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ABSTRACT

This report describes the implementation and experimentation of receive-side partitioned
communication for the Message Passing Interface (MPI).
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1. INTRODUCTION

The Message Passing Interface (MPI) [36] had included a multi-thread interface for several
specification revisions stretching back more than two decades. Although threads have been
supported for a long time, MPI multithreading is not widely used today, even if there is interest in
using such a programming model [5]. One reason for this lack of adoption is that MPI
multithreading support was poorly optimized in some common implementations until recently.
Consistent performance between implementations also prevented widespread adoption, and this
deficiency is understandable: making a highly performant multithreaded MPI library is complex
and challenging. Many hybrid codes today do not directly interact on a thread basis with MPI;
instead they marshal threads to ensure a single thread interacts with MPL.

The MPI threading model treats threads in much the same way as processes. Partitioned
communication seeks to provide a useful thread-aware MPI interface that offers potential
performance improvements and opportunities to increase efficiency through increased
computation-communication overlap. Performance improvements could be realized by leveraging
thread behaviors and isolating the portion of the MPI API that needs to be thread-safe.

Our previous work in this area with partitioned communication [24, 25] demonstrated that
applications can benefit from early-bird overlap of data being sent from threads immediately upon
availability rather than waiting to compose an entire MPI message from multiple threads. It
demonstrated that there were performance benefits over using existing optimized multi-thread
interfaces in MPI that send independent messages from each thread. However, these benefits were
only explored for send-side partitioning. We did not explore the potential extra compute time that
could be exploited if partitions of a message were exposed to the receiving process to enable early
computation on data that had arrived. Our previous partitioned communication work required that
data on the receive-side was only exposed when all of the message buffer had arrived.

This work explores the benefits of allowing access to message partitions on the receiver-side to be
accessed before the entire message is complete. This is expected to allow for additional time to
perform compute with threads/tasks that do not require the data from the entire message to
progress. We explore the overheads of supporting receive-side partitioned communication as well
as the potential computational time that can be exploited. We find that the exploitable time in
typical system noise environments can be significant when compared to the communication time
as a whole.

2. BACKGROUND

MPI is message-centric, as its name implies. However, there are overheads to processing
messages including their matching stage, placement and message tracking/completion
requirements. Typically, this has not been a large concern with single-threaded MPI as impacts of
these overheads can be greatly mitigated by taking advantage of expected message ordering and
message volume [33, 20, 21].

Multi-threaded MPI had higher overheads than single-threaded MPI as was shown using early
benchmarks [40]. Further work in this area showed that message ordering in multi-threaded MPI
could be one of the major sources of this higher overhead [37]. As such, researchers have been
developing methods of improving matching performance using the existing MPI interfaces for
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some time including new data matching structures [41], methods [22, 17, 23] and ways to
improve message matching threading locks [16]. In addition, multi-threaded RMA was

assessed [18] and improved [28].

While many efforts were made to mitigate the impact of message processing overhead in
multi-threaded codes, an alternative is to support multi-threading more explicitly through
dedicated interfaces. A recent attempt at this was called MPI endpoints [14]. Endpoints assigned
a MPI rank to threads, allowing for messages to originate and complete at specific thread contexts.
Unfortunately, endpoints was not adopted by the MPI specifications body as it was determined
that many of the benefits of such an approach did not need an entirely new interface in MPI.
Partitioned communication takes a different approach to provide new capabilities and
optimization opportunities via a thread-specific interface. Instead of promoting threads to MPI
rank level, partitioned communication allows threads to inform MPI that portions of a message
buffer are available. This can enable an MPI implementation to move parts of a message to a
pre-negotiated buffer on the receiver-side before all of the data becomes available. This early-bird
communication allows communication to complete earlier, especially when a small number of
threads are lagging behind in processing due to different tasks they are performing or general
system noise.

Taking advantage of a spread in thread completion times to send data is one aspect of optimizing
partitioned communication. Another aspect that we will explore here is taking advantage of the
partitioned nature of the communication to avoid having to fully complete a message before parts
of that data buffer can be accessed at the receiver. This allows some computation to occur at the
receiver before all threads/tasks that require the contents of the message can proceed, allowing
early access for some threads/tasks. This approach can utilize underlying RDMA capabilities in
networks to move data efficiently. While it is known that doing so while running applications can
impact performance [26] there do exist strategies for completely mitigating such impacts [27].

3. EXPERIMENTAL TECHNIQUES

To analyze receive side implementation we:
e Created an preliminary implementation library that uses existing MPI calls
e Extended the benchmarks from the Finepoints paper to measure extra recv compute time

e Ran experiments to evaluate overhead and benefit

4. IMPLEMENTATION

Our test implementation is designed to match the semantics of the Partitioned Communication
proposal in the MPI standard. Notable differences from the original Finepoints implementation
includes; interface support for receive side partitioning, a new completion mechanic based on
MPT’s RMA that allows for partition completions to a single, an internal method of grouping
completions to support a mismatching partition counts.
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5. BENCHMARKS

To evaluate this we extended the Finepoints microbenchmark. This benchmark uses an equal
number of receive side partitions as send side. Additionally it reports a new metric; extra receive
side compute time. This metric is the time difference between the first receive side partition
completing and the last.

6. EXPERIMENTS

All of the experiments in the paper leverage said benchmark with the underlying implementation.
They were run on a Cray XC40 test bed (the same architecture as Cori and Trinity) on the Xeon
E5-2698v3 partition. Each node has 2 sockets with 16 cores and 2 way SMT. The tests were run
for 100 iterations, with at 0.1 second compute time and 4% noise (which we expect to be common
for exascale applications). Sweeps were done over threads and message size. To measure the
potential overhead of the changes we compared the original metric of perceived bandwidth. To
measure the potential for performance improvement, we compared the extra receive side compute
time with the perceived comm time.

7. EXPERIMENTAL RESULTS

7.1. Overhead

Figure 7-1 shows the overhead of the new implementation in terms of perceived bandwidth. In
most cases both the original implementation and the new implementation have a similar
bandwidth with a slight divergence at 1MiB messages. However, this changes at 32 threads and
64 threads. At 32 threads, a thread per core, the new implementation appears to have trouble
handling large messages. At 64 threads, a thread per SMT, the new implementation appears to
perform significantly better at message sizes >32KiB.

7.2. Extra Receive-Side Computation Time

Figure 7-2 shows the extra compute time available to the processes through out the test (for all
100 iterations). At 1 thread there is no extra compute time; this makes sense as there is only a
single RMA put, so there isn’t a difference between a partition complete and a full operation
completion. For the other thread counts it appears there is a roughly constant improvement to the
available compute time, roughly equating to the computational noise. However, at 64 threads, the
communication time seems to get elevated. This is likely due to the resource oversubscription
associated with running a thread per SMT.

8. RELATED WORK

The goal of integrating thread/task programming models with MPI has been explored, with
results showing that spreading communication traffic out in time can have performance
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benefits [39, 4]. However, past work does not address new interfaces with MPI and relies on
many smaller messages to enable performance.

Other approaches exist to minimize impact of message matching for many threads like hardware
offloading [19] approaches such as Portals NICs [3] like BXI [13], InfiniBand ConnectX
matching offloads [35]. Matching can also occur in proposed smartNIC solutions that perform
line-speed hardware matching like sPIN [29] and INCA [38]. Message overheads have been
studied across architectures [2] and network interfaces [15, 6].

Approaches for threading with MPI have also been explored. FG-MPI is a fine-grained MPI
implementation that uses threads in place of processes and can scale to a large number of active
threads [32]. Hybrid programming support has been added to major MPI implementations
including MPICH [1] and Open MPI [28]. Alternatives for handling many threads at once by
removing the ability to use wildcards have also been explored [10]. Methods of reducing
threading overhead [8] and internal MPI thread placement for progress have been

investigated [11, 12].

The concept of communication-computation overlap is a well known one, although in the current
body of research typically only refers to overlapping MPI messages in their entirety, not in
partitions. Work has been done on enabling overlap with applications [9, 30, 34].
Communication/computation overlap has also been studied directly [7, 31].

Our previous work on finepoints [24, 25] centered on the partitioned nature on the sending-side
and adapting applications to use partitioned communication. This work differs from previous
work as it is the first to address the impact of receive-side partitioned communication.

9. CONCLUSIONS

This work has shown that receive-side partitioning can be beneficial in some cases. Where
overheads do not exceed the time delta caused by non-synchronous thread/task completion and
where work can be completed without the full message buffer on the receive-side. The amount of
computational time that is recoverable depends on the ability of the receive-side process to be
able to progress with a portion of the message data and the extent of the time from the first
message partition becoming available and whole message completion.
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