SANDIA REPORT

SAND2019-11403 ﬁg?iglr?al
Printed Spetember 2019 Laboratories

Receive-Side Partitioned Communication

Matthew G.F. Dosanjh, Ryan E. Grant

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550




Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports @osti.gov

Online ordering:  http://www.osti.gov/scitech
Auvailable to the public from

U.S. Department of Commerce

National Technical Information Service

5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders @ntis.gov

Online order:  https://classic.ntis.gov/help/order-methods




ABSTRACT

This report describes the implementation and experimentation of receive-side partitioned
communication for the Message Passing Interface (MPI).






CONTENTS

L. IntrodUuCtiOn . . . ..ot e e e e e 7
2: POBKEIOURU 55 snavnss v 555 ssaonasmunes 584 saavmeeamnanss ssi sansmasgnenss s iid 7
3. Experimental Techniques . . . ... ... i e 8
4. Implementation . ... ...ttt e 8
S. Benchmarks .. ..o e 9
B BAPETINEHS s s anpuse s« s s somunuamnesss b b« s 4AUNBEREHEELS 3 4 5 SEERNABSERESE 4 § 4 43 9
7. Experimentel Resalls . . csesnsnmsmnuns 11 66 sonunsnpnmnys s 15 eanmmussesmyss § 6§ 52 9

7.1, Overhead ... ... e 9

7.2. Extra Receive-Side Computation TImIe . . . cvowrwwscssss s sommanmponnnsssesss 9
8. Related Work . . ... 9
9. ConCIUSIONS . . ...t 12
10: ACKNOWIBSASTARHELS: <o :sccvsssamenenss s s aaesaunuansssisiiasiraBuanaesssssis 12
REISTBITINR :ausaseannanoss s s4BauEEEARSSS § 8 5§ SR BEEHEESHEEE 55§ §HEHABEESERYEE & ¢ 8 52 13

LIST OF FIGURES

Figure 7-1. Measuring Overhead via Perceived Bandwidth. ............................ 10
Figure 7-2. Measuring Extra Receive-Side Computation Time . ......................... 11

LIST OF TABLES






1. INTRODUCTION

The Message Passing Interface (MPI) [36] had included a multi-thread interface for several
specification revisions stretching back more than two decades. Although threads have been
supported for a long time, MPI multithreading is not widely used today, even if there is interest in
using such a programming model [5]. One reason for this lack of adoption is that MPI
multithreading support was poorly optimized in some common implementations until recently.
Consistent performance between implementations also prevented widespread adoption, and this
deficiency is understandable: making a highly performant multithreaded MPI library is complex
and challenging. Many hybrid codes today do not directly interact on a thread basis with MPI;
instead they marshal threads to ensure a single thread interacts with MPL.

The MPI threading model treats threads in much the same way as processes. Partitioned
communication seeks to provide a useful thread-aware MPI interface that offers potential
performance improvements and opportunities to increase efficiency through increased
computation-communication overlap. Performance improvements could be realized by leveraging
thread behaviors and isolating the portion of the MPI API that needs to be thread-safe.

Our previous work in this area with partitioned communication [24, 25] demonstrated that
applications can benefit from early-bird overlap of data being sent from threads immediately upon
availability rather than waiting to compose an entire MPI message from multiple threads. It
demonstrated that there were performance benefits over using existing optimized multi-thread
interfaces in MPI that send independent messages from each thread. However, these benefits were
only explored for send-side partitioning. We did not explore the potential extra compute time that
could be exploited if partitions of a message were exposed to the receiving process to enable early
computation on data that had arrived. Our previous partitioned communication work required that
data on the receive-side was only exposed when all of the message buffer had arrived.

This work explores the benefits of allowing access to message partitions on the receiver-side to be
accessed before the entire message is complete. This is expected to allow for additional time to
perform compute with threads/tasks that do not require the data from the entire message to
progress. We explore the overheads of supporting receive-side partitioned communication as well
as the potential computational time that can be exploited. We find that the exploitable time in
typical system noise environments can be significant when compared to the communication time
as a whole.

2. BACKGROUND

MPI is message-centric, as its name implies. However, there are overheads to processing
messages including their matching stage, placement and message tracking/completion
requirements. Typically, this has not been a large concern with single-threaded MPI as impacts of
these overheads can be greatly mitigated by taking advantage of expected message ordering and
message volume [33, 20, 21].

Multi-threaded MPI had higher overheads than single-threaded MPI as was shown using early
benchmarks [40]. Further work in this area showed that message ordering in multi-threaded MPI
could be one of the major sources of this higher overhead [37]. As such, researchers have been
developing methods of improving matching performance using the existing MPI interfaces for

7



some time including new data matching structures [41], methods [22, 17, 23] and ways to
improve message matching threading locks [16]. In addition, multi-threaded RMA was

assessed [18] and improved [28].

While many efforts were made to mitigate the impact of message processing overhead in
multi-threaded codes, an alternative is to support multi-threading more explicitly through
dedicated interfaces. A recent attempt at this was called MPI endpoints [14]. Endpoints assigned
a MPI rank to threads, allowing for messages to originate and complete at specific thread contexts.
Unfortunately, endpoints was not adopted by the MPI specifications body as it was determined
that many of the benefits of such an approach did not need an entirely new interface in MPI.
Partitioned communication takes a different approach to provide new capabilities and
optimization opportunities via a thread-specific interface. Instead of promoting threads to MPI
rank level, partitioned communication allows threads to inform MPI that portions of a message
buffer are available. This can enable an MPI implementation to move parts of a message to a
pre-negotiated buffer on the receiver-side before all of the data becomes available. This early-bird
communication allows communication to complete earlier, especially when a small number of
threads are lagging behind in processing due to different tasks they are performing or general
system noise.

Taking advantage of a spread in thread completion times to send data is one aspect of optimizing
partitioned communication. Another aspect that we will explore here is taking advantage of the
partitioned nature of the communication to avoid having to fully complete a message before parts
of that data buffer can be accessed at the receiver. This allows some computation to occur at the
receiver before all threads/tasks that require the contents of the message can proceed, allowing
early access for some threads/tasks. This approach can utilize underlying RDMA capabilities in
networks to move data efficiently. While it is known that doing so while running applications can
impact performance [26] there do exist strategies for completely mitigating such impacts [27].

3. EXPERIMENTAL TECHNIQUES

To analyze receive side implementation we:
e Created an preliminary implementation library that uses existing MPI calls
e Extended the benchmarks from the Finepoints paper to measure extra recv compute time

e Ran experiments to evaluate overhead and benefit

4. IMPLEMENTATION

Our test implementation is designed to match the semantics of the Partitioned Communication
proposal in the MPI standard. Notable differences from the original Finepoints implementation
includes; interface support for receive side partitioning, a new completion mechanic based on
MPT’s RMA that allows for partition completions to a single, an internal method of grouping
completions to support a mismatching partition counts.

8



5. BENCHMARKS

To evaluate this we extended the Finepoints microbenchmark. This benchmark uses an equal
number of receive side partitions as send side. Additionally it reports a new metric; extra receive
side compute time. This metric is the time difference between the first receive side partition
completing and the last.

6. EXPERIMENTS

All of the experiments in the paper leverage said benchmark with the underlying implementation.
They were run on a Cray XC40 test bed (the same architecture as Cori and Trinity) on the Xeon
E5-2698v3 partition. Each node has 2 sockets with 16 cores and 2 way SMT. The tests were run
for 100 iterations, with at 0.1 second compute time and 4% noise (which we expect to be common
for exascale applications). Sweeps were done over threads and message size. To measure the
potential overhead of the changes we compared the original metric of perceived bandwidth. To
measure the potential for performance improvement, we compared the extra receive side compute
time with the perceived comm time.

7. EXPERIMENTAL RESULTS

7.1. Overhead

Figure 7-1 shows the overhead of the new implementation in terms of perceived bandwidth. In
most cases both the original implementation and the new implementation have a similar
bandwidth with a slight divergence at 1MiB messages. However, this changes at 32 threads and
64 threads. At 32 threads, a thread per core, the new implementation appears to have trouble
handling large messages. At 64 threads, a thread per SMT, the new implementation appears to
perform significantly better at message sizes >32KiB.

7.2. Extra Receive-Side Computation Time

Figure 7-2 shows the extra compute time available to the processes through out the test (for all
100 iterations). At 1 thread there is no extra compute time; this makes sense as there is only a
single RMA put, so there isn’t a difference between a partition complete and a full operation
completion. For the other thread counts it appears there is a roughly constant improvement to the
available compute time, roughly equating to the computational noise. However, at 64 threads, the
communication time seems to get elevated. This is likely due to the resource oversubscription
associated with running a thread per SMT.

8. RELATED WORK

The goal of integrating thread/task programming models with MPI has been explored, with
results showing that spreading communication traffic out in time can have performance

9



Perceived Bandwidth

Perceived Bandwidth

Perceived Bandwidth

Perceived Bandwidth

4500
4000
3500
3000
2500
2000
1500
1000

500

8000
7000
6000
5000
4000
3000
2000
1000

’@9@7@6’@ }6’ & ’f;

Message Size
Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation —&—

(a) 1 Thread

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

T 65 G‘Z? ,1- Y
7,

Message Size
Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation ——

(c) 4 Threads

0
7@?”@7&(5’@ 6’@ & 6 (%;éﬁ‘ ,?_ Gss/ 9747/

300

250

200

150

100

50

K

Message Size
Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation —a—

(e) 16 Threads

0
9% o RIS

%0080

Perceived Bandwidth

Perceived Bandwidth

Perceived Bandwidth

10

7000

6000

5000

4000

3000

2000

1000

8000
7000
6000
5000
4000
3000
2000
1000

- 7000

« 6000

- 5000

- 4000

- 3000

- 2000

1000

2% 80y 585 7025552,
RO @%@@4;@4;@ 4—@ @/rsz RN

Message Size
Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation ——

(b) 2 Threads

i 8000
- 7000
- 6000
- 5000
- 4000
3000
- 2000
1000

10000
9000
8000
7000
6000
5000
4000
3000
2000
1000

0
S R

o R S RS

Message Size
Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation —&—

(d) 8 Threads

4— o0 foseSy
TS ST
Message Size

Send-Only Partitioned Implementation —e—
Receive and Send Partitioned Implementation —a—

(f) 32 Threads



Time

Time

Time

Time

0.03 . 0.03
0.025 - 0.025
0.02 - 0.02
0.015 - 0.015
0.01 - 0.01
0.005 0.005
0/976’/«?6‘/@6‘/@ 6’706’16’6‘/0

N 3 4
S SRS I
Message Size
Communication Time —e—
Extra Recv Computation Time ——
(a) 1 Thread
04 P i & . & s 04
0.35 - 0.35
0.3 - 03
0.25 - 0.25
0.2 - 0.2
0.15 - 0.15
0.1 - 0.1
0.05 - 0.05
0 * 0
762080 70 Py OL, 7520y 722 T & 7635 6L, 75208y 7,
O BTSN S st A 6007, S 8S 7 4,.
S s B S S 2 g:’z@
Message Size
Communication Time —e—
Extra Recv Computation Time —a—
(c) 4 Threads
0.45 - 045
0.4 | O A N Ll | 04
0.35 - 0.35
0.3 - 03
0.25 0.25
0.2 - 0.2
0.15 0.15
0.1 - 0.1
0.05 s - 0.05

0
7976’}6)6‘/96\’?@?70f;06‘,e6\7
&00@%\3@%’%&@@0@’@’6’”@&5592?@

Message Size
Communication Time —e—
Extra Recv Computation Time —a—

(e) 16 Threads

0.5 - 05

0.45 - 045
- 04
- 035
03 - 03

0.25 - 0.25

0.2

5
T SRRSO

RS 4;3 é%,@f%f’f ‘%‘6\’3’%’

Time

Time

Time

11

0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05

0
S R S BB

A 4 4 a4 s a4 s a s a4 04
- 0.35
- 03
- 0.25
- 02
- 0.15
- 041

B
Message Size
Communication Time —e—

Extra Recv Computation Time —4—

(b) 2 Threads
0.4 PR, A aaa oo 04
0.35 - 0.35
0.3 - 03
0.25 - 0.25
0.2 - 02
0.15 - 0.15
0.1 - 041
0.05 - 0.05

R N RNy
RRSE ORI @@ﬁéﬁ;é@&g/gé@
o T e
Extra Recv Computation Time —a—

(d) 8 Threads
0.45 - 045
04 | — 4 A A L a s aa, x 04
0.35 - 0.35
0.3 - 03
0.25 0.25
0.2 - 0.2
0.15 0.15
0.1 0.1
0.05 4\/\*’.—4\_/\/‘\/\/. 0.05

0
LSS S 2Py OL, ZAOa Sy 2z < & 70 P 6L, 7705, 7,
@0%0%\3@7@%,63,@4-@ 54%)4;.5*;3 Sy,

Message Size
Communication Time —e—
Extra Recv Computation Time —a—

(f) 32 Threads



benefits [39, 4]. However, past work does not address new interfaces with MPI and relies on
many smaller messages to enable performance.

Other approaches exist to minimize impact of message matching for many threads like hardware
offloading [19] approaches such as Portals NICs [3] like BXI [13], InfiniBand ConnectX
matching offloads [35]. Matching can also occur in proposed smartNIC solutions that perform
line-speed hardware matching like sPIN [29] and INCA [38]. Message overheads have been
studied across architectures [2] and network interfaces [15, 6].

Approaches for threading with MPI have also been explored. FG-MPI is a fine-grained MPI
implementation that uses threads in place of processes and can scale to a large number of active
threads [32]. Hybrid programming support has been added to major MPI implementations
including MPICH [1] and Open MPI [28]. Alternatives for handling many threads at once by
removing the ability to use wildcards have also been explored [10]. Methods of reducing
threading overhead [8] and internal MPI thread placement for progress have been

investigated [11, 12].

The concept of communication-computation overlap is a well known one, although in the current
body of research typically only refers to overlapping MPI messages in their entirety, not in
partitions. Work has been done on enabling overlap with applications [9, 30, 34].
Communication/computation overlap has also been studied directly [7, 31].

Our previous work on finepoints [24, 25] centered on the partitioned nature on the sending-side
and adapting applications to use partitioned communication. This work differs from previous
work as it is the first to address the impact of receive-side partitioned communication.

9. CONCLUSIONS

This work has shown that receive-side partitioning can be beneficial in some cases. Where
overheads do not exceed the time delta caused by non-synchronous thread/task completion and
where work can be completed without the full message buffer on the receive-side. The amount of
computational time that is recoverable depends on the ability of the receive-side process to be
able to progress with a portion of the message data and the extent of the time from the first
message partition becoming available and whole message completion.

10. ACKNOWLEDGMENTS

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell
International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA0003525.

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and the National Nuclear Security
Administration.

12



REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

BALAIJIL, P., BUNTINAS, D., GOODELL, D., GROPP, W., AND THAKUR, R. Fine-grained
multithreading support for hybrid threaded mpi programming. The International Journal of
High Performance Computing Applications 24, 1 (2010), 49-57.

BARRETT, B. W., BRIGHTWELL, R., GRANT, R., HAMMOND, S. D., AND HEMMERT,
K. S. An evaluation of MPI message rate on hybrid-core processors. International Journal
of High Performance Computing Applications 28, 4 (2014), 415-424.

BARRETT, B. W., BRIGHTWELL, R., GRANT, R. E., HEMMERT, S., PEDRETTI, K.,
WHEELER, K., UNDERWOOD, K., RIESEN, R., MACCABE, A. B., AND HUDSON, T. The
Portals 4.1 networking programming interface. Tech. Rep. SAND2017-3825, Sandia
National Laboratories (SNL-NM), Albuquerque, NM (United States), 2017.

BARRETT, R. F., STARK, D. T., VAUGHAN, C. T., GRANT, R. E., OLIVIER, S. L., AND
PEDRETTI, K. T. Toward an evolutionary task parallel integrated MPI+X programming
model. In 6th Intl. Workshop on Programming Models and Applications for Multicores and
Manycores (2015), ACM, pp. 30-39.

BERNHOLDT, D. E., BOEHM, S., BOSILCA, G., VENKATA, M., GRANT, R. E.,
NAUGHTON, T., PRITCHARD, H., AND VALLEE, G. A survey of MPI usage in the U.S.

Exascale Computing Project. Concurrency and Computation: Practice and Experience
(2018). DOI: 10.1002/cpe.4851.

BRIGHTWELL, R., RIESEN, R., AND UNDERWOOD, K. D. Analyzing the impact of
overlap, offload, and independent progress for message passing interface applications. The
International Journal of High Performance Computing Applications 19, 2 (2005), 103—-117.

BRIGHTWELL, R., AND UNDERWOOD, K. D. An analysis of the impact of mpi overlap

and independent progress. In Proceedings of the 18th annual international conference on
Supercomputing (2004), ACM, pp. 298-305.

CARRIBAULT, P., PERACHE, M., AND JOURDREN, H. Enabling low-overhead hybrid
mpi/openmp parallelism with mpc. In International Workshop on OpenMP (2010),
Springer, pp. 1-14.

DANALIS, A., KiM, K.-Y., POLLOCK, L., AND SWANY, M. Transformations to parallel
codes for communication-computation overlap. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing (2005), IEEE Computer Society, p. 58.

DANG, H.-V., SNIR, M., AND GROPP, W. Towards millions of communicating threads. In
Proceedings of the 23rd European MPI Users’ Group Meeting (2016), ACM, pp. 1-14.

DENIS, A., JAEGER, J., JEANNOT, E., PERACHE, M., AND TABOADA, H. Dynamic
placement of progress thread for overlapping mpi non-blocking collectives on manycore
processor. In European Conference on Parallel Processing (2018), Springer, pp. 616-627.

13



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

DENIS, A., JAEGER, J., AND TABOADA, H. Progress thread placement for overlapping
mpi non-blocking collectives using simultaneous multi-threading. In European Conference
on Parallel Processing (2018), Springer, pp. 123-133.

DERRADIJI, S., PALFER-SOLLIER, T., PANZIERA, J.-P., POUDES, A., AND
WELLENREITER, F. The BXI interconnect architecture. In Proceedings of the 23rd Annual
Symposium on High Performance Interconnects (2015), HOTI *15, IEEE.

DINAN, J., GRANT, R. E., BALAIJI, P., GOODELL, D., MILLER, D., SNIR, M., AND
THAKUR, R. Enabling communication concurrency through flexible MPI endpoints. Int.
Jour. of High Performance Computing Applications 28, 4 (2014), 390—405.

DOERFLER, D., AND BRIGHTWELL, R. Measuring mpi send and receive overhead and
application availability in high performance network interfaces. In European Parallel Virtual
Machine/Message Passing Interface Users’ Group Meeting (2006), Springer, pp. 331-338.

DOSANIJH, M. G., GRANT, R. E., SCHONBEIN, W., AND BRIDGES, P. G. Tail queues: A
multi-threaded matching architecture. Concurrency and Computation: Practice and
Experience, €5158.

DOSANIJH, M. G., SCHONBEIN, W., GRANT, R. E., BRIDGES, P. G., GAZIMIRSAEED,
S. M., AND AFSAHI, A. Fuzzy matching: Hardware accelerated mpi communication
middleware. In 2019 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID) (2019), pp. 210-220.

DOSANJH, M. G. F., GROVES, T., GRANT, R. E., BRIGHTWELL, R., AND BRIDGES,
P. G. RMA-MT: a benchmark suite for assessing MPI multi-threaded RMA performance.
In 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid) (2016), IEEE, pp. 550-559.

FERREIRA, K., GRANT, R. E., LEVENHAGEN, M. J., LEVY, S., AND GROVES, T.
Hardware mpi message matching: Insights into mpi matching behavior to inform design.
Concurrency and Computation: Practice and Experience, €5150.

FERREIRA, K. B., LEVY, S., PEDRETTI, K., AND GRANT, R. E. Characterizing MPI
matching via trace-based simulation. In Proceedings of the 24th European MPI Users’
Group Meeting (New York, NY, USA, 2017), EuroMPI *17, ACM, pp. 8:1-8:11.

FERREIRA, K. B., LEVY, S., PEDRETTI, K., AND GRANT, R. E. Characterizing mpi
matching via trace-based simulation. Parallel Computing 77 (2018), 57-83.

FLAJSLIK, M., DINAN, J., AND UNDERWOOD, K. D. Mitigating MPI message matching

misery. In International Conference on High Performance Computing (2016), Springer,
pp- 281-299.

GHAZIMIRSAEED, S. M., GRANT, R. E., AND AFSAHI, A. A dynamic, unified design for

dedicated message matching engines for collective and point-to-point communications.
Parallel Computing 89 (2019), 102547.

14



[24] GRANT, R., SKIELLUM, A., AND BANGALORE, P. V. Lightweight threading with MPI
using persistent communications semantics. Tech. rep., Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States), 2015.

[25] GRANT, R. E., DOSANJH, M. G., LEVENHAGEN, M. J., BRIGHTWELL, R., AND
SKJELLUM, A. Finepoints: Partitioned multithreaded mpi communication. In International
Conference on High Performance Computing (2019), Springer, pp. 330-350.

[26] GROVES, T., GRANT, R. E., AND ARNOLD, D. NiMC: Characterizing and eliminating
network-induced memory contention. In IEEE Intl. Parallel and Distributed Processing
Symposium (IPDPS) (2016), IEEE, pp. 253-262.

[27] GROVES, T. L., GRANT, R. E., GONZALES, A., AND ARNOLD, D. Unraveling
network-induced memory contention: Deeper insights with machine learning. /EEE
Transactions on Parallel and Distributed Systems 29, 8 (2017), 1907-1922.

[28] HIELM, N., DOSANJH, M. G. F., GRANT, R. E., GROVES, T., BRIDGES, P., AND
ARNOLD, D. Improving MPI multi-threaded RMA communication performance. In Proc.
of the Int. Conf. on Parallel Processing (2018), pp. 1-10.

[29] HOEFLER, T., DI GIROLAMO, S., TARANOV, K., GRANT, R. E., AND BRIGHTWELL, R.
spin: High-performance streaming processing in the network. In Proceedings of the

International Conference for High Performance Computing, Networking, Storage and
Analysis (2017), ACM, p. 59.

[30] JACOBSEN, D., THIBAULT, J., AND SENOCAK, I. An mpi-cuda implementation for
massively parallel incompressible flow computations on multi-gpu clusters. In 48th AIAA

Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition
(2010), p. 522.

[31] KAISER, T. H., AND BADEN, S. B. Overlapping communication and computation with
openmp and mpi. Scientific Programming 9, 2, 3 (2001), 73-81.

[32] KAMAL, H., AND WAGNER, A. An integrated fine-grain runtime system for MPL.
Computing 96, 4 (2014), 293-309.

[33] LEVY, S., FERREIRA, K. B., SCHONBEIN, W., GRANT, R. E., AND DOSANJH, M. G.
Using simulation to examine the effect of mpi message matching costs on application
performance. Parallel Computing 84 (2019), 63-74.

[34] MARJANOVIC, V., LABARTA, J., AYGUADE, E., AND VALERO, M. Effective

communication and computation overlap with hybrid mpi/smpss. In ACM Sigplan Notices
(2010), vol. 45, ACM, pp. 337-338.

[35] MARTS, W. P., DOSANIH, M. G. F., SCHONBEIN, W., GRANT, R. E., AND BRIDGES,
P. G. Mpi tag matching performance on connectx and arm. In Proceedings of the 26th
European MPI Users’ Group Meeting (New York, NY, USA, 2019), EuroMPI "19, ACM,
pp. 13:1-13:10.

15



[36]

[37]

[38]

[39]

[40]

[41]

MPI FORUM. MPI: A message-passing interface standard version 3.1. Tech. rep.,
University of Tennessee, Knoxville, 2015.

SCHONBEIN, W., DOSANJH, M. G. F., GRANT, R. E., AND BRIDGES, P. G. Measuring
multithreaded message matching misery. In Proceedings of the International European
Conference on Parallel and Distributed Computing (2018).

SCHONBEIN, W., GRANT, R. E., DOSANJH, M. G., AND ARNOLD, D. Inca: In-network
compute assistance. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (2019), ACM.

STARK, D. T., BARRETT, R. F., GRANT, R. E., OLIVIER, S. L., PEDRETTI, K. T., AND
VAUGHAN, C. T. Early experiences co-scheduling work and communication tasks for
hybrid MPI+X applications. In Workshop on Exascale MPI (2014), IEEE Press, pp. 9-19.

THAKUR, R., AND GROPP, W. Test suite for evaluating performance of MPI
implementations that support MPI_THREAD_MULTIPLE. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface. Springer, 2007, pp. 46-55.

ZOUNMEVO, J. A., AND AFSAHI, A. A fast and resource-conscious mpi message queue
mechanism for large-scale jobs. Future Generation Computer Systems 30 (2014), 265-290.

16



DISTRIBUTION

Hardcopy—External

Hardcopy—Internal

1 Ryan E. Grant

1423

1319

1 Matthew G.F. Dosanjh

1423

1319

Emaii—interna

Technical Library

libref@sandia.gov

17






19



Sandia
National
Laboratories

Sandia National Laboratories is a
multimission laboratory managed
and operated by National
Technology & Engineering
Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s National
Nuclear Security Administration
under contract DE-NA0003525.




