application
can return to the normal execution prior to the interrupt for
correct functionality. Enforcing SFI for every store can degrade
the performance. However, enforcing SFI of the safe region

main Exception_handlerl

Exception_handler2

/\ : Function called in exception handler context
Fig. 8. Conceptual illustration of uRAI’s call graph analysis.
for only functions called within an exception handler context,
enables an efficient implementation and limit the effect on the
runtime overhead since many of the instrumented functions
execute for a limited portion of application.

F. Instrumentation

1RAI ensures the RAI property by instrumenting the
application in six steps. First, it instruments the call sites with
an XOR instruction before the call instruction to encode the
SR, and after it to decode its previous value. In the case of
recursion, it increments the recursive counter before the call
and decrements it afterwards. Second, it reserves the SR so that
other instructions previously using the SR will use a different
register. Third, it adds the FLT and TLR policy to resolve
the correct return target to each function. Fourth, it replaces
any return instruction with the direct jumps to the TLR. Fifth,
it instruments exception handlers with uRATI’s entry and exit
routines. Finally, it instruments store instructions for functions
callable in exception handler context with masking instruction
to protect the safe region. As discussed in Section IV-C, path-
explosions affects the FLT size depending on the function call
sites and its depth in the call graph. Without carefully choosing
suitable TLR policy, the performance overhead of resolving the
correct return location can become prohibitive.

G. Target Lookup Routine Policy

Enforcing the RAI property is important, however, it is
equally important to maintain an acceptable performance over-
head [62]. One simple TLR policy to resolve the correct return
location is to use a switch statement and compare the value of
the SR sequentially to the FID values in the FLT, and return
once a match is found. While this policy enforces the RAI
property, it has unbounded, and possibly high performance
overhead for large FLTs.

An important aspect of puRAI is it ensures low, and
deterministic overhead that is independent of the FLT size.
Therefore, uRAI uses a relative-jump policy to resolve the
correct return location using two instructions: (1) the first
instruction in the TLR is a relative jump (i.e., jump PC+SR);
(2) a direct jump to the correct return location. The relative-
jump policy uses the SR as an index of a jump table, where
the direct jump pointing to the correct return location is at a
distance equal to the SR (i.e., FID) from the first relative jump.



SRIEnc] = 0 i SR[Enc] =1
Address <main>: Address <funcl>:
- SR = sRel E SR = SRe0
w call funcl o call func3
main_ 1 SR = SRel funcl 1 SR = SRe0
- SR = SRel - =
- call func2 - Jump PC“?R
main_2 SR = SRel - jump main 1
- SR[Enc] = [
1, # funcl_1
3, # func2_1
SRIEnc] = 1 v ]
Address <func2>: Address <func3>:
B SR = SR@2 -
- call func3 -
func2_1 SR = SR®2 - jump PC+SR // < PC value
. . - jump funcl 1 // FID =1
= % = jump ERROR  // No FID at 2
s jump PC+SR -~ jump func2_1 // FID = 3
- jump main 2 =
Fig. 9. Tllustration pRAT’s relative-jump TLR policy.

Both instructions are impossible to modify by an attacker since
they reside in R+X memory. In addition, the attacker cannot
modify the SR in the first relative jump since it is never spilled.
In case of SR segmentation, only the specified segment is used
for the first relative jump instruction.

Figure 9 illustrates an example of the relative-jump TLR.
Consider func3 and assume the PC points to the current
location and each instruction size is 1—so that PC+1 will
lead to the next instruction. If SR = 3 at func3, then jump
PC+SR will jump to jump func2_1 which jumps to the
correct return location (i.e., after the call in func2). We
can also conclude that the call path was main— func2—
func3. For func3, there is no F'ID = 2, and thus a jump
ERROR was placed at index 2. This is needed to ensure the
correct return instructions are always at the correct distance
from the first relative jump. No matter how large the FLT
size for a function is, the performance overhead should be
deterministic. However, to minimize the memory overhead, it
is better to have the SR as small as possible since the FLT
size is equal to the largest possible FID value (e.g., if we
have SR=[1, 1024] we need to fill the remaining 1022 with
jump ERROR). Controlling the SR is done by minimizing the
values of the FKs. Thus, at each call site, uRAI chooses the
FK that will minimize the maximum FID value.

V. IMPLEMENTATION

1RALI is comprised of four components (see Figure 3). The
first component constructs the call graph of the application.
The second component uses the call graph to generate the
encoding (i.e., FKs and FIDs) for each function. The third
component instruments the application with the generated FKs
and FIDs. The fourth component is a runtime library that
secures saving the SR and restoring it from the safe region.
The call graph analysis and instrumentation are implemented
as additional passes to LLVM 7.0.1 [63]. The encoder is imple-
mented as a Python script to leverage the graph libraries [64].
We provide a Makefile package that automates the compilation
process of all four components. We implement pRAI to
enforces the RAI property for the ARMv7-M architecture,
enabling it to protect a wide range of deployed MCUS. As the
Link Register (LR) in normally used to store return addresses,
we use it as the SR, and prohibit its use in any other operation.

A. Call Graph Analyzer

The call graph analyzer constructs the call graph of the
application, and is implemented as an IR pass in LLVM.
For each call site it identifies all possible targets, and for
each function it generates a list of callers and callees. For
direct calls, the call graph analyzer determines the exact caller
and callee relation. While uRAI’s primary goal is to protect
the backward edges of control-flow transitions (i.e., return
addresses), we complement it with a type-based forward-edge
CFI to provide an end to end protection against control-flow
hijacking along both the forward and backward edge. Thus,
the call graph analyzer uses a type-based alias analysis [65] to
determine the possible callees from indirect call sites. That is,
we identify any function matching the type-signature of any
indirect call site within the current function as a valid transition
in the call graph. Thus, we generate an over-approximated call
graph (see Appendix Section B-A for details). Finally, the call
graph analyzer exports the call graph to the encoder, which
uses the call graph to generate the FKs and FIDs.

B. Encoder

The encoder generates the hard-coded FKs for each call
site and populates the FLT of each function with its FIDs. It
first calculates the possible limits of the FLT in the application
(i.e., minimum and maximum). These limits are then used to
configure and optimize the number and size of segments in the
SR. F LThq, in ARMV7-M is 4095 bytes [55]. The minimum
limit of the FLT is the logy of highest number of return targets
for any function. For example, if a function is called from eight
locations its F'LT s, must use at least eight FIDs. Thus, each
SR segment must at least have log,(8) = 3 bits.

Using both limits, the encoder then searches for the SR
segment size configuration that will minimize the memory
overhead (i.e., FLT i, < 25¢9ment siz¢ < FL Ty ..). Not all
options are possible to support. For example, the SR segment
size can be set to 16 bits, but it will require using three
segments (i.e., 48 bits). Since registers have only 32 bits, such
a solution is not possible without using an additional register
to serve as additional segments for the SR. An alternative
option is saving the SR to the safe region as discussed
in Section IV-D. For yRAI, we limit the SR to only one
register to minimize the effect on the system resources, and
limit using a system call transition to save the SR in the safe
region to only one transition within a call path. However, these
are configurable and can be changed by the user. To estimate
the memory overhead of the possible configurations for the SR
segments, the encoder performs a DFS search for the possible
call paths over the call graph to calculate the FLT size for
each function, and calculates the total summation of FLTs. The
process is repeated using each configuration. The configuration
with the least summation of FLT sizes for all the functions
will be used since it minimizes the added instructions for the
application. The DFS search also assigns a segment for each
function in the call graph (Section IV-D).

The encoder uses the chosen SR segment size to: (1)
calculate the initial value of LR; (2) generate the FKs and FIDs
for each function. As discussed in Section IV-D, uRAI uses
a modified BFS to generate the FKs. The generated FKs only
affect the segment assigned to the callee function at the call



site. FKs must satisfy three conditions. First, the largest value
allowed for FKs is 25¢9™ent size _1 _gince any larger value will
overflow to the next SR segment. Second, FKs must generate
FIDs that will result in an aligned FLT. For ARMv7-M, a direct
jump is equivalent to a branch instruction (Section III). Since
the size of branch instruction for ARMv7-M is four bytes,
each FID in the FLT need be at a distance of four. Third, the
generated FIDs must not cause a collision in the callee’s FLT.
Each generated FID is a result of encoding the SR with an FK
at a call site (i.e., FID = SR call site ® FK). Since FIDs
cannot repeat within an FLT, the chosen FK must not result in
a collision. RAI searches through the valid FKs, and chooses
the FK value that will result in lowest possible FID. A large
FID value can result in a sparse FLT (Section IV-G), thus
increasing the memory overhead.

C. Instrumentation

The generated encoding is then used to produce the binary
enforcing the RAI property. Instrumenting the application is
done in three steps: (1) instrument each call site to enable
encoding LR with the generated FKs; (2) reserve LR to be
used by ©RAI only; (3) add the TLR and FLT generated from
the encoder for each function. These are done by modifying
and adding a pass to LLVM’s ARM backend. In the following
we provide a detailed description for each instrumentation step.
We refer readers interested in a detailed disassembly of each
instrumentation step to Appendix B-B.

uRAI transforms each call site by inserting XOR instruc-
tions before and after each call site to encode and decode LR
(our SR), respectively. In case the call is a recursive call, the
instrumentation increments the designated recursion counter
segment before the call, and decrements it afterwards. If the
call site uses a (b1 or blx) instruction, uRAI transforms it to
a (b or bx) instruction (see Table I).

To ensure LR is only used by uRAI, we modify LLVM’s
backend to reserve LR so it cannot be used as general purpose
register. Moreover, #RAI transforms any instruction using LR,
so that it will not use LR. For example, transforms push
{R7, LR} to push {R7}.

Finally, uRAI adds the TLR and FLT for each function.
Since functions can have multiple return locations, uRAI re-
places any return instruction with a trampoline to the beginning
of the inserted TLR. The exact TLR depends on the application
and whether it uses SR segmentation or not. Many applications
for MCUS have a small code size, and can be instrumented
without segmenting the SR. For ARMv7-M, a relative jump
with PC is achieved by using (ADD PC, <register>). Thus,
uRAI uses it for its first relative jump in TLR with LR as
the offset for the relative jump (i.e., as ADD PC, LR). To
add the FLT, pRAI uses direct branches, with each direct
branch at a distance equal to its pre-calculated FID. In case
of segmentation, uRAI requires three instructions for its TLR.
The first instruction copies the function designated segment
along with segments in lower order bits from LR to R12, which
is a scratch register in ARMv7-M. Next, uRAI clears any lower
order bits that are not part of the function designated segment
from R12. Thus, only the needed bits that form a segment are
in the lower bits of R12. This enables using the relative jump
instruction as before. Using R12 with a segmented SR does

XPSR XPSR

iR 77 S
R12 R12 |t region
R3 R3 |:4"ec

R2 R2 |

R1 R1 ™ LR

RO SP RO

(a) Default (b) HRAI
Fig. 10. Illustration of exception stack frame for ARMv7-M.

not affect the security guarantees of 4RAI The value used is
only read inline from LR, which is not writable by an attacker.

D. Runtime Library

The runtime library: (1) configures the MPU to enforce
DEP at the beginning of the application execution; (2) sets
the initial value of LR (i.e., the state register); (3) secures
transitions of exception handlers entry and exit. At the start of
the application, the runtime library initializes LR to the defined
value by the encoder in Section V-B. In addition, the runtime
library configures the MPU to support DEP automatically.
The code region is set as readable and executable, while
data regions are set readable and writable. The safe region
is configured as readable and writable in privileged mode
only to protect it from unprivileged code. Protecting the
safe region requires additional mechanisms within exception
handlers context, which we describe in Section V-E.

E. Securing Interrupts and System Calls

Securing the execution of exception handlers (i.e., in-
terrupts and systems calls) requires overcoming limitations
of the architecture. First, entering and exiting exceptions is
handled by the hardware in ARMv-M. When an exception
occurs, the underlying hardware pushes the registers from
the user mode to the stack. As shown in Figure 10(a), the
stack frame includes PC and LR. The hardware also sets
LR to a special value called EXC_RETURN. To return from
the exception, the hardware uses the saved stack frame it
pushed when entering the exception and loads EXC_RETURN
to PC or executes a bx instructions with a register holding
the EXC_RETURN value. While we can still use our TLR for
the rest of the exception handler execution, the restriction of
using EXC_RETURN to exit exception handlers prohibits using
our TLR to exit exception handlers. Thus, yRAI instruments
interrupt handlers entry and exit with special routines that
moves the pushed values of PC and LR from the stack to
the safe region, as shown in Figure 10(b). It also moves the
special value stored in LR to the safe region. It then clears the
locations of PC and LR from the exception stack frame.

Since exception handlers are root functions in the call
graph, the runtime library sets LR to the initial value specified
by the encoder. Functions are then instrumented using the
regular TLR and FLT instrumentation. When an exception
handler exits, uRAI restores the previously saved values of
PC and LR from the safe region to their location on the stack
frame. It also sets LR to the special value required by the
hardware. Thus, enabling the exception to exit correctly.

This instrumentation enables correct execution, but alone
fails to enforce the RAI property. As exception handlers exe-
cute in privileged mode, an attacker can corrupt the saved PC
or LR in the safe region to force the exception exit to return to



a different location. Alternatively, an attacker can relocate the
vector table by overwriting the VTOR (see Section III). Finally,
an attacker can disable the MPU or alter its permissions to
allow code injection. Simply setting VTOR and MPU as read
only is not effective and the MPU registers remain writable
within exception handlers. We verified this in our experiments.

To protect the above resources against these attacks, pRAI
applies SFI only fo store instructions that can execute within
exception handler context. The MPU registers are mapped
within a contiguous address range (i.e., 16 bytes), while VTOR
is mapped separately. For the MPU and VTOR, we verify that
the destination does not point to within the MPU address range
or VTOR. To protect the safe region, uRAI places the safe
region in a separate region. One option is to protect the safe
region the same way as the MPU. A more efficient approach
is to leverage Core Coupled RAM (CCRAM), which starts
at a different address and is smaller than normal RAM (e.g.,
64KB compared to 320KB RAM in our board [56]). Placing
the safe region in CCRAM enables efficient protection through
bit-masking the destination of store instructions to ensure it
does not point to the safe region [35]. For our evaluation,
we leverage this more efficient bit-masking approach. See
Appendix B-A (i.e., Listing 5) for a detailed disassembly.

Our exception handler SFI routine can degrade perfor-
mance if instrumented for every store instruction in the
application. However, we only instrument store instructions
for functions that can be called within an exception handler
context. These are a small fraction of the entire application, and
thus limits the effect of of the verification routine. Furthermore,
some exception handlers (i.e., SysTick, which increments a
fixed global) do not require the SFI instrumentation since the
store performed is always to a fixed address. Similarly, store
instructions using SP for its destination are not instrumented
with SFI since instructions assigning SP use a bit-masking
instruction to ensure it points to the stack region. Coupling
the SR encoding with exception handler SFI enforces the RAI
property for exception handlers.

VI. EVALUATION

Our evaluation aims to answer the following questions:

1) Can pRAI fully prevent control-flow hijacking attacks
targeting backward-edges?

2) What are the security benefits compared to CFI?

3) What is the performance overhead of uRAI?

4) What is the memory overhead of RAI?

We evaluate the effectiveness of uRAI using five represen-
tative MCUS applications (PinLock, FatFs-RAM, FatFs-uSD,
LCD-uSD, and Animation) and the CoreMark benchmark [53].
PinLock demonstrates a smart-lock receiving a user entered pin
over a serial port. The pin is hashed and compared against a
precomputed (i.e., correct) hash. If the comparison succeeds,
the application sends an IO signal to mimic opening the lock.
Otherwise, the door remains locked. FatFs-uSD demonstrates
a FAT file system on an SD card, while FatFs-RAM mounts
the file system in the device’s RAM. Both applications perform
similar functionality (i.e., accessing the FAT file system) how-
ever their internals (e.g., Hardware Abstract Layer libraries)
are different. LCD-uSD reads multiple bitmap pictures from
an SD card and displays them on the LCD display. Animation

10

demonstrates the animations effect on the LCD by displaying
multiple layers of bitmap images. All application are provided
by STMicroelectronics except PinLock, thus they represent
realistic applications used for deployed MCUS. CoreMark
is a standardized benchmark developed by EEMBC [53] to
measure MCUS performance. The evaluation is performed
using the STM32{479-EVAL [56] board and includes the cost
of type-CFIL.

A. Security Analysis

In order to evaluate puRAI’s protections, we implement
three control-flow hijacking attacks on backward edges. The
goal of these experiments is not to investigate whether pRAI
can protect from certain attack cases such as [66]-[68], but
rather to demonstrate 4RAID’s ability to prevent any control-
flow hijacking attack targeting backward edges even in the
presence of memory corruption vulnerabilities.

Control-flow hijacking attacks targeting backward edges
must start from one of three types of memory corruption
vulnerabilities. First, a buffer overflow [69], where an attacker
leverages this vulnerability to overwrite the return address with
the attackers desired value. However, the attacker also corrupts
all sequential memory locations between the vulnerable buffer
and the return address. Second, an arbitrary write (e.g., format
string [70]), where the attacker directly over-writes the return
address, without needing to corrupt other memory locations.
Third, a stack pivot [71], where instead of over-writing the
return address, the attacker controls the stack pointer in this
scenario. To launch the attack, the attacker sets the value of
the stack pointer to a buffer controlled by the attacker. Thus,
when the application pops the return address from the stack,
it will pop the value from the attacker controlled buffer.

Our experiments demonstrate the three types of attacks
based on the PinLock application. We assume these vulnera-
bilities exist in the application in the function receiving the
pin from the user, namely rx_from_uart. A successful
attack uses the underlying vulnerability to directly execute the
unlock function to unlock the smart-lock without entering
the correct pin. As discussed in Section II, we assume the
attacker is aware of the entire code layout.

Buffer overflow: This attack assumes the return address is
available in a sequentially writable memory from the vulnera-
ble buffer (e.g., on the stack). However, tRAI uses R+X mem-
ory in Flash and an inaccessible SR. Both are not modifiable
and the attacker cannot modify the instructions that update the
SR. The vulnerability here only corrupts data available on the
stack, but the return address is not affected. The control flow
is not diverted and pRAI successfully prevents the attack.

Arbitrary write: While the attacker is capable of writing to any
available memory for user code, such a vulnerability cannot be
used to launch a successful attack. The attacker cannot write
directly to the SR (i.e., LR register) since it is not memory
mapped. Furthermore, the attacker cannot use yuRAI’s return
sequence in Listing 2 or Listing 3, as these only read the SR
and never write to it. Modifying the instructions is also not
possible as the MPU configures them as only readable and
executable. A final option is to corrupt the saved PC or LR in
the safe region from an interrupt context entry in order to divert
the return from the interrupt. When the attack is attempted in



TABLE II. ANALYSIS OF THE TARGET SET SIZES FOR BACKWARD

EDGE TYPE-BASED CFIL.

App Type-based CFI Target Set

Min.  Median  Max. Ave.
PinLock 1 2 8 3
FatFs_uSD 1 6 94 21
FatFs_RAM 1 5 94 27
LCD_uSD 1 5 49 11
Animation 1 4 49 11
CoreMark 1 3 52 12

unprivileged mode, it causes a fault since the safe region is
protected by the MPU. If the attack occurs during privileged
execution, the safe region is protected through our exception
handler SFI mechanism. Thus, 4RAI prevents the attack.

Stack Pivot: Even when the attacker changes the stack pointer,
this attack relies on popping the return address from the stack.
Since 4RAI only uses the SR and the instructions in Listing 2
or Listing 3, the attacker controlled buffer can corrupt the
function’s data, but is never used to return from the function.
As aresults, uRAI successfully prevents control-flow hijacking
through stack pivoting. Note that uRAI does not prevent stack
pivoting from occurring, but prevents using a stack pivot to
corrupt the return addresses.

B. Comparison to Backward-edge CFI

To understand the benefits of pRAI’s protections, we
analyze the possible attack surface compared to an alternative
backward-edge CFI mechanism. With such a mechanism, the
function can return to only specific locations in the application.
These locations define the function’s target set. The target set is
comprised of the set of possible return sites for each function,
enumerating the addresses of all instructions immediately after
a function call. For example, if function foo is called from
three different locations, the three instructions right after the
return from the function call are in the target set for foo.
For indirect calls, we identify any call site matching the
function type signature of any indirect call within the current
function to be a possible call site [50], [52], [61]. We build
our prototype on top of ACES’ [16] type-based CFI as it
provides a more precise target set than other existing work for
MCUS. Intuitively, the chance of a control-flow bending style
attack [28] increases as the function target set size increases.
That is, an attacker can still divert the control-flow to any
location within the target set.

Table II shows the minimum, median, maximum, and av-
erage target set sizes for the functions within each application.
Many applications share the same libraries and Hardware Ab-
straction Layers (HALs). As these are called most frequently,
the worst case scenario for the applications (i.e., maximum
target set size) can be shared between applications sharing
these libraries of HALs (e.g., FatFs-uSD and FatFs-RAM).
Averaged across all the applications in Table II, a backward
edge CFI will have an average target set of 14 possible return
locations. However, the effect of imprecision on CFI are clearer
when considering the maximum target set for each application
in Table II. Averaged across all applications, an attacker will
have a target set of 58 possible return locations. In contrast to
existing CFI implementation, 4¢RAI eliminates this remaining
attack surface since it does not allow corrupting the return
address, rather than focusing on minimizing the target set,
which is ultimately limited to imprecisions [23].

11

5.0 = B Baseline
40 E=3 Full-SFI
Q30 EXI UuRAl
B 20
c
=1
4
- 15
(9}
i
T 11
I
£
S
z
o+ <O P\I\ <O N N
?'\(\\‘0 Q‘;/o ng\ (10/0 o (?'V‘\’o
< & v Y ey
Fig. 11. Comparison of runtime overhead for uRAI, Full-SFI, and baseline.

C. Runtime Overhead

For defense mechanisms to be deployable, they must result
in low performance overhead [62]. This is highly relevant
for MCUS, where they can have a real-time constraint as
well. To evaluate the performance overhead, we modify the
applications to start the runtime measurement at the beginning
of main and stop at the end of the application. For PinLock,
we stop the application after receiving 1000 pins that alternate
between incorrect pins, a correct pin, and a locking command
that requests the pin again. For CoreMark, we used its own
performance reporting mechanism to collect the measurement.
The results are averaged across 20 runs.

Figure 11 compares the performance of the baseline, RAI,
and applying SFI to all store instructions in the application—
which we denote full-SFI. uRAI results in an average overhead
of 0.1%, with the highest overhead for CoreMark with 8.1%.
#RAI shows an improvement of 8.5% for FatFs_RAM. This
is not an inherent feature of 4RAI but an effect of changing
code layout and register usage (reserving the LR register) in
a hot loop in the application. Particularly, the baseline calls
__aeabi_memclr eight times to clear 64 bytes during each
iteration. For pRAI, the compiler optimized this to one call to
clear 512 bytes at each iteration. To confirm this, we evaluated
an intermediate binary that uses the compiler changes without
applying any instrumentation. The optimization appeared and
the intermediate binary showed an improvement of 14.4%.
Compared to this intermediate binary, 4RAI has an overhead of
6.9%. Considering this effect uRAI yields an average overhead
of 2.6%. In other applications, no improvement in runtime was
observed between the baseline and intermediate binaries. uRAI
is efficient since it only adds three to five cycles per call-return
(see Table VI in Appendix B-B for details). Return instructions
are not a large part of the application, thus 4RAI yields a low
overhead.

An alternative to uRAI is to apply a safe stack. Safe stack
only prevents buffer overflow attacks. To prevent other attack
vectors (e.g., arbitrary write), a safe stack must be coupled
with SFI since information hiding offer limited guarantees
on MCUS. We use full-SFI to mimic protecting the safe
stack by instrumenting all store instructions with a single bit-
masking instruction except ones using SP (i.e., we assume SP
is verified at the point of assignment instead). The average
overhead for full-SFI was 130.5%. In contrast to full-SFI,
1RAI remains efficient since it limits SFI to functions that
can be called within an exception handler context, which are
a small portion of the application. Table III shows both the



TABLE III. SUMMARY OF EXCEPTION HANDLER SFI PROTECTION FOR
STORE INSTRUCTIONS. % SHOWS THE PERCENTAGE OF STATICALLY
PROTECTED INSTRUCTIONS W.R.T THE TOTAL BASELINE INSTRUCTIONS.

App ) # of Store instruction

Static Total %  Dynamic
PinLock 56 516 10.9 7
FatFs_uSD 99 1,802 55 906K
FatFs_RAM 7 1,116 0.6 7
LCD_uSD 99 2814 35 48K
Animation 99 2,760 3.6 66K
CoreMark 56 1,024 5.3 7

TABLE IV. SUMMARY OF uRAI’S ENCODER FLT AND SR SEGMENT
CONFIGURATION COMPARED TO F'LT)s;,, OF EACH APPLICATION.

Application ~ FLThin  FLTupar ggesflfi“';s‘“
PinLock 8 8
FatFs_uSD 94 128
FatFs_RAM 94 128
LCD_uSD 49 64
Animation 49 64
CoreMark 52 64

00 00 0 \O \O W

number of instrumented store instructions both statically and
dynamically. On average, yRAI statically instruments only
4.9% of all store instructions in the baseline firmware.

D. FLT Encoding Analysis

A central component of pRAI is its encoder (see Sec-
tion V-B) and how efficiently it configures and populates the
FLTs to reduce the effects of path explosion on the memory
overhead. As discussed in Section V-B, the encoder searches
the possible FLT sizes between F'LTy;, (i.e., the function
with the highest number of call sites in the application) and
F LTy, (e., the highest possible FLT as defined by the
architecture) and chooses the configuration that will provide
the lowest possible memory overhead. Intuitively, the closer the
encoder’s FLT is to F'LTs;,, the lower the memory overhead
is due to FLTs, since a larger FLT indicates FID collisions in
the FLT due to path explosion. Thus, to evaluate our encoder,
we compare its configured FLT size and SR segment size to the
application F'LT}y;,. Table IV shows F LTy, and uRAI’s
configured FLT (i.e., F'LT,rar). pRAI’s FLT can only be at
powers of two since it partitions the SR’s bits into several
segments, where each segment is logy(F LT, rar) + 2. The
additional two bits are because the size of each FID in the FLT
is a four byte branch instruction. 4RAI consistently chooses
the closest power of two to F'LTs;,, and thus it is close to
the best possible FLT configuration.

A key mechanism for uRAI’s encoder to achieve these
results is partitioning the SR into several segments where
each function only uses a designated segment as discussed
in Section IV-C. To demonstrate this effect, we show the FLT
sizes both with and without segmentation in Table V. Aver-
aged across all applications, segmentation reduces FLT sizes
by 78.1%. Intuitively, PinLock can be instrumented without
segmentation. As mentioned in Section V-C, many MCUS
applications use small code size and thus can be instrumented
without segmentation. However, it is segmented by RAI since
segmentation will result in lower memory overhead. For further
analysis of encoder efficiency, see Appendix B-B.

E. Memory Overhead

1RAI requires adding the instrumentation for encoding and
decoding the SR at each call site, adding the FLTs, instrument-

12

TABLE V. SUMMARY OF THE SEGMENTATION EFFECT ON FLT SIZE.
App Without Segmentation ] S ted Ave.

Min. Max. Ave. Min Max. Ave. Reduction
PinLock 1 12 3 1 8 2 33.3%
FatFs_uSD 1 8,650 699 1 106 21 97.0%
FatFs_RAM 1 632 86 1 105 20 76.7%
LCD_uSD 1 11,898 727 1 59 12 98.3%
Animation 1 11,570 683 1 59 12 98.2%
CoreMark 1 352 23 1 52 8 65.2%

(a) RAM (KB)

BBl Baseline
=08 uRAl

(b) Flash (KB)

EEE Baseline
=W FLT

UuRAI
Instrmnt.

SEm Type-CFl
= EH-SFI

110
100
90
80
70
60
50
40
30
20
10

50

40

30

20

10

LSRR\ B\ SN\ IR SRR OSSO BN\ SV RS R
QAL Ny Ny AN QAL W Ny ASRNCY
BN ?366/?3,69, \90, PS{\(Q’O C,°‘e N V&‘Qe /(/é&s/ \,CO/ N{\({\G Co‘e
Fig. 12. Illustration of 4RAI's memory overhead.

ing exception handler SFI, and using its runtime library. In
addition, we couple uRAI with a type-based CFI for forward
edges. This however increases the total utilized memory. Fig-
ure 12(a) shows the overhead of uRAI in RAM. For LCD-uSD
and animation applications, pRAI incurs negligible overhead.
This is expected since the majority of uRAI’s instrumentation
utilizes Flash. Averaged across all applications, uRAI shows
an increase of 15.2% for RAM.

The Flash increase of uRAI’s instrumentation, exception
handler SFI (EH-SFI), and type-based CFI is shown in Fig-
ure 12(b). The majority of yRAI’s instrumentation occurs in
Flash, thus it is expected for uRAI to have a higher overhead
for Flash than for RAM. Averaged across all applications,
uRAI shows an overhead of 34.6% for its instrumentation
and FLT, and 9.5% for EH-SFI. Our type-based CFI im-
plementation shows an average increase of 10%. Combined,
the average is 54.1% for Flash. yRAI adds at most 22.4KB
(i.e., Fats_uSD). The increase is large for small applications
(e.g., PinLock), as any change can drastically affect their size.
However, uRAI performs better for larger application (e.g.,
22.7% for LCD_uSD). That is, uRAI overhead does not grow
as the application size increases. We note that Flash is available
in larger sizes (i.e., MBs) than RAM (i.e., hundreds of KBs).

VII. RELATED WORK

Vast related work exists in the area of control-flow hi-
jacking attacks and defenses. However, not all are applicable
to MCUS. Thus, our discussion focuses on related work that
targets MCUS or is applicable to it. We refer to the relevant
surveys [23], [26], [62], [72]-[75] for readers interested in the
general area of control-flow hijacking attacks and defenses.

Remote attestation: Remote attestation use a challenge-
response protocol to establish the authenticity and integrity of
MCUS to a trusted server (i.e., verifier). Remote attestation
requires using a trust anchor on the prover (e.g., MCUS)
to respond the verifier’s challenge. C-FLAT [11] attests the
integrity of the control-flow by calculating a hash chain of



the executed control-flow. LiteHAX [15] attests the integrity
of both the control-flow and the data-flow. DIAT enables on-
device attestation by relying on security architectures that
provide isolated trusted modules for the program. Overall,
remote attestation defenses require additional hardware (e.g.,
TEE or additional processor). In addition, they only defect the
occurrence of an attack. uRAI prevents control-flow hijacking
on backward edges without requiring hardware extensions.

Memory isolation: Minion [18] enables partitioning the
firmware into isolated compartments on a per-thread-level,
thus limiting a memory corruption vulnerability to affect a
single compartment and not the entire system. ACES [16]
automates compartmentalizing the firmware on a finer-grained
intra-thread level. TyTan [13] and TrustLite [14] enforce mem-
ory isolation through hardware extensions. Memory isolation
techniques can enable integrity and confidentiality between
different compartments. However, they only confine the attack
surface to a part of the firmware, while yRAI focuses on
preventing ROP style attacks against the entire firmware.

Information hiding: LR? [76] uses SFI-based execute only
memory (XoM) and randomization to hide the location of code
pointers. However, its implementation is inefficient on MCUS
as was shown by uXOM [19] which enables efficient imple-
mentation of XoM for Cortex-M processors. EPOXY [17] uses
a modified and randomized location of a SafeStack [34] to
protect return addresses against buffer overflow style attacks.
pArmor protects from the same attack using stack canaries.
Both EPOXY and pArmor enforce essential defenses for
MCUS efficiently and apply code randomization to hinder ROP
attacks and produce different randomized binaries per device
to probabilistically mitigate scaling such attacks to a large
number of devices. In general, information hiding techniques
remain bypassable and do not prevent attacks with an arbitrary
write primitive. 4RAI however enforces the RAI property to
prevent ROP, and extends its protections to exception handlers.

CFI protections: SCFP [12] uses a hardware extension
between the CPU’s fetch and decode stage to enforce control-
flow integrity and confidentiality of the firmware. SCFP only
mitigates attacks on backward edges (i.e., it does not prevent
control-flow bending style attacks [28]). CFI-CaRE [10] en-
forces CFI on forward-edges and a hardware isolated shadow-
stack to protect the backward edges. CFI-CaRE provides strong
protections against ROP style attacks, however, it requires
using a TrustZone, thus is not usable by a wide range of
MCUS. RECFISH [40] applies CFI and a shadow stack to
MCUS binaries, without requiring source code. However, it
places shadow stack in a privileged region, thus requiring a
system call to return from a function. Thus, both CFI-CaRE
and RECFISH incur a high overhead (e.g., 10-500% [10],
[40]). uRAI enforces the RAI property without requiring a
TEE and with a modest runtime overhead.

VIII. DISCUSSION

Protecting privileged user code: Protecting sensitive re-
sources (e.g., MPU) require the confinement of store in-
structions within a privileged execution of user code, where
the developer provides privileges for restricted operations for
the given application. Identifying these restricted operations
automatically is non-trivial since they are application specific

13

as shown by previous work [17]. For our evaluation, these
operation occur during initialization. An attacker cannot divert
the control-flow to these operations again (i.e., since pRAI
enforces the RAI property and type-based CFI). However, to
enable flexible use of ©RAI we enable developers to apply
our SFI mechanism to their privileged operations through
annotation as was done by EPOXY [17].

Corrupting indirect calls: pRAI enables preventing at-
tacks targeting backward edges and within exception handler
contexts. To protect the forward edge, uRAI leverages a
state-of-the art forward edge type-based CFI mechanism. We
acknowledge the limitations of forward edge CFI.

Limiting the overhead of SFI: Interrupts are designed to
be short execute in deterministic time on MCUS [77]. While
1RALI efficiently restricts SFI to exception handlers, this does
not eliminate the possibility of higher overhead in some cases.
An alternative for SFI is to formally verify exception handlers.
We leave this for future work.

Applicability to ARMvS8-M and systems with an OS: We
demonstrated ©RAI on bare-metal systems and ARMv7-M
to show its applicability to most constrained systems. Since
ARMVS-M is backward compatible, we believe uRAI is exten-
sible to it. Moreover, uRAI can utilize the TrustZone provided
in ARMv8-M for its safe region. Extending uRAI to systems
with an OS requires modifying the context switch handler to
save and restore the SR per each thread. In addition, uRAI
require restricting the use of the register chosen as the SR.
If such changes are made, uRAI can apply its defenses to
systems with a lightweight OS.

IX. CONCLUSION

MCUS are increasingly deployed in security critical appli-
cations. Unfortunately, even with proposed defenses, MCUS
remain vulnerable against ROP style attacks. We propose
uRAIL a security mechanism able to prevent control-flow
hijacking attacks targeting backward edges by enforcing the
RAI property on MCUS. pRAI does not require any special
hardware extensions and is applicable to the majority of
MCUS. We apply uRAI on five realistic MCUS applications
and show that puRAI incurs negligible runtime overhead of
0.1%. We evaluate pRAI against various scenarios of control-
flow hijacking attacks targeting return addresses, and demon-
strate its effectiveness in preventing all such attacks.

ACKNOWLEDGEMENTS

We thank Hui Peng, Adrian Herrera, Derrick McKee,
and Yuseok Jeon for their insightful comments. This work
was supported by King Saud University, by ONR award
N00014-17-1-2513, by NSF CNS-1801601, and by Sandia
National Laboratories. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of our
sponsors. Sandia National Laboratories is a multi-mission
laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. De-
partment of Energy’s National Nuclear Security Administration
under contract DE-NA0003525. SAND20XX-XXXXC.



[1]

[2]

[3]

[4]

[5]

[6]

[7]
[8]
[91

[10]

(11]

[12]

[13]

(14]

[15]

[16]

(171

[18]

[19]

[20]

REFERENCES

I. Analytics, “State of the IoT 2018: Number of IoT devices
now at 7B Market accelerating,” 2018, https://iot-analytics.com/
state-of-the-iot-update-q1-q2-2018-number-of-iot-devices-now-7b/.
M. Antonakakis, T. April, M. Bailey, M. Bernhard, E. Bursztein,
J. Cochran, Z. Durumeric, J. A. Halderman, L. Invernizzi, M. Kallitsis
et al., “Understanding the mirai botnet,” in 26th {USENIX} Security
Symposium ({USENIX} Security 17), 2017, pp. 1093-1110.

S. Edwards and I. Profetis, “Hajime: Analysis of a decentralized internet
worm for iot devices,” Rapidity Networks, vol. 16, 2016.

“Hijacking drones with a MAVLink exploit,” 2016, http://diydrones.
com/profiles/blogs/hijacking-quadcopters- with-a-mavlink-exploit.
D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling uavs with sensor input spoofing attacks.” in WOOT, 2016.

A. Cherepanov, “WIN32/INDUSTROYER: A new threat for industrial
control systems,” 2017, https://www.welivesecurity.com/wp-content/
uploads/2017/06/Win32_Industroyer.pdf.

ARM, “Mbed-OS,” https://github.com/ARMmbed/mbed-os, 2019.
FreeRTOS, “FreeRTOS,” https://www.freertos.org, 2019.

T. Kobayashi, T. Sasaki, A. Jada, D. E. Asoni, and A. Perrig, “Safes:
Sand-boxed architecture for frequent environment self-measurement,”
in Proceedings of the 3rd Workshop on System Software for Trusted
Execution, ser. SysTEX ’18. New York, NY, USA: ACM, 2018, pp. 37—
41. [Online]. Available: http://doi.acm.org/10.1145/3268935.3268939

T. Nyman, J.-E. Ekberg, L. Davi, and N. Asokan, “Cfi care: Hardware-
supported call and return enforcement for commercial microcontrollers,”
in International Symposium on Research in Attacks, Intrusions, and
Defenses. Springer, 2017, pp. 259-284.

T. Abera, N. Asokan, L. Davi, J.-E. Ekberg, T. Nyman, A. Paverd,
A.-R. Sadeghi, and G. Tsudik, “C-flat: control-flow attestation for
embedded systems software,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2016,
pp. 743-754.

M. Werner, T. Unterluggauer, D. Schaffenrath, and S. Mangard,
“Sponge-based control-flow protection for iot devices,” arXiv preprint
arXiv:1802.06691, 2018.

F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and P. Koe-
berl, “Tytan: tiny trust anchor for tiny devices,” in Design Automation
Conference (DAC), 2015 52nd ACM/EDAC/IEEE. 1IEEE, 2015, pp.
1-6.

P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “Trustlite:
A security architecture for tiny embedded devices,” in Proceedings of
the Ninth European Conference on Computer Systems. ACM, 2014,
p. 10.

G. Dessouky, T. Abera, A. Ibrahim, and A.-R. Sadeghi, “Litehax:
lightweight hardware-assisted attestation of program execution,” in Pro-
ceedings of the International Conference on Computer-Aided Design.
ACM, 2018, p. 106.

A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “Aces:
Automatic compartments for embedded systems,” in 27th USENIX
Security Symposium (USENIX Security 18). USENIX Association,
2018.

A. A. Clements, N. S. Almakhdhub, K. S. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems
with privilege overlays,” in Security and Privacy Symp. 1EEE, 2017.

C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu,
“Securing real-time microcontroller systems through customized mem-
ory view switching,” in Network and Distributed Systems Security
Symp.(NDSS), 2018.

D. Kwon, J. Shin, G. Kim, B. Lee, Y. Cho, and Y. Paek, “uxom:
Efficient execute-only memory on ARM cortex-m,” in 28th USENIX
Security Symposium (USENIX Security 19). Santa Clara, CA:
USENIX Association, Aug. 2019, pp. 231-247. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity 19/presentation/kwon
A. Abbasi, J. Wetzels, T. Holz, and S. Etalle, “Challenges in designing
exploit mitigations for deeply embedded systems,” in 2019 IEEE
European Symposium on Security and Privacy (EuroS P), June 2019,
pp. 31-46.

14

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

(37]

[38]

[39]

C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier,
P. Wagle, Q. Zhang, and H. Hinton, “Stackguard: Automatic adaptive
detection and prevention of buffer-overflow attacks.” in USENIX Secu-
rity Symposium, vol. 98. San Antonio, TX, 1998, pp. 63-78.

G. Beniamini, “Project Zero: Over The Air: Exploiting Broadcoms
Wi-Fi Stack,” 2017, https:/googleprojectzero.blogspot.com/2017/04/
over-air-exploiting-broadcoms- wi-fi_4.html, 2017.

N. Burow, S. A. Carr, J. Nash, P. Larsen, M. Franz, S. Brunthaler, and
M. Payer, “Control-flow integrity: Precision, security, and performance,”
ACM Computing Surveys (CSUR), vol. 50, no. 1, p. 16, 2017.

M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity principles, implementations, and applications,” ACM Trans-
actions on Information and System Security (TISSEC), vol. 13, no. 1,
p. 4, 2009.

C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, U. Erlingsson,
L. Lozano, and G. Pike, “Enforcing forward-edge control-flow integrity
in {GCC} & {LLVM},” in 23rd {USENIX} Security Symposium
({USENIX} Security 14), 2014, pp. 941-955.

H. Shacham, “The geometry of innocent flesh on the bone: Return-into-
libc without function calls (on the x86),” in Proceedings of the 14th
ACM conference on Computer and communications security. ~ACM,
2007, pp. 552-561.

N. Carlini and D. Wagner, “{ROP} is still dangerous: Breaking modern
defenses,” in 23rd {USENIX} Security Symposium ({USENIX} Security
14), 2014, pp. 385-399.

N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross, “Control-
flow bending: On the effectiveness of control-flow integrity,” in 24th
{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp.
161-176.

L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose, “Stitching the
gadgets: On the ineffectiveness of coarse-grained control-flow integrity
protection,” in 23rd {USENIX} Security Symposium ({USENIX} Secu-
rity 14), 2014, pp. 401-416.

E. Goktas, E. Athanasopoulos, H. Bos, and G. Portokalidis, “Out of
control: Overcoming control-flow integrity,” in 2014 IEEE Symposium
on Security and Privacy. 1EEE, 2014, pp. 575-589.

A. Oikonomopoulos, E. Athanasopoulos, H. Bos, and C. Giuffrida,
“Poking holes in information hiding,” in 25th {USENIX} Security
Symposium ({USENIX} Security 16), 2016, pp. 121-138.

E. Goktas, B. Kollenda, P. Koppe, E. Bosman, G. Portokalidis, T. Holz,
H. Bos, and C. Giuffrida, “Position-independent code reuse: On the
effectiveness of aslr in the absence of information disclosure,” in 2018
IEEE European Symposium on Security and Privacy (EuroS&P). 1EEE,
2018, pp. 227-242.

R. Rudd, R. Skowyra, D. Bigelow, V. Dedhia, T. Hobson, S. Crane,
C. Liebchen, P. Larsen, L. Davi, M. Franz et al., “Address oblivious
code reuse: On the effectiveness of leakage resilient diversity.” in NDSS,
2017.

V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in 11th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 14), 2014, pp. 147-163.
R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham, “Efficient
software-based fault isolation,” in ACM SIGOPS Operating Systems
Review, vol. 27, no. 5.  ACM, 1994, pp. 203-216.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox for
portable, untrusted x86 native code,” in 2009 30th IEEE Symposium on
Security and Privacy. 1EEE, 2009, pp. 79-93.

N. Burow, X. Zhang, and M. Payer, “Shining light on shadow stacks,”
in IEEE Security and Privacy Symp. 1EEE, 2019.

T. H. Dang, P. Maniatis, and D. Wagner, “The performance cost of
shadow stacks and stack canaries,” in Proceedings of the 10th ACM
Symposium on Information, Computer and Communications Security.
ACM, 2015, pp. 555-566.

M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro,
C. Liebchen, M. Qunaibit, and A.-R. Sadeghi, “Losing control: On
the effectiveness of control-flow integrity under stack attacks,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 952-963.



[40]

[41]

[42]

[43]

[44]

[45]

[46]

(471

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

(58]

[59]

[60]

R. J. Walls, N. F. Brown, T. Le Baron, C. A. Shue, H. Okhravi, and
B. C. Ward, “Control-flow integrity for real-time embedded systems,”
in 31st Euromicro Conference on Real-Time Systems (ECRTS 2019).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2019.

ARM, “Trustzone for cortex-m,” https://www.arm.com/why-arm/
technologies/trustzone-for-cortex-m, 2019.

M. Electronics, “S32K148EVB-Q176,” https://www.mouser.com/
ProductDetail/NXP-Semiconductors/S32K148EVB-Q176?qs=
WO0yvOOOQixfEkuVrgK4IOLA%3D%3D, 2019, 2019.

_ “S32K146EVB-Q144,” https://www.mouser.com/
ProductDetail/NXP-Semiconductors/S32K146EVB-Q144?
qs=sGAEpiMZZMtwOnEwywcFgljuZv55GFNmk%

252B1dyigtrY T9dHItWqKRcQ%3D%3D, 2019, 2019.

——, “KDK350ADPTR-EVM,” https://eu.mouser.com/ProductDetail/
Texas-Instruments/KDK350ADPTR-EVM?qs=qSful %252Bf1%
2Fd7gVa9B0YeXTA==, 2019, 2019.

“EV-COG-AD4050LZ,” https://eu.mouser.com/ProductDetail/
Analog-Devices/EV-COG-AD4050LZ?qs=BZBeilrCqCCc%
2Fxr7P1LvhQ==, 2019, 2019.

—_— “MAX32660-EVSYS,” https://www.mouser.com/
ProductDetail/Maxim-Integrated/MAX32660-EVSYS?qs=
sGAEpiMZZMtwOnEwywcFgljuZv55GFNmU%?252BdtNOmmq%
252BDQXtc6gthDiw%3D%3D, 2019, 2019.

“Reversal ~ of  fortune for chip  buy-
prices for microcontrollers will rise,”
http://www.electronics-sourcing.com/2017/05/09/

E. Sourcing,
ers: average
2017,

reversal-fortune-chip-buyers-average- prices-microcontrollers- will-rise/.

R. York, “ARM Embedded segment market update,”
https://www.arm.com/zh/files/event/1_2015_ARM_Embedded_
Seminar_Richard_York.pdf.

D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko, B. Yee,
K. Schimpf, and B. Chen, “Adapting software fault isolation to con-
temporary cpu architectures,” in Usenix Security Symposium, 2010.

2015,

“Control flow integrity clang 9 documentation - llvm,” https://clang.
Ilvm.org/docs/ControlFlowIntegrity.html, 2019.

B. Niu and G. Tan, “Modular control-flow integrity,” in Proceedings
of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ser. PLDI "14. New York, NY, USA:
ACM, 2014, pp. 577-587. [Online]. Available: http://doi.acm.org/10.
1145/2594291.2594295

V. Van Der Veen, E. Goktas, M. Contag, A. Pawoloski, X. Chen,
S. Rawat, H. Bos, T. Holz, E. Athanasopoulos, and C. Giuffrida, “A
tough call: Mitigating advanced code-reuse attacks at the binary level,”
in 2016 IEEE Symposium on Security and Privacy (SP). 1EEE, 2016,
pp. 934-953.

EEMBC, “Coremark - industry-standard benchmarks for embedded
systems,” http://www.eembc.org/coremark.

H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang,
“Data-oriented programming: On the expressiveness of non-control data
attacks,” in Security and Privacy (SP), 2016 IEEE Symposium on.
IEEE, 2016, pp. 969-986.

ARM, “Armv7-m architecture reference manual,” https://developer.arm.
com/docs/ddi0403/e/armv7-m-architecture-reference-manual, 2014.

“Stm32479i-eval,”
dm00219329.pdf, 2018.

S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham,
and M. Winandy, “Return-oriented programming without returns,” in
Proceedings of the 17th ACM conference on Computer and communi-
cations security. ACM, 2010, pp. 559-572.

N. R. Weidler, D. Brown, S. A. Mitchel, J. Anderson, J. R. Williams,
A. Costley, C. Kunz, C. Wilkinson, R. Wehbe, and R. Gerdes, “Return-
oriented programming on a cortex-m processor,” in 2017 IEEE Trust-
com/BigDataSE/ICESS. 1EEE, 2017, pp. 823-832.

B. G. Ryder, “Constructing the call graph of a program,” [EEE
Transactions on Software Engineering, no. 3, pp. 216-226, 1979.

H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W. R. Harris, T. Kim,
and W. Lee, “Enforcing unique code target property for control-flow
integrity,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 1470-1486.

http://www.st.com/resource/en/user_manual/

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[(71]

[72]

[73]

[74]1

(751

[76]

(771
(78]

(791

R. M. Farkhani, S. Jafari, S. Arshad, W. Robertson, E. Kirda,
and H. Okhravi, “On the effectiveness of type-based control

flow integrity,” in Proceedings of the 34th Annual Computer
Security Applications Conference, ser. ACSAC ’18. New York,
NY, USA: ACM, 2018, pp. 28-39. [Online]. Available: http:

//doi.acm.org/10.1145/3274694.3274739

L. Szekeres, M. Payer, T. Wei, and D. Song, “Sok: Eternal war in
memory,” in Security and Privacy (SP), 2013 IEEE Symposium on.
IEEE, 2013, pp. 48-62.

C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the international
symposium on Code generation and optimization: feedback-directed and
runtime optimization. IEEE Computer Society, 2004, p. 75.

A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network
structure, dynamics, and function using NetworkX,” in Proceedings of
the 7th Python in Science Conference (SciPy2008), Pasadena, CA USA,
Aug. 2008, pp. 11-15.

C. Lattner, A. Lenharth, and V. Adve, “Making context-sensitive points-
to analysis with heap cloning practical for the real world,” ACM
SIGPLAN, vol. 42, no. 6, pp. 278-289, 2007.

“CVE-2017-6956."  https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2017-6956, 2017.

“CVE-2017-6957  https://cve.mitre.org/cgi-bin/cvename.cgi?’name=
CVE-2017-6957, 2017.

“CVE-2017-6961.  https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2017-6961, 2017.

A. One, “Smashing the stack for fun and profit,” Phrack magazine,
vol. 7, no. 49, pp. 14-16, 1996.

U. Shankar, K. Talwar, J. S. Foster, and D. A. Wagner, “Detecting
format string vulnerabilities with type qualifiers.” in USENIX Security
Symposium, 2001, pp. 201-220.

“Emerging Stack Pivoting Exploits Bypass Common Security,”
2013, https://securingtomorrow.mcafee.com/other-blogs/mcafee-labs/
emerging-stack-pivoting-exploits-bypass-common-security/.

H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein, “Finding focus in
the blur of moving-target techniques,” IEEE Security & Privacy, vol. 12,
no. 2, pp. 16-26, 2014.

P. Larsen, A. Homescu, S. Brunthaler, and M. Franz, “Sok: Automated
software diversity,” in 2014 IEEE Symposium on Security and Privacy.
IEEE, 2014, pp. 276-291.

R. Skowyra, K. Casteel, H. Okhravi, N. Zeldovich, and W. Streilein,
“Systematic analysis of defenses against return-oriented programming,”
in International Workshop on Recent Advances in Intrusion Detection.
Springer, 2013, pp. 82-102.

V. van der Veen, D. Andriesse, M. Stamatogiannakis, X. Chen, H. Bos,
and C. Giuffrdia, “The dynamics of innocent flesh on the bone: Code
reuse ten years later,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2017,
pp. 1675-1689.

K. Braden, L. Davi, C. Liebchen, A.-R. Sadeghi, S. Crane, M. Franz,
and P. Larsen, “Leakage-resilient layout randomization for mobile
devices.” in NDSS, 2016.

J. Ganssle, The art of designing embedded systems. Newnes, 2008.
F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and
T. Holz, “Counterfeit object-oriented programming: On the difficulty
of preventing code reuse attacks in c++ applications,” in 2015 IEEE
Symposium on Security and Privacy. 1EEE, 2015, pp. 745-762.

N. Burow, D. McKee, S. A. Carr, and M. Payer, “Cfixx: Object
type integrity for c++ virtual dispatch,” in Prof. of ISOC Network &
Distributed System Security Symposium (NDSS). https://hexhive. epfi.
ch/publications/files/18NDSS. pdf, 2018.

APPENDIX A
HANDLING SPECIAL RECURSIVE FUNCTIONS

Special cases of recursion such as functions with multiple

recursive calls require additional instrumentation. In the fol-
lowing we discuss two possible designs to support the RAI
property. The first provides flexible handling of recursion by

15



v ﬁ SR [Recl] +1 SR [Rec2] +1
Addrees  <Bunery Address  <func_clonel>: Address’ sfune_cloned>:
SR[Recl]++ :
call func .. call func_clonel “an call func clonel@--- =aE
“e i | clonel 1 SR[Recl]-- clone2 1 ...
call func SR[Recl]++ SR [Rec2] ++
e @ call func_clone2 s s call func clone2
@) clonel 2 SR[Recl]-- clone2 2 SR[Rec2]--

IF SR[Recl] > 0
jump clonel_ 1
Else IF
@ Check safe region
for saved SR[Rec]
Else
Use TLR/FLT to
return to caller.

TLR for
clone[i],
i>1

@ TLR for clone[1]

(a) Original function

IF SR[Rec2] > 0
jump clonel[i]_[i]
Else IF
@ Check safe region
for saved SR[Rec]
Else
jump to clone with
greatest index and
a non-zero SR[Rec]

i Systemcallito

isave recursive SR}

! to the safe region
and reset the
recursive SR

SR[Rec3]+1

(b) Transformed recursive function

(c) Call graph of thee cloned functions

Fig. 13. Tllustration of using SR segmentation to resolve multiple recursion. Red-dashed edges are backward edges (i.e., from higher indexed clones to lower
indexed clones). that trigger a system call to save the SR to the safe region and reset SR.
Called form Called form
another + V another
func:tlon Address <funcl>: Address <func2>: func.tlon
] v SRI[Rec]l+1
SR[Encl] = SR[Enc] ®Keyl SR [Rec] ++ ] @ @ 3,
call func2 call funcl @ =] M
funcl 1 SR[Encl] = SR[Enc] ®Keyl func2 1 SR[Rec] - E 2
\ © IF SR[Rec] > 0 ® ]
... SRIEnc] ®Keyl Jump: funea i 5 2
% Else <1 &
: o o Uses normal TLR
Y e SR ELD @ Uses normal TLR
Rest of the oo and FLT
call graph e SR [Enc] ®Key3 “-..___
|
Rest of the
(a) (b) (© call graph

Fig. 14.

Illustration of handling indirect recursion. Fig.(a) shows a call graph of two indirect functions. Fig(b) shows a pseudo code of instrumenting indirect

functions. Fig(c) illustrates a cycle of four functions. Functions funcl and func2 are handled in the same method as the first case in(a).

mainly utilizing the safe region for special cases of recursion.
However, this results in overhead since each access to the
safe region requires a system call. Thus, we provide a sketch
of a second design that uses function cloning to reduce the
performance overhead of transitioning to the safe region. In
the following we describe both options.

A. Safe Region Recursion

The goal of this design is to provide flexible support of
special recursion cases (e.g., indirect recursion between two
functions) while using the minimum number of bits in the
SR. Instead of reserving a recursion counter for each recursive
call, e.g., in case of multiple recursion as in Figure 13(a),
this design only reserves the highest order bit of the SR to
indicate the occurrence of special recursive calls. In addition, it
reserves a special recursion stack in the safe region, where the
bottom of the stack has a known value. Each special recursive
call is instrumented with a system call. The system call sets
the special recursive bit and stores the return address on the
recursion stack. The subsequent recursive call is transformed
into a direct call (i.e., to ensure it does not use LR, our SR)
and is executed normally.

The special recursive function TLR is instrumented in the
beginning to check if the state of the special recursion bit.
If set, it executes a system call that will pop the saved return
address from the recursion stack and return to it. In addition, it
will reset the special recursion bit if the popped return address
is at the end of the recursion stack. In essence, this technique
implements a shadow stack for special recursion. An advantage
of this design is its efficiency in utilizing the SR bits. It also
does not limit the recursion limits the SR size. It is a more
portable option for other architectures that do not share the

16

pre-assumption of MCUS of defining the recursion limits a
priori. Thus, 4RAI implements this design for its prototype.

B. Handling Special Recursion Using Function Cloning

1) Handling Multiple Recursion Functions: This method
aims to handle special cases of recursion while limiting the re-
liance of the safe region, and mainly utilize the recursion coun-
ters of SR through function cloning. Consider Figure 13(a), the
original function is transformed by creating separate clones of
the function. Each clone corresponds to one of the recursive
calls in the original function. Each recursive call is directed
to its corresponding clone, which uses a distinct segment of
the recursion counter. This enables each clone to check only
its respective recursion segment as shown in Figure 13(b).
Without re-directing each recursive call to a separate clone
of the recursive function, it is not possible to resolve which
of the recursive calls is the correct return target. Function
cloning solves a general case when the recursive calls within a
function execute in any ascending order (e.g., func_clonel
calls func_clone2 in @). To return, a clone decrements its
counter and returns to itself until its recursive SR segment
reaches zero (e.g., func_clone?2 will return to clone2_2
in ®). For a clone[i] to return to its caller, it then checks the
non-zero recursive counters in the SR as these indicate which
previous clone is the caller of the current clone (i.e., clone[]
checks all SRg..[j < i] where). The clone with the highest
index in SRp.. is the correct caller, and clone[7] return to the
instruction following the call site of clone[i] in the resolved
caller (i.e.,® will return to clonel_2 at @) .

However, whenever multiple recursion executes
out-of-order, as in call func_clonel in function
func_clone2 (®), cloning alone cannot distinguish how
many increments in SRpg.. happened before or after the



Algorithm 1 Multiple indirect recursion call procedure
1: procedure INDIRECT CALL[I] OUT OF N INDIRECT CALLS

if SRRec[i] Z SRREC[]‘], where SRRec[i] 7é 0 and
SRpecj) # 0, for any j > 7 then

L

3: Save the SR and reset SRRec

4: end if

S SRR@C['L] = SRR&C[Z'] +1

6: Execute indirect call

7 SRRec[i] = SRRec[i] -1

8: if All SRgeccounters = 0 and Safe region contains saved
SR then

9: Restore saved SR

10: end if

11: end procedure

Algorithm 2 Multiple indirect recursion return procedure

1: procedure RESOLVING CORRECT RETURN TARGET OF OUT OF
N INDIRECT CALLS

2: // Check recursion counters in descending order
3 if SRRec[N] > 0 then

4: Return after indirect recursive call N

5: end if
6.
7
8

if SRRec[N—l] Z 0 then
Return after indirect recursive call N-1
: end if

9: // Inline the check until the lowest index of recursion counters
B/
: /| After inlining all checks
if All SRRe. equal O then

//All indirect recursion have been resolved

Use the regular TLR
end if
: end procedure

descending (i.e., to a clone with lower index) recursive call
in (®). Thus, any descending recursive call requires a system
call to: (1) save the current recursive SR in the safe region; (2)
reset the recursive SR. Upon returning, each clone function
will check the safe region for saved recursive counters (®
and @). Checking the safe region triggers a system call that
will check the saved recursive counters and find clones with
SRpec > 0. Again, the highest index in SRy, is the correct
caller, and clone[7] returns to the instruction following the
descending call site of clone[i] in the resolved caller in (i.e.,@
will return to @). In general, a function with N recursive calls
is transformed to into NV cloned functions forming a complete
digraph. Ascending edges are handled by incrementing the
respective recursions counter and decrementing it afterwards.
A descending edge (i.e., red-dashed edges in Figure 13(c)),
are system calls to reset the recursive SR counters. A call
graph representation of transforming a function with three
recursive calls is shown in Figure 13(c). The first function
(i.e., clonel) will use the TLR of clone[1] (®), while other
nodes will use the TLR clones > 1 (®).

2) Handling Indirect Recursion: Indirect recursion is an-
other special case that requires additional care. To understand
the difference of indirect recursion, consider the conceptual
call graph illustration shown in Figure 14(a). Indirect recursion
causes a cycle in the call graph, as demonstrated by funcl
and func?2. In such a case, it is not possible to handle
indirectly recursive functions using XOR encoding as it results
in FID collisions. Indirect recursion is handled by using the

17

maximum recorded depth of each function in the call graph
(see Section IV-D). When a call forms a cycle at the callee, this
will always be a call from a function with higher maximum
depth to a function with lower maximum depth, and identifies
an indirect recursion. In such a case, the call causing the
indirect recursion uses a recursion counter segment. However,
the check for the recursive counter is done at the callee.

Consider the illustration shown in Figure 14(b), the call
from funcl to func?2 use the XOR encoding since it is from
a lower depth to a higher depth (@). However, the call from
func2 to funcl uses one of the recursion counter segment to
increment and decrement the counter before and after the call,
respectively (@). Checking the recursion counter however, is
done in funcl instead of func2 (®). Note that this requires
iterating through the cycle between funcl and func?2 until
reaching a fixed set of the possible FIDs for both functions that
result from the XOR encoding between funcl and func?2.
To identify its caller, func1 first checks its recursion counter.
In case, it is greater than zero (@), it returns to the call site
causing the indirect recursion, otherwise it uses the regular
TLR policy @. For func?2, it uses the TLR policy directly
(®) as all FIDs are from the XOR encoding chain. Note that
the same transformation is used for a cyclic call (i.e., call
causing a cycle in the call graph). For example, funcl and
func?2 are handled in the same method in Figure 14(c).

Finally, in case of indirect recursion with multiple call sites,
each call site uses a segment counter, as shown in Algorithm 1.
In addition, each call site is given an index in the order they
appear in the function. A check is inserted before each indirect
recursive call ensure the indirect recursive calls execute in
ascending order (i.e., line two in Algorithm 1). As discussed
in Appendix A-B1, in case of calls executing out-of-order
(e.g., indirect recursive call[2] executes after indirect recursive
call[3] has already executed), a system call is needed to save
the SR to the safe region and reset the recursion counters.
The callee of the indirect recursive calls checks each segment
counter in descending order (i.e., to enforce the return to the
call sites ascending order), as shown in Algorithm Algorithm 2.
This enables returning correctly to the correct call site in the
caller (i.e., func?2). Function func2 checks the value of
all recursion counters after returning from each call site. In
case all recursion counters are zero, it checks the safe region
for a saved SR, and rosters the SR value (i.e., line eight
in Algorithm 1). The process repeats until no saved SR is
found in the safe region, at which no indirect recursion is left
and the function can return normally using its TLR.

APPENDIX B
MISCELLANEOUS

A. Imprecision and Irregular Control-Flow Transfers

uRAI handles imprecisions through separate encoding keys
for each possible target in the target set of its type-CFI. For
example, if a target set contains {funcl, func2} and the
indirect call is pointing to funcl. Then pRAI will branch to the
encoding routine specific funcl. If the target is a recursive
function then a recursive encoding is used. This ensures the
function will always return to its exact caller and reduce the
effect of complexity since we find a satisfying key for each
target individually instead of the entire target set.



Our type-CFI implementation, although imprecise, has a
maximum target set of five functions for an indirect call on our
evaluation. tRALI is evaluated on C. Using C++ code results
in two challenges. The first is larger target set for type-CFI,
thus larger FLT sizes. The second are attacks targeting the
virtual table pointer such as COOP style attacks [78]. These
however are an orthogonal problem to stack safety and may
be protected through, e.g., OTI [79].

Supporting irregular control-flow transfers such as
setjmp and longjmp requires custom system calls. For
set jmp, the system call stores the return location along
with the current SR value in the safe region. When executing
longjmp, a system call restores the return location and SR
from the safe region. This mechanism also enables the use
of pre-compiled objects (e.g., newlib) since pRAI requires
source code.

B. Scalability and Encoder Efficiency Discussion

URALI scales its encoding scheme for larger applications
by partitioning the call graph whenever no satisfying keys
are found as shown in Figure 8. This frees up the SR to
be reused, but results in some overhead since each transition
between partitions require a system call. For our experiments,
partitioning the call graph was not needed. Table VII shows the
number of call sites in our evaluation, as well as the number
of nodes and edges handled by the encoder in the call graph.
The number of nodes does not equal the number of functions
as many are optimized by inlining in LLVM. In addition, the
number of edges is different than the number of call sites as
a result of imprecisions in the call graph. Our evaluation uses
applications compare to and exceed the complexity of existing
benchmarks (e.g., Animation compared to CoreMark).

We further evaluate uRATI’s encoder and whether it pop-
ulates the FLTs efficiently. uRAI’s TLR requires the correct
branch to be at a distance equal to the SR in FLT. Thus, unused
FIDs in the FLT are filled with JUMP ERROR to ensure the
FLT is correctly aligned as was shown in Figure 9. Table VIII
shows the FLT efficiency for each application. We compute the
FLT efficiency as the percentage of used FLT indices over the
total FLT size. If the FLT is sparse (i.e., a large number of FIDs
are filled with JUMP ERROR), then the efficiency is lower.
Note that the encoder uses the information extracted by the
call graph analyzer (i.e., Section V-A). The call graph analyzer
is implemented as an LLVM IR pass. LLVM further optimizes
the application after this pass. Such optimization may remove
call sites (e.g., due to inlining) before pRAI instruments
the firmware using its back-end pass (see Section V-C). As
a result, some portions of the encoder’s estimated FLT are
unused. For example, if the encoder estimated FLT contains
a branch instruction to a function that has been removed then
this branch is ultimately replaced by a JUMP ERROR. This
results in lower efficiency in the final binary when compared
to the encoder generated FLT (e.g., 98.2% and 90.1% for
average FLT efficiency in Animation). Averaged across all the
applications, the encoder and binary demonstrate a high FLT
efficiencies as 98.3% and 93.8%, respectively.

1 |eor Ir, #FK :Encode LR

b func ;Direct call to func
3 |eor Ir, #FK ;Decode LR
Listing 1. uRAI instrumentation for call instructions.

18

TABLE VI ANALYSIS OF uRAI TRANSFORMATIONS AND ITS EFFECT
ON RUNTIME OVERHEAD. N: NUMBER OF REGISTERS USED IN THE
INSTRUCTION. P: PIPELINE REFILL. P CAN BE BETWEEN 1-3 CYCLES.

Instruction Baseline HRAL
# of cycles Effect # of cycles

push {..,1r} 1+N Remove 1r N

pop {..,pc} 1+N+P Remove pc N

eor Add 2 2

mov Add 2 2

add pc,<reg> Add 1 1+P

b <label> Add 1 1+P

Total 2+2N+P 44+2N+2P

1RAI Overhead 2+P
TABLE VIIL SUMMARY OF THE NUMBER OF CALL SITES

INSTRUMENTED BY #tRAI, NUMBER OF NODES, AND EDGES IN THE CALL
GRAPH FOR EACH APPLICATION.

# of Call sites

App Direct  Indirect # of Nodes  # of Edges
PinLock 26 0 22 26
FatFs_uSD 111 97 37 473
FatFs_RAM 29 94 25 373
LCD_uSD 157 52 44 343
Animation 152 52 46 349
CoreMark 91 0 21 94
TABLE VIIL SUMMARY OF uRAI FLT EFFICIENCY EVALUATION.
Encoder Binar,
AP Min. Max. Ave. Min. Maz. Ave.
PinLock 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%
FatFs_uSD 83.3% 100.0% 97.1% 38.9% 100.0% 90.9%
FatFs_RAM 83.3% 100.0% 97.6% 75.0% 100.0% 95.8%
LCD_uSD 81.6% 100.0% 98.1% 44.4% 100.0% 94.0%
Animation 75.0% 100.0% 98.2% 22.2% 100.0% 90.1%
CoreMark 87.7% 100.0% 98.5% 43.9% 100.0% 92.0%
1 |add pc,Ir ;First relative jump
b return_location_1 ; First FID
3 |b return_location_2 ;Second FID
Listing 2. TLR instrumentation without SR segmentation.
1 |; N=32 — function shift — segment bit size
2 |mov rl12,1r,1sl #N s1l2 = lreeN
3 |; M= 32 — segment bit size
4 |mov rl12,r12,1sr #M w2 = vl2=M
5 |add pc,rl2 ;First relative jump
6 |b return_location_1 ;First FID
7 |b return_location_2 ;Second FID
8
Listing 3. TLR with SR segmentation. N and M are constants
calculated depending on the function and the start of its segment.
1 [add Ir ,#0x01000000 ;increment counter
2 |b func sdirect ‘call to func
3 |sub Ir ,#0x01000000 :;decrement counter
Listing 4. An example of ¢RAI’s instrumentation for recursive call
sites. The recursion counter shown uses the higher eight bits of LR.
1 s rd = destination register
2 |; rx = any available register other than rd
3 .
4 Condition flags are saved prior
5 [movw rx ,#0xE000; Higher word of MPU_RNR
6 | movt rx ,#0xED98; Lower word of MPU_RNR
7 | sub rx,rd,rx ; rx = rd — MPU_RNR (unsigned)
8 |cmp rx ,#8 ; If within MPU registers
9 | bls ERROR ; ERROR if less or equal
10 |cmp rx, #0xd90 If points to VTOR
11 | beq ERROR ; ERROR if equal
12 | bic rd, rd, 0x10000000 ; Safe region mask
13 restore condition flags and perform store
Listing 5.  pRAI’s exception handler SFI protection. The MPU

Region Number Register (MPU_RNR) is middle address of the MPU.



