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Abstract: We present various approximations to joint chance constraints arising in two-stage
stochastic programming models. Our approximations are derived from three classical inequali-
ties: Markov’s inequality, Chebysev’s inequality, and Chernoff’s bound. We provide preliminary
computational results illustrating the quality of our approximation using a two-stage joint-chance-
constrained stochastic program from the literature. We also briefly introduce other alternatives for
constructing approximations for joint-chance-constrained two-stage programs.

1 Some Classical Concentration Inequalities

We primarily study the following three classical concentration inequalities:

Theorem 1 (Markov’s Inequality). For any non-negative random variable X and any scalar a > 0,

E[X]

a

Pr[X > d]

Theorem 2 (Chebyshev’s Inequality). Let X be a random variable with finite expected value p and

non-zero variance o>. Then for any scalar t > 0,

1
Pr[|X — p| > to] < ot

Note that in the case 0 < t < 1, Chebyshev’s inequality is trivial. Moreover, Chebyshev’s inequality
remains valid (albeit weaker) if the absolute value bars are excluded.

Theorem 3 (Chernoff’s Bound). Let X be a random variable and let a be a scalar. Then for any
t>0,
Elexp(tX)]

PriX zdl < exp(ta)

In particular,
Pr[X > a] <inf M.
t>0 exp(ta)

Note that Chernoff’s bound does not require the assumption that X is non-negative and/or a > 0
(as in Markov’s inequality). The function Mx (t) = E[exp(tX)] is the moment-generating function
of the random variable X.

Chebyshev’s inequality can directly bound Pr[X > a] for scalar a as follows:
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Theorem 4 (Modified Chebyshev’s Inequality). Let X be a random variable with finite expected
value p and non-zero variance o>. Then for any a > p,

o2

Pr[X > a

IN

(a—p)?

Similarly, for any a < u,

0.2

Pr[X < a R

IN

Proof. Suppose first that ¢ > p. By Chebyshev’s inequality,
1
2

1

Pr[|X —pu| > to] < = PrX2>p+to] <.

~+

Substituting t = (a — p)/o > 0 gives the desired result. The case a < p follows similarly, using the
value t = (up—a)/o > 0. O

2 Model Problem

For the remainder of this note, we will use the bounds introduced in the previous section to provide
bounds on the optimal values of two-stage stochastic programs with joint chance constraints. We
use as a prototype the two-stage joint-chance-constrained program from [3]:

&" = 1ax ;(Rtmt B:E[y]) (1a)
st. Prloy <y +wfVieT]>1—c¢ (1b)
0<yy <AVteT,we (1c)

2 >0VteT (1d)

where T is a finite index set, ) is a finite set of scenarios, x and y are decision variables, w is
a random variable, and R; and B; are non-negative deterministic parameters. Assuming that all
N = || scenarios are equally likely, an equivalent big-M formulation is given by

ot = max Z (Rtxt — By - % Z y;") (2a)
Y er weQ
st.x: <yl +wf+MP2VteT,we (2b)
1 w
NZZ 8 (2¢)
weN
0<y <AVteT,weN (2d)
x> 0VvVtiteT (26)
2 €{0,1}Vwe (2f)

where M;” > 0 are sufficiently large positive constants. We can obtain lower bounds on z* by
approximating the joint chance constraint using classical tail inequalities.



For the remainder of this note, we replace the joint chance constraint (1b) with the equivalent
individual chance constraint

Pr r{laTx{xt—y;"—wf}gO >1—e. (3)
€

We will explore both relaxations and conservative approximations to the joint chance constraint
(1b) (and its individual equivalent (3)).

3 Relaxations Based on Classical Inequalities

We begin by exploring relaxations of the constraint (3) using classical concentration inequalities.
We will see in the sequel that these relaxations are typically very poor approximations. Intuitively,
this can be explained by the fact that the classical inequalities in Section 1 provide upper bounds
on the tail of the probability distribution, while formulating a relaxation of (3) requires a lower
bound.

Proposition 1 (Markov Relaxation). Let F(z,£) be a function of a vector of decision variables z
and a random vector £. Suppose that for all § € E there exists L(§) > 0 such that F(z,&) < L(§)
for all z (i.e., F is bounded above for all £ € Z). If Pr[F(z,§) < 0] > 1 —¢, then

(7o) )=

Proof. Follows from Proposition 1 of [1] with g(z,£) = —F(2,£) and ¢(t) = min{1,¢}. O

Proposition 2 (Chebyshev Relaxation). Let F(z,£) be a function of a vector of decision variables
z and a random vector . If Pr[F(z,€) < 0] > 1 —¢ then

1

_ <0,
H 1-— 60 B

where i = E¢[F(z,€)] and 0? = Var(F(z,£)).

Proof. Apply the Chebyshev inequality with X = —F(z,£) and a = 0. O

It is clear by inspection that this is a very, very poor approximation, as it is dominated by the
inequality pu < 0. Moreover, as € — 1, the inequality reduces to u < co.

Proposition 3 (Chernoff Relaxation). Let F(z,£) be a function of a vector of decision variables z
and a random vector §. If Pr[F(z,€) < 0] > 1 —¢€ then, for any t > 0, Elexp(—t- F(z,£))] > 1 —¢.

Proof. Apply the Chernoff bound with X = —F(z,¢) and a = 0. O



4 Conservative Approximations Based on Classical Inequalities
We next introduce three conservative approximations to (3) based classical inequalities. We find
these conservative approximations to be much better than the relaxations introduced in Section 3.

We note that the approximations obtained in this section may be derived using the framework of
[2], by particular choices of the so-called “generating function” . In this section, however, we
provide independent proofs that do not depend on the generating function framework.

4.1 Markov Approximation

We state the conservative approximation obtained via the Markov inequality in more generality,
then specify it to the model (1).

Proposition 4 (Markov Conservative Approximation). Let F(z,£) be a function of a vector of
decision variables z and a random vector &. Then for any o > 0,

(0 259)] =

implies Pr[F(z,£) <0] > 1 —e.

Proof. Fix a > 0. Then

oo E59) a1+ £59) o [anfrs 2502 )
0

(6 «

= Pr [@ > 0} = Pr[F(z,£) > 0] > Pr[F(z,&) > 0],

where the second inequality follows from Markov’s inequality with X = (1+F(z,€)/a)+ and a = 1.
Hence Pr[F(z,&) > 0] < & which implies Pr[F(z,£) <0] > 1 —e. O

By applying Proposition 4 to (3), we obtain
Zp l—i-lmax{g: —y“’—w‘*’} <e
“ o'ter VPO . -
we +
This may be linearized by introducing an auxiliary variable 2z for all w € Q:

przw <€

we
M1+ (- —wf) forallweQ, teT
2% >0 for all w € Q.



The parameter a > 0 can be transformed into an optimization variable by using the substitution

Y = oz
prz“’gaa
weN
2 z2atx—yl —w foralweQ, teT
z¥ >0 forallweq
a>0.

The complete approximation to (1) is

gHatkov . max ; (Rizy — By - + “;ny) (5a)
st.2¥>a+z—y —w'VteT,we (5b)

% Z ¥ <ea (5¢)

we

0<y/ <AVteT,we (5d)

x >0VteT (5e)

2 >0VweN (5f)

a > 0. (5g)

Note that this model is a linear program, and thus highly tractable.

4.2 Chebyshev Approximation

We turn next to Chebyshev’s inequality.

Proposition 5 (Chebyshev Conservative Approximation). Let F(z,€) be a function of a vector of
decision variables z and a random vector §. Let p = E¢[F(z,€)] and 0® = Var(F(z,€)). If p <0,

then )
p+—0<0

NG

implies Pr[F(z,€) < 0] > 1 —e.

Proof. Suppose p < 0 and pu 4+ e /20 < 0. The second inequality can be re-arranged to give
o?/u? < e. We have that

2

PI‘[F(Z,&) > O] < PI‘[F(Z,&) > O] < m < &;
where the second inequality follows from the modified Chebyshev inequality with X = F(z,£) and
a = 0. Hence Pr[F(z,€) > 0] < ¢, and thus Pr[F(z,£) <0] > 1—e. O

This approximation has a close relationship with the normal approximation to a chance constraint,
in which the term 1/,/Z is replaced by ®~1(1 — ¢), where ®(-) is the CDF of the standard normal
distribution.



The Chebyshev bound can be applied to the joint chance constraint (1b). This requires computing
the mean and variance of the random variable Z = max;{z;—vy{ —w{’}. The mean can be computed
using the law of the unconscious statistician (LOTUS):

uzﬁzzw

wef

2

where 2% := maxyer {@ — ¥ — wy’'} for all w € Q. The variance o2 is given by

o2 =2"%z,

where the symmetric positive semi-definite matrix ¥ is given by ¥ := (1/N)I — (1/N?).J, where I
is the identity matrix, and J is the square matrix of all ones. Hence, the Chebyshev approximation
for (1b) can be summarized:

B = Igleajgc{:ct — ¢ —wy} for all w € Q, (6a)
p+1/(1/e)zT2z <0. (6b)

Note that the constraint (6a) cannot be relaxed into a > constraint—that is, the formulation (6)
is not convex. Its solution would require the solution of a QMIP (where the quadratic constraints
are CONvex).

The complete Chebyshev approximation is

Chebyshev . _ _ A1 w
2 = Z (Riwi — By - Z vy) (7a)
eT we
st 2¥ = IglaTx{xt —yf —witYwe (7b)
€

% Z 2¥ + const. Z(z“’)2 <0 (7c)

weN weN
0<y/ <AVteT,well (7d)
7 >0VteT (7e)

where const. = [(1/¢)(1/N —1/N?)]*/2. The constraints (7b) can be enforced by introducing binary
variables. Consequently, the model (7) is a quadratic mixed-integer program (QMIP).

4.3 Chernoff Approximation

Finally, we present the approximation based on Chernoft’s bound.

Proposition 6 (Chernoff Conservative Approximation). Let F(z,€) be a function of a vector of
decision variables z and a random vector £. For any o > 0,

Elexp(5F(2,€))] <e

implies Pr[F(z,€) <0] > 1 —e.

Proof. The result follows directly from Chernoff’s bound with ¢t = 1/a, X = F(2,§) anda =0. O



Specializing this proposition to the joint chance constraint (1b) gives

> exp(/a) <

wen
2Y >a—yf —wy forallt € T,w € Q.

As discussed above, the scalar & > 0 may be transformed into a decision variable. In this setting,
such a transformation may be more reasonable, as it the structure of the above inequalities is
already non-linear (unlike in the case of the Markov approximation).

The complete Chernoff approximation is .

z et . max Z (Rexy — By - + Z ye) (8a)
VB teT wEN

st. 2>z —y —wVteT,we (8b)

1
N Z aexp(z¥/a) < ea (8¢)

weN

0<y <AVteT,wel (8d)
2 >0VteT (8e)
a > 0. (8f)

The constraint (8c) is jointly convex in z and « due to the theory of perspective functions, and
thus (8) is a convex program, which can be solved efficiently.

Finally, we compare the Chernoff relaxation (Proposition 3) with the Chernoff conservative approx-
imation (Proposition 6). These two approximations coincide if

1 — Elexp(tF(z,€))] = Elexp(—tF(z,£))]

for some z and t. We will show that this is impossible. For brevity, let Z = F(z,£). From the
definition of moment-generating functions (which we are implicitly assuming exist), we have that

2 3
Elexp(t2)] = 1+ B[Z] + SE[Z%] + SE[Z) + -
Similarly,
2 e B e
Elexp(~t2)] = 1 - tB[Z] + S E[Z%] - S E[Z) + -

Summing these two terms gives

t2 t
Elexp(t2)] + Elexp(—t2)] = 2(1 + LBiz+ Leiz 4 )

Hence, if E[exp(tZ)] 4+ E[exp(—tZ)] = 1, this implies

PRz + LRz 4. = -
2! 4! -7
The convergent sum on the left contains only positive terms, while the right-hand side is strictly
negative, a contradiction. Hence, the relaxation obtained by applying the Chernoff bound to
X = —F(z,€) is not equivalent to the conservative approximation obtained by applying the Chernoff

bound to X = +F(z,¢§).



Lower Bound Upper Bound
2* = 8634.1 ARMA, 250 scenarios, ¢ = 1%
Markov 8339.7  (3.4%) 9300.2  (7.7%)
Chebyshev  7941.4  (8.0%) > 12029.3 (39.3%)
Chernoff ~ 8339.7  (3.4%) 13056.2  (51.2%)
2* = 9154.9 ARMA, 250 scenarios, ¢ = 3%
Markov 8339.7  (8.9%) 10873.7  (18.8%)
Chebyshev  7954.1 (13.1%) > 12029.3 (31.4%)
Chernoff ~ 8339.7  (8.9%) 14141.5 (54.5%)
z* = 9353.2 Gaussian, 250 scenarios, € = 1%
Markov 9092.3  (2.8%) 9989.7  (6.8%)
Chebyshev  8941.2  (4.4%) >12672.1 (35.5%)
Chernoff ~ 9092.3  (2.8%) 13594.0 (45.3%)
z* = 9884.0 Gaussian, 250 scenarios, € = 3%
Markov 9092.3  (8.0%) 11542.7  (16.8%)
Chebyshev  9009.4  (8.8%) >12672.1 (28.2%)
Chernoff ~ 9092.3  (8.0%) 14329.0 (45.0%)

Table 1: Preliminary computational results for the approximations introduced in Section 3 and
Section 4.

5 Preliminary Computational Results

We now present some preliminary computational results on the model (1), using the data from [3].
The objective value and optimality gaps for various values of € and w are given in Table 1.

Some observations: in all cases, the Markov and Chernoff lower bounds produce the same result,
equal to the objective value of the model if we take ¢ = 0 (i.e., we enforce the chance constraint
as a hard constraint). It is well-known that the Markov lower bound is equivalent to the CVaR
approximation to the chance constraint. This raises the general question: under what conditions
is the CVaR approximation equivalent to the enforcing the chance constraint as a hard constraint?

The Chebyshev lower bounds require the solution of a QMIP—the reported bounds are the best
obtained after 2100s. In all cases, the optimality gap for the QMIP solution was less than 1.2%.

It is proved in [1] that the Markov relaxation (lower bound) for a finite number of scenarios is
equivalent to the LP relaxation of the big-M formulation of the model. Consequently, the obtained
bound depends on the values of M chosen. The values of M used here are those given in Proposition
1 of [3].

Finally, the Chebyshev relaxation (upper bound) is dominated by the relaxation u < 0. The
reported value is that obtained using the p < 0 relaxation, which dominates the actual Chebyshev



relaxation bound. Note that this bound is independent of e—it is roughly equivalent to replacing
the chance constraint with its expectation.

6 Other Approximation Techniques

We briefly explore two other approximation techniques for the JCC (1b).

6.1 Bounds Based on the Union of Violations

An alternative viewpoint to approximating the JCC (1b) is to bound the quantity

1—Prlzy < g+ @ VteT)=Pr[| A, (9)
teT
where the event A; = {x;—g; —w; > 0}. Many classical bounds for (9) exist involving the quantities
S1=> PrlA], Sy=) Pr[A,n Ay

teT t<t!

We first relate S7; and S5 to the first and second moments of the random variable Z := ZteT X,
where X; = 1{A;} is the indicator variable on the event A;. Simple calculation gives E[Z] = S.

Similarly, )
7% = (th> => XP+2) XXy

teT teT t<t!

Because E[X?] = E[X{] = Pr[4;] and E[X;Xy] = Pr[4; N Ay], it follows that E[Z%] = S; + 2S,.

We can now use the equivalence

Pri|JA]=Pr[> X >1]

teT teT

to derive bounds on (9). For example, we can apply Markov’s inequality to obtain
Pr|JA]=Pr[>d X >1]<E[) X =5 (10)
teT teT teT

The inequality (10) is equivalent to Boole’s inequality. We can also use Chebyshev’s inequality

Var(Z)
PriZ >11< ——M—~—
R
which is valid provided S; = E[Z] < 1 (it’s not obvious that this condition will necessarily hold,
particularly for larger values of €). Anyway, this bound is equivalent to

Pr[J 4] < 51“(1‘ *513)1;252‘ (11)

teT




Unfortunately, for all 0 < 57 <1 and Sy > 0,
S1(1—S1) + 28
Sy < 1( 1) + 2’
(1—-81)2
and thus the inequality (10) dominates the inequality (11) for all values of S; and Sy for which

(11) is valid (put plainly, the inequality (11) is useless). Finally, one could also attempt to use the
Chernoff bound, yielding

Pr | U A < égfo exp(—a)E[exp(aZ)].
teT

Unfortunately, computing Elexp(aZ)] (the MGF of Z) is virtually impossible, because the random
variables X; are not independent.

6.2 LP-Based Bounds of Yang et al. (2016)

Consider the standard joint chance constraint (JCC) formulation, where the event
A; = {w : constraint ¢ is violated}.

Suppose our model contains binary variables uf € {0,1} for t € T, w € €, and vy, € {0,1} for
t,t' €T, t>t and w € Q such that

w {1, constraint ¢ is violated in scenario w,
U ==
t

0, else,

w
Vgpr =

1, both constraints t and ¢’ are violated in scenario w,
0, else.

The paper [4] provides the following lower bound:

Pr [ U At] > z(a, ),

teT
where a, v € Rl are given by

ap = Pr[Ay] = Z Pr(w)uf,

wef)

V¢ = Z PI‘[At N At/] = Z Z Pr(“")”ﬁfﬁ

HeT t'eT we
and z is the value function of the following linear program:

7| |7

. 1
2(a,) = {pzlg; ; ik (12a)
|T| |T|
s.t. Zatk = o4 and Z kag =y VteT (12b)
k=1 k=1
|T|
—katk+Zaik20V(t,k)€TxT. (12¢)
i=1

10



Hence, the inequality z(«,vy) < e is a relaxation of the original joint chance constraint. The
inequality z(ca,7y) < & can be enforced by taking the dual of the above linear program, and adding
inequalities of the form

mTa+oly<e
to the master problem, where 7 and o are dual multipliers corresponding to the constraints (12b).
This implies the following simple cutting plane algorithm:

1. Solve the master problem to obtain (c«, ).
2. Solve (12) with « and + fixed to obtain dual multipliers (7, ).
3. If #Ta + 6Ty < &, terminate.
4. Add the inequality 7T + 6T < e to the master problem. Go to step 1.
Preliminary computational experience indicates that this method produces very good bounds, but

is very slow to converge. Specifically, a typical master solve takes longer than solving the true
big-M formulation itself.

7 Conclusions and Future Work

Our results indicate that classical inequalities can be effective for approximating two-stage stochas-
tic programs with joint chance constraints. Future work includes constructing better relaxations of
such inequalities, and an analytical assessment of the comparative strength of such approximations.
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