SAND2019-10728

National
Printed September 11, 2019 il

Laboratories

SANDIA REPORT @ Sandia

Exactly and Easily Applying
Experimental Boundary Conditions in
Computational Structural Dynamics

Bunting, Gregory, Crane, Nathan K., Day, David M., Dohrmann, Clark R.,
Ferri, Brian A., Flicek, Robert C., Hardesty, Sean S., Lindsay, Payton, Miller,
Scott T., Munday, Lynn B., Stevens, Brian L., and Walsh, Timothy F.

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

ABSTRACT

Most experimental setups and environment specifications define acceleration loads on the component.
However, Sierra Structural Dynamics cannot apply acceleration boundary conditions in modal
transient analysis. Modal analysis of these systems and environments must be done through the
application of a huge artificial force to a large fictitious point mass. Introducing a large mass into the
analysis is a common source of numerical error. In this report we detail a mathematical procedure to
directly apply acceleration boundary conditions in modal analyses without the requirement of adding a
non-physical mass to the system. We prototype and demonstrate this procedure in Matlab and scope the
work required to integrate this procedure into Sierra Structural Dynamics.

ACKNOWLEDGMENT

This work was supported by the Laboratory Directed Research and Developement (LDRD) express
program.

This page intentionally left blank.

CONTENTS

I MoOtIVAtION ..ottt e e e e 7

2. IntrodUuction i 7
Augmented Modal Basis i i 9

3.1 Augmented Modal Basls with Darnping: . s esvas vswss snusss sanms sommns suns 9

4. 1D AnalyticSolution 11

4.1 Numerical Results i e 2

5. Path Forward to Production Analysis i i 15

6. CONCIUSIONS . o ottt et e IS
References 16
B NI uin s i swmn s 5w s 605 0k ek 6B S A BB B 6 R B 17
AL Phiysical PoriinetBisic v, s sunrs sness supusronnny cumms ssmmrys smmns imsmns enns 7

Az, Mesh o 17

A3, SOlULON . oo 19
Appendices 17

LIST OF FIGURES

Figure 1. Partition of a discritezed structure’s degrees of freedom into prescribed (red) and residual
(BIHEE: wea: senmniinan: seans ixsent soans SARHNESURAS FERULIHHEE MBS IBESNT 50 7
Figure 2. Thestringatt = 22{1,2,3,4}/8, i.e. four snapshots over the first half of a cycle of the
moving end points. Figure 3 shows the second half of a cycle. The code that produced
these plots is given in appendix A. Black: the analytic solution (4.1). Blue: the direct
transient solution (2.2). Red: the modal transient solution (2.4), with six modes. Yellow:
the augmented modal transient solution (3.4), with six modes plus one rigid-body mode. 13
Figure 3. The stringat? = %ﬂ {5,6,7,8}/8, i.c. four snapshots over the second half of a cycle of
the moving end points. Figure 2 shows the first half of a cycle. The code that produced
these plots is given in appendix A. Black: the analytic solution (4.1). Blue: the direct
transient solution (2.2). Red: the modal transient solution (2.4), with six modes. Yellow:
the augmented modal transient solution (3.4), with six modes plus one rigid-body mode. 14

1. MOTIVATION

Most experimental setups and environment specifications define acceleration loads on components.
However, for modal transient analysis, Sierra Structural Dynamics can apply forces, but not
accelerations. Current practice is to add a huge artificial mass to the structure, and then apply a huge
artificial force that causes that mass to move at approximately the desired acceleration. This is
problematic for several reasons:

* If the mass is too small, the wrong problem is solved and an invalid result is obtained.

* If the mass is too large, linear systems become poorly conditioned, leading to a highly inaccurate
solution and an invalid result.

* An appropriate size of the mass isn’t known a priori, and must be determined via trial and error.
The acceptable band is often narrow.

The results of a computational setup using such an artificial mass can be assessed based on the
knowledge and experience of the analyst, and by repeating the run with a different mass or different
linear solver parameters. This process both substantially increases the amount of time and effort
required to produce reliable results, and is a significant source of potential error and uncertainty.

The purpose of this report is to detail a mathematical procedure to directly apply acceleration boundary
conditions to modal analyses without adding non-physical mass or requiring analyst intervention. This
procedure has been prototyped and demonstrated in Matlab, and scoping work has been done to
determine how to integrate the procedure into the Sierra Structural Dynamics production analysis
application.

2. INTRODUCTION

We begin our overview of the problem by partitioning the output displacements into the two pieces
shown in Figure 1 : u, and u,,, where the 7 subscript is used for the residual degrees of freedom and the p
subscript indicates the degrees of freedom determined by the prescribed accelerations.

@ prescribed
@ residual

Figure 1. Partition of a discritezed structure’s degrees of free-
dom into prescribed (red) and residual (blue).

The matrices are partitioned analogously, so that the system appears as follows:
KTT‘UT + M’I"T‘ur + K’r‘pup + M’I‘pap — f’/"

7

The force vector, f,, may be restricted to the residual degrees of freedom. Since u,, is known, we move it
to the right-hand side:
K. u, + M. 1, = fr — Kty — Mrpiig (2.1)

v~

=F

For notational simplicity, we will drop the subscripts and write
Ku+ Mu = F, (2.2)

keeping in mind that u includes the residual degrees of freedom, while the forces created by the
prescribed motion of the boundary are incorporated into F'. Until section 3.1, we omit the damping
term D1 from the discussion.

Direct solution of (2.2) via time stepping methods is straight-forward, but costly: due to the coupling
between the different degrees of freedom, parallel communication is required at each time step. The
approach used in Sierra Structural Dynamics, for both the modal transient analysis and modal FRF
(frequency response function) solution cases, begins with a modal decomposition.

We solve the generalized eigenvalue problem
K® = MOA, T'MO =1, (2.3)

and write v = Px. Note that because M is symmetric positive definite (SPD), ® can always be chosen
such that ®7' M ® = I. Equation (2.2) can then be rewritten

K® z+ Mdi=F,
—~~
=M®PA

whence multiplication by T yields
Ax+i=0TF (2.4)

Equation (2.4) is uncoupled, and can be solved easily. Perhaps surprisingly, even though the modes in ®
are computed on the residual degrees of freedom only, i.e., as if the prescribed degrees of freedom were
fixed, the solution is exact if ® includes a complete set of modes. But if it is necessary to compute all of
the modes, then we have merely traded one difficult problem for another: the benefits of this approach
are realized if (2.4) yields an accurate solution with only a small number of modes. However, with
prescribed accelerations, this is not the case: numerical experiments in section 4.1 will show that nearly
the full set of modes is required to obtain a reasonable solution, even when F' is band-limited. The
experimental setting to consider is a shaker table, where the prescribed degrees of freedom lie in a plane,
and move as a rigid body. The difficulty stems from the incompatibility of the modes of ® with
rigid-body motions. Our approach to solving this problem is discussed in detail in section 3.

3. AUGMENTED MODAL BASIS

Building on the eigenvalue problem described in section 2, we augment the modes in ® with a matrix of
rigid-body modes W. With three spatial dimensions, ¥ would have six columns, corresponding to three
translational and three rotational rigid-body modes. The augmented basis is formed via the matrix

P =[®,0]

Expressing the displacement u viau = Px, equation (2.2) becomes
KPx+ MPi =F.

Multiplying by PT, we obtain

P'KPx+ P'MPi= P'F. (3.1)
—~
=K =M

The matrices K and M take the form

g A OTKU X — I OTMU (52)
“\UTK® UTKY) T\ TME OTMT) 32

Thus, the system (3.1) is small, but still coupled: the matrices have an arrowhead structure with large
diagonal blocks, but coupling between the rigid-body coordinates and eigen coordinates.

It is fairly straight-forward to transform the system (3.1) to diagonal form, as the system is small enough
that we can afford to work with dense linear algebra methods. By solving the eigenvalue problem (note
that M is SPD because M is SPD and P is full-rank)

KV =MVO, VIMV =1, (33)
and writing z = V'y (so thatu = Px = PVy), we obtain the system

j+0y=(PV)'F. (3.4)

3.1. Augmented Modal Basis with Damping

Thus far, we have omitted discussion of the damping term D1 from the exposition, beginning in (2.2).
The standard damping formulation expresses D as a linear combination of K and M, say

D =aK + 8M,

so that
®TD® = oA + 51

9

is a diagonal matrix. However, construction of the augmented damping matrix D then proceeds
analogously to (3.2):

(3.5)

- (aA+BI @TDU
D_@K+*BM_<\IITD<I> \I!TD\II)'

Although not diagonal, the matrix D is also transformed to diagonal form by V:
VIDV = aVTKV + BVIMV = a® + 1.
Following this through the derivation, equation (3.4) would become

i+ (a©® + By + 6y = (PV)'F.

The only unseemly aspect of the choice (3.5) is that damping is applied to the rigid-body modes, which

may not be ideal from a physical point of view. However, if we choose D to be diagonal, whether by

using a modal damping model such as
A 2 0
b= 1):

or by explicitly removing the arrowhead parts in order to eliminate the damping of rigid-body modes a
la

A (aA+BI 0

b=("5"5).

we encounter a different problem: simultaneous diagonalization of three real symmetric matrices is
possible only under very special circumstances [1].

Therefore, we must choose between undamped rigid-body modes and a decoupled system. There is a
third option, which is simply to solve (3.1): if we prefer undamped rigid-body modes, then in practice,
there is little point in solving the eigenvalue problem (3.3), since it fails to decouple the equations.

I0

4. 1D ANALYTIC SOLUTION

In this section, we will derive an analytic solution to a model problem to be used for testing purposes.
Consider a string with transverse displacement u(x, t), initially at rest (u(z, 0) = u;(z,0) = 0). The
solution u(z, t) obeys the wave equation:

_ 2
Ut = C Ugy-

Suppose that the end points (x = 0, 2 = L) follow the prescribed motion u(0, t) = u(L, t) = f(¢).
This mimics the situation of a rigid shaker table: the mode shapes of the string with fixed ends do a poor
job of capturing a rigid motion of the entire string suggested by f(¢). We will make the ansatz that the
displacement is equal to f(t) plus some unknown function p(z, t):

u(z,t) = f(t) +p(z,1),
with p(0,t) = p(L,t) = 0. Thus, we have
U (2,1) = f"(t) + pu(x,t) = Ctge(z,1) = Ppoa(z, t).

Taking the Laplace transform, we obtain

$*p(x, 8) — Chra(z, 8) = —5>f(s)
We can then write the standard series solution in space
p(z,s) = Zdn(s) sin(k,x)
n=1

for p, defining k,, = “F and w,, = ck;,. Using the orthogonality relations,

= m=n

L
/o sin(k,,x) sin(k,x) dx = {5 mtn

% 2L
= d
/ sin(k,x) dx = {"" gl
0

0 n even

we obtain (for n odd) R
—4s%f(s)

nm(s? + w?)

an(s) =

For a given constant w > 0, we choose a sinusoidal end motion

f(t) = sin(wt),
with Laplace transform
A w
§) = ———.
After an inverse Laplace transform, we obtain the solution

(o)

u(z,t) =sin(wt) + Z a,(t) sin(k,x), (4.1)
n=1,3,...
a,(t) :Wlijcﬂ) [wsin(wt) — wy, sin(w,t)] . (4.2)

II

4.1. Numerical Results

In this section, we compare the analytic solution (4.1) derived in section 4 with three different discrete
approaches:

* The direct transient solution (2.2).
* The modal transient solution (2.4), with six modes.
* The augmented modal transient solution (3.4), with six modes plus one rigid-body mode.

This model problem is an excellent stand-in for our primary intended use case, which is a
three-dimensional structure rigidly attached to a single-axis shaker table: although one-dimensional, the
string also has internal motion, and boundaries that imply a simple rigid-body motion, i.e., a vector of
all ones.

The code, implemented in Matlab, uses Backward Euler time stepping, and a Finite Element Method
spatial discretization. It is included in appendix A. The results shown below were generated using a
finer discretization (np=1001, dt=1e-6, nt=10000) than is written in the code; the values in appendix
A allow the code to be run in real-time, in which case the results are qualitatively similar, but the
agreement is not as good. The physical parameters are chosen to mimic a Cello A-string, with a
fundamental frequency of 220 Hz. The frequency for motion of the ends is chosen to be w = 27 - 330
Hz, i.e., halfway in between the first and second mode frequencies of the system.

Figures 2 and 3 demonstrate excellent agreement between the analytic solution and the direct transient
method. The direct transient curve is difficult to see in the plots because it is covered by the analytic
curve, with some small discrepancies in the vicinity of the kink produced by propagation and reflection
of the wavefront produced by the end motions. With just six modes, all having zero displacement at the
end points, the modal transient solution does a poor job of capturing the correct displacement - except
at times when the end displacement is actually zero. As we had hoped, the augmented basis solution
does quite well even with just six modes.

We also did some experiments comparing this with the con mass approach described in section 1.
However, because this is a Matlab code that uses sparse-direct linear solves with double-precision
arithmetic, the known issues with the con mass approach could be observed only in really extreme cases.
Further work would be required to replicate and investigate these issues in the context of this

example.

12

) t=0.0004

== Direct
1.5 w==Modal
Augmented
1
0.5|f > < IA
0 e . 3
-0.5 |
=1
-1.5
-2 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
) t=0.0008
=== Direct
1.5 === Modal |
Augmented
I — S—
—, -
0.5 |
0 T —— -
-0.5 |
=i 4
-1.5
-2 -
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
5 t=0.001
‘ w= Direct
1.5 === Modal |
Augmented
1 {
! -\V‘/_-_ |
0
-0.5 |
=1 |
-1.5
“D L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
t=0.002
2 T
= Direct
1.5 s Modal |
et . Augmented

s \\ |

) 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 2. The string at ¢ = 27{1, 2, 3,4} /8, i.e. four snapshots over
the first half of a cycle of the moving end points. Figure 3 shows

the second half of a cycle. The code that produced these plots is

given in appendix A. Black: the analytic solution (4.1). Blue: the
direct transient solution (2.2). Red: the modal transient solution
(2.4), with six modes. Yellow: the augmented modal transient
solution (3.4), with six modes plus one rigid-body mode.

3

t=0.002

=== Direct
=== Modal
Augmented

0.5
0
-
-0.5 4
-1
-1.5
=2 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
) t=0.002
=== Direct
1.5 - — === Modal
e Augmented
~
1 e
0.5
7
0 7
v/
-0.5
=k
~L.5
-2 ! L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
31 1=0.003
=== Direct
1.5 === Modal
Augmented
1
0.5 1
0 S |
-0.5 i
-1
-1.5
-2 L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
2 t=0.003
= Direct
1.5 wes Modal
: Augmented
1
0.5
0\\ -
e ‘\ _//
1 —\\ ‘/—
—~——— —
-1.5
=) L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 3. The string at ¢t = 27{5,6,7,8}/8, i.e. four snapshots

over the second half of a cycle of the moving end points. Fig-
ure 2 shows the first half of a cycle. The code that produced
these plots is given in appendix A. Black: the analytic solu-
tion (4.1). Blue: the direct transient solution (2.2). Red: the
modal transient solution (2.4), with six modes. Yellow: the aug-
mented modal transient solution (3.4), with six modes plus one
rigid-body mode.

14

5. PATH FORWARD TO PRODUCTION ANALYSIS

The presented modal applied acceleration approach shows excellent results for the 1d problem. In order
to gain mission impact from the research, the methodology must be integrated into an analyst-accessible
work flow. The best delivery mechanism for this capability is the ASC-funded Sierra Structural
Dynamics analysis application. The Sierra code suite is used daily for ND qualification analyses.

Consider equation (2.1) for the partitioned system, repeated here:

Kty + Myyiiy = fo — Ky — My,
A o 4
Vo

=F

Within Sierra/SD it was found to be fairly straightforward to construct the matrices K., M,, and even
to set up the eigenvalue problem (2.3). However, the maps required to form the matrices K,,,, M,,, were
found not to be accessible in the part of the code where they were needed. In order to rectify this, a
substantial refactor will be required. These same maps for K, M,, are also needed for a major FY20
development deliverable in Sierra/SD to report reaction forces from fixed constraints for use in fixture

design.

The proposed path forward for this research is to revisit prototyping the modal acceleration application
method in Sierra/SD once the reaction force deliverable is completed, then evaluate that augmented
basis prototype for viability in more complex 3d problems. If the approach sees the same type of success
as seen in 1d productionization of this research path, it should be pursued to create a functional and

tully supported analysis capability.

6. CONCLUSIONS

An augmented basis numerical procedure to directly and exactly apply acceleration boundary
conditions to modal transient analysis has been documented and demonstrated on a 1d problem. This
method shows strong promise for exactly applying specified boundary conditions without analyst
intervention. The work needed to integrate the modal basis method to the production Sierra Structural
Dynamics analysis module has been scoped. Although significant development work will be required,
this effort appears tractable. It is strongly recommended that this research line be continued in order to
ultimately provide a more robust, less error-prone, and simpler modal transient analysis methodology
to qualification analysis.

I5

REFERENCES

[1] Mikhail Alekseevich Novikov. Simultaneous diagonalization of three real symmetric matrices.
Russian Mathematics, $8(12):59—69, 2014.

16

A. MATLAB CODE

This appendix contains the Matlab code that was used to apply the augmented basis approach described
in section 3 to the analytic solution developed in section 4. Note that none of these examples
incorporate damping terms.

A.1. Physical Parameters

This script was used to generate the physical constants needed to assemble the matrices. The values were
chosen to approximate the behavior of a Cello A-string.

%% physical parameters (Cello A-string)

tension = 133.447; % N (30 1bf)

len = 0.69; % m

freq = 220; % Hz

density = tension/(2xlenxfreq)”~2; % kg / m

c = sqrt(tension/density); % transverse wave speed

A.2. Mesh

These scripts create a mesh that is a uniform subdivision of the string length. In that case,
piecewise-linear finite elements are equivalent to finite differences, but it leaves the flexibility to create a
non-uniform mesh if desired.

function mesh = gen_mesh(a, b, np)

mesh.p
mesh.e

linspace(a, b, np)';
[1: (np—1); 2 : npl';

The following verifies some very simple assumptions about the mesh.

function okay = verify_mesh(mesh)

okay 1;

okay = okay && all(sort(mesh.p) == mesh.p);
ab = mesh.p(mesh.e);

okay = okay && all(ab(:,2) > ab(:,1));

This function does the finite element matrix assembly. It uses standard piecewise-linear elements, with
Matlab’s quadrature applied to a function handle used to assemble the right-hand side vector.

17

function [K,M,F] = assemble(mesh, forcing)

ne = size(mesh.e,1);
np = size(mesh.p,1);
n_entries = 4xne;

K_entries = zeros(n_entries, 1);
M_entries zeros(n_entries, 1);
rows = zeros(n_entries, 1);
cols = zeros(n_entries, 1);

F = zeros(np, 1);

for ie = 1:ne
global_ind = 4x(ie—1) + (1:4);

points = mesh.e(ie, :);
loc_rows = points'x*ones(1,2);
loc_cols ones(2,1)*points;

[¢)]
Il

mesh.p(points(1l));
mesh.p(points(2));

(o
l

locK

1/(b—a)*[1 —1;
-1 1];
locM (b—a)/6x[2 1;
1 21;:

K_entries(global_ind) locK(:);
M_entries(global_ind) = locM(:);
rows (global_ind) = loc_rows(:);
cols(global_ind) = loc_cols(:);

fl = integral(@(x) (forcing(x).x(1—(x—a)./(b—a))), a, b);
f2 = integral(@(x) (forcing(x).x((x—a)./(b—a))), a, b);
F(points) = F(points) + [f1l; f2];

K = sparse(rows, cols, K_entries, np, np);
M = sparse(rows, cols, M_entries, np, np);

18

A.3. Solution

This code solves the second-order system
Ku+ Miu = F.

By adding velocity variables, the system is reduced to first-order form, and then time-stepping is
performed with backward Euler.

The matrices are incorporated into a struct so that different types of systems, such as those in equations
(2.2), (2.4), and (3.1), can easily be solved and compared simultaneously.

Time steps are plotted as they are computed. Optionally, a function handle can be passed to allow
plotting of an analytic solution on top.

function solve_second_order_system(p, dt, nt, plot_scale, cases, f_xt,
do_movie)

plot_frequency = 1;

nc = length(cases);

for ic = 1:nc
n(ic) = size(cases{ic}.K,1);
xm{ic} = zeros(2xn(ic),1);
xi{ic} = zeros(2xn(ic),1);

if isfield(cases{ic}, 'vO_ind') && isfield(cases{ic}, 'vO_val"')
xm{ic}(n(ic) + cases{ic}.v0_ind) = cases{ic}.v0O_val;
end

[cases{ic}.K, sparse(n(ic),n(ic));
sparse(n(ic),n(ic)), —speye(n(ic))];
[sparse(n(ic),n(ic)), cases{ic}.M;
speye(n(ic)), sparse(n(ic),n(ic))];
[cases{ic}.V'xcases{ic}.F; zeros(n(ic), 1)1;
eye(2xn(ic)) + dtx(cases{ic}.Mx\cases{ic}.Kx);

cases{ic}.Kx

cases{ic}.Mx

cases{ic}.Fx
cases{ic}.Ax
end

err = zeros(nc,1);

set(0, 'DefaultLinelLineWidth', 6);
set(0, 'defaultAxesFontSize',20)

if do_movie
vidObj = VideoWriter('movie.avi');
open(vid0bj);

end

19

for ic=1l:nc
labels{ic} = cases{ic}.label;
end

figure(l), clf
for it = 1:nt
ti (1t—1)=*dt;

fi f_xt(p,ti);
for ic=l:nc
xi{ic} = cases{ic}.Ax\(xm{ic} + dtx(cases{ic}.Mx\cases{ic}.Fx)x*...
casesq{ic}.force_time(ti));
xm{ic} = xi{ic};
end

if mod(it,plot_frequency) ==
figure(l), clf
for ic=l:nc
u_plot = cases{ic}.disp_vecxcases{ic}.force_time(ti);
u_plot(cases{ic}.free) = cases{ic}.Vxxi{ic}(1l:n(ic));

err(ic) = max(err(ic), norm(u_plot — fi));

plot(p, u_plot), hold on
end

plot(p, fi, 'k—.")

ylim(plot_scale)

legend(labels)

drawnow

pause(.05)

if do_movie
currFrame = getframe(gcf);
writeVideo(vidObj,currFrame);

end

end
end

if do_movie

close(vidObj);
end

20

for ic=l:nc
fprintf('Case %d (%s):\n',ic,labels{ic});
fprintf('cond(M) = %g\n',cond(full(cases{ic}.M)));
fprintf('max error: %g\n',err(ic))

end

The following script implements the analytic solution (4.1).

function f = analytic_soln(x, t)
string_parameters

n_terms = 20;
disp_omega = 2xpix*330;

a = zeros(n_terms,1);
b = zeros(n_terms,1);
for n = 1:2:n_terms

kn = nxpi/len;
a(n) = —4xdisp_omega”™2/(nxpix(disp_omega”~2 — (knxc)”"2));
b(n) = 4xdisp_omegaxkn*c/(nxpix(disp_omega™2 — (knxc)”"2));

end
f = ones(size(x)) * sin(disp_omegaxt);

for n=1:1length(a)
kn = nxpi/len;
f =f + a(n)*xsin(knxx)*sin(disp_omegaxt);
f =Ff + b(n)*sin(knxx)xsin(kn*xcxt);

end

This script sets up and compares four different solution methods: direct transient (2.2), modal transient
(2.4), the augmented system (3.1), and the analytic solution (4.1).

string_parameters

mesh = gen_mesh(0, len, 101);
assert(verify_mesh(mesh));

forcing
[K,M,~]

@(x)0;
assemble(mesh, forcing);

np = size(mesh.p,1);

free = 2:(np—1);
n_free = np—2;

21

K_free = tensionxK(free, free);
M_free = densityxM(free, free);
n_ew = 6;

[Phi,D] = eigs(K_free, M_free, n_ew, 'smallestreal');
%% prescribed acceleration (at ends)

disp_omega = 2xpix330;

disp_time = @(t)sin(disp_omegaxt);
disp_vec = zeros(np,1);
disp_vec(l) = 1;
disp_vec(end) = 1;

F_accel = disp_omega”~2xdensity*M(free,:)*disp_vec — ...
tensionxK(free, :)xdisp_vec;

%% small eigenvalue problem for augmented matrix

Psi = ones(n_free, 1);

P = [Phi, Psi];

M_hat = P'xM_freexP;

K_hat = P'xK_freexP;

% symmetrize so that eig will return mass—normalized V
M_hat = 0.5x(M_hat + M_hat');

K_hat = 0.5%x(K_hat + K_hat');

[V, Thetal

eig(K_hat, M_hat);

n_augment size(P,2);
%% transient

dt .00001;

nt 1000;

base_case.disp_vec = disp_vec;
base_case.force_time = disp_time;
base_case.free = free;

direct = base_case;
direct.K K_free;
direct.M M_free;

22

direct.F = F_accel;
direct.V = speye(n_free);
direct.label = 'Direct’;
modal = base_case;
modal.K = D;

modal.M = speye(n_ew);
modal.F = F_accel;
modal.V = Phi;

modal.label = 'Modal’;

augment = base_case;
augment.K = Theta;

augment.M = speye(n_augment);
augment.F = F_accel;
augment.V = PxV;
augment.label = 'Augmented';
cases{1l} = direct;

cases{2} = modal;

cases{3} = augment;

plot_scale = [-2 2];
solve_second_order_system(mesh.p, dt, nt, plot_scale, cases, @analytic_soln,
0);

23

This page intentionally left blank.

24

DISTRIBUTION

Hardcopy—Internal

1 Nathan K. Crane 1542 0845

1 D. Chavez, LDRD Office 1911 0359

Email—Internal I

Technical Library 01177 libref@sandia.gov

25

This page intentionally left blank.

26

27

Sandia
National
Laboratories

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

