SAND2020- 0853PE

Intelligent High-Performance
Networks Via INCA

Ryan E. Grant
Center for Computing Research
Sandia National Laboratories
regrant@sandia.gov

PRESENTED BY

“.CCR

Center for Computing Research

Outline

* General background — Why care?

* Research challenges — What'’s the problem?

* High speed data center networks — How to fix it?
* Smart networks — Why do we need them?

* Long-term Research Path — Where are we going?

* Conclusion

15 Second Research Philosophy

Our Two Rules of Data Center
Network Design:

#1 Avoid moving data whenever
possible

#2 If you must move data do it as
efficiently as possible

Background

* High performance networks (HPNs) and Cloud
e Cost—HPCis a small market (Ss)
e Scale — HPC is a small market (volume)
* Viability — HPC is a small market (risk)

* HPNs can only keep up if they also help Clouds
* Clouds starting to need lower latency
* Higher bandwidth always helps

e Clouds catching up here already
* Network tuning problem for HPC and Cloud

Background

* From Cisco:
* Annual global IP traffic will reach 3.3 ZB by 2021
* Global IP traffic 3X by 2021 (127X 2005)
* Smartphone traffic will exceed PC traffic by 2021

 Where does all this data go?
* Data centers

* Data centers are the hotspots of the internet
* HPC centers have same problem (CERN)

1Cisco whitepaper: Cisco Visual Networking Index: Forecast and Methodology, 2016—
2021 June 6, 2017

|l

Just how much data?

* If you printed text files:

To the sun 15 times

&
LY .

ey | i ' .
T ol

===

How do we handle all this data?

e Data center processing adds even more data to local
network

* Key concerns: bandwidth and latency

* Leading edge — high performance networks
* Mostly for scientific computing
* Expensive
* Only a few systems ever use them
* Lucky if you can sell more than 10 big systems

What makes HPNs fast?

* Not like a normal network interface (NIC)

e Can write data directly to memory
* No CPU or OS involvement
* No copying (zero copy)
* Called “OS Bypass” or user-level NICs

* Handles some message processing
e Checksums (correctness)
 Matching (data steering)

sPIN/INCA

Switch

CPU

What makes HPNs fast?

* Switches provide minimal features
e Fast —switching times in nanoseconds

e Efficient send-side
e Command queues are fast
e Addresses are known in advance

* User-level drivers
* No kernel level delays

Why not HPNs everywhere? |

* Expensive
 Compute is cheap

e Sockets code can be slow
* Negates the benefit of an HPN

* No need yet (but it’s coming)
* Not compelling business case for all uses \
* Latency is still acceptable ‘
* Consumer devices don’t need too much bandwidth

* But: network speeds are driving chip package sizes which is ‘
leading to lots of extra silicon available |

So why do we care?

* Cloud will start dictating HPN design!

* Wireless 5G and 6G driving up demand
e Latency way down, bandwidth up

* Machine learning everything
* Unacceptable latency?

e Alexa — wait a couple seconds - annoying
 Self-driving car — deadly

* Humans can wait a long time
* Other computers cannot

What’s so difficult? Make it faster |

* Sockets
* Legacy — super easy to code
* Everything coded for it

* But...An onload model design
* Onload — CPU does it

* Latency needs means we need offload
* Offload — NIC does it

* Fundamentally different designs

Making it faster

* Design an offload model
e Easy to onload something designed for offload
* Not easy to offload an onload design

* TCP offload engines are complicated
* Also expensive

e Can we do better?
* Don’t re-write code!

Research Challenges

* Qur research is to make HPNs:
* Useful — compatible with sockets
Fast — best exotic networks
Reliable — best off the shelf hardware
Flexible — software defined networking flexible
Adaptable — adaptive to conditions
* Deployable — not just in data centers

e We can learn from what Cloud does better
* Clouds are reliable...

Our Two Rules of Data Center
Network Design:

#1 Avoid moving data
whenever possible

#2 If you must move data do it
as efficiently as possible

Goal: Avoid moving data

* Challenges in HPC and data centers — Power/Energy

* Moving data is expensive
* |In time and energy

* Orders of magnitude more energy to move from
component to component

* Avoid copies
e Work on data where it is

Switch

sPIN/INCA

Problem = Opportunity

* HPNs need large die edge area to drive network
speeds

* Large perimeter means large area
* Don’t need all of this die area for NIC logic

* HPNs are also driving to much smaller process size
very quickly

e From 10s of nm to 5-7 nm

* Explosion of area that is unused
e Use this to do work on data

Compute in Network

* Packet processing engines
* Only work on packets flowing through network

* HPNs are like highways
* Rush hour is only a small fraction of total usage time
* 80-90% idle or low activity

* Traditional in-network compute
* Unlimited data coming in, so limited time to work on it

* INCA approach

* Limited data coming in, unbounded time to work on it

INCA

* Two strategies for offloading:
* In-pipeline compute capabilities
* ‘Processing near NIC’

* A third way:
* Leverage existing application-specific, in-pipeline resources
* Provide general-purpose compute capabilities
e Put resources to work when network idle
* Avoid imposing deadlines

INCA

Inside Pipeline

Myrinet
Quadrics
SPiN (SC’17)
Atos BXI
Broadcom Stingray
Azure

Deadline

Outside Pipeline

Deadline-Free

Mellanox Bluefield

INCA

> FIFO Rx DMA Engine

From ‘ I Data
Network FIFD

—
Y

90BJI9JU] 1SOH

To ‘ Il
Network FIFO<

1. Triggered Operations

[TX DMA Engine [«

__/
Y

2. Message Matching 3. Atomic operations

INCA

1 Opetion | Matching 1 Operation
1. Triggered operation 2. Unique matching 3. Atomic unit performs
generates message element specifies buffer specified operation and
containing 1t argument. containing 2"¥ argument stores result.
and atomic.

* Program: A list of tuples of triggered operations,
matching entries, and atomic operations, ordered by
triggering thresholds, sharing the same counter.

INCA

-
INCA-Q
-
<
N
Q-Compiler
<L
e \
INCA-A
\

J L

-

>Interpreter

\

~

Iy

J

INCA

Algorithm 1 INCA-Q Dot Product

1: 1 =0

Algorithm 2 INCA-A Dot Product

1 PUTL i, O
2 PUTL ry, i
3 LT To, To, 50

‘ » 0

5 PUTL 7y, Afi]
6 MUL ri, i1, B[l]
7 ADD c, c,

INCA

 Kernels:

Matrix transposition
Filter

Matrix unpack
Convolution

Linear interpolation
Hadamard product
Dot product

Matrix multiplication

INCA

* Model parameters:
e 200 millions messages/second

* Scratchpad scenario:

* 1 MiB local scratchpad memory
* 1ns access time

* Negligible loopback latency
 Vary payloads (work) from 128B to 8192B

INCA — Matrix Multiply

Payload

Scenario | 1288 | 2568 | 512B | 1024B | 2048B | 40968 | 81928 AverageSF’EEd“p
wrt scratchpad

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59

8KiB on 2. z Haswell CPU
10.56 - 139.49 microsecs

All times microseconds

INCA — Matrix Multiply

Payload

Scenario | 128B | 256B | 512B | 1024B | 2048B | 4096B | 8192B AverageSpeedup
wrt scratchpad

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59
parallel 1.13 3.61 7.07 26.59 5292 208.86 417.68 7.68x
advanced-

0.29 1.10 1.50 5.89 7.82 31.29 47.42 42.09x
parallel

8KiB on 2.3GHz Haswell CPU
10.56 - 139.49 microsecs

All times microseconds

INCA

e Use case: Application Acceleration

e (Mini)Apps
* MiniAMR
* MiniMD
* MiniFE
* LAMMPS

* Methodology:
* |dentify regions of code as candidates for INCA offloading
* Time those candidates and the regions they appear in
* Calculate ideal speedup assuming 100% overlap

INCA

Potential speedup without 11% 2.98% 11.50%
code refactor

Potential speedup with

26% 37.20% 25.70% 28.90%
code refactor

INCA

* INCA pros:

* General purpose offloaded compute capabilities

Compute speed increases with network speed

Harvest idle network resources
Deadline-free kernel execution
Fast handoff

* INCA cons:

e Slow out of the box

* But: Ample opportunities for acceleration through additional
hardware (SIMD or more exotic)

* Busy network = no INCA kernel progress

e But: our goal is to make it no worse off than if no acceleration were
used

Our Two Rules of Data Center
Network Design:

#1 Avoid moving data
whenever possible

#2 If you must move data do it
as efficiently as possible

Research Challenges

* Fast and Useful:
* RDMA — Direct Memory Access
* Competes with applications

* Hypothesis:

e Contention for memory resources should be
observable and significant

* Corollary:

* |f contention exists, we can avoid it

Network-induced Memory Contention

>4 NiMC single node slowdown

= . ” P e
-+ (@)] (0] o N
T T T T T

Normalized increase to runtime
|_I
o

=
o

&

A\

%
k2
‘o
%,
%
)

A 4
= C)«‘?S"P

NiMC Problem

* NiMC is a problem

e Can we detect it?

e Groves, Grant, Arnold, “NiMC: Characterizing and
Eliminating Network-Induced Memory Contention”, IPDPS
2016

e What can we do if we can detect it?

* Groves, Grant, Gonzales, Arnold, “Unraveling Network-
induced Memory Contention: Deeper Insights with
Machine Learning” TPDS Vol 29 Iss 8

More NIMC Data

TRIAD Bandwidth (GBPS)

Impact of NIMC on STREAM w. Core Reserv.
(SandyBridge-X2-onload)

—4" >
""0,
o ‘e o
l“}'
- 0,./
0,‘/'
- "',""
Illl,,’lﬁ "I",,
| - - '-"1,-,,-----------------.'-,-------
““”’IIIHI/, '/',,
- 'l'll“lll, /'/
win DRAM N
"l[,’ ’,
| == DRAM N-1 “re
,II,
nim LLC N ,I”'lu///
= I/,,
LLC N-1 b
1 1 1 1 1

RDMA Bandwidth (MBPS)

Machine Learning Results

* Online data collection is limited to performance
monitoring counters

e Canonly read 3-4 at a time on most CPUs

* Choosing the right 3 characteristics
* Can identify NiMC 99.5 times out of 100

* Worst case scenario

* False positives
* Unnecessary slowdowns

e Solution — slow stream first, then allocate new resources

Vision of the Future

* INCA: Non-deadline based methods redefine area
* Leverage/extend existing hardware
* Break deadline — allow rescheduling

* NiMC: The RDMA model is part of the problem

* RDMA is the local memory subsystem model
* |ssues with knowing when operations complete
* Reserved resources per peer

Research Vision

* Self-learning NICs
e Solid ML use case for efficient data transfer
e Speed grows with line rate

* Eviction of programs
* Reschedule — feed back into pipeline

* No longer dependent on remote packets
* Fully distributed in-network only programs

* Independent network optimization programs
e Can use even when no application assistance needed

RDMA-next

* Re-design RDMA
* Hard to use and model mismatch exists
* Non-coherent memory
* Client centric resource ownership

 What can we use to redesign?
 Memory model -> Operations model
* Know how much data to expect
e Build in knowledge

e Don’t know how much data?
e Build in buffer data thresholds

* Abstract away specific resource allocation
* No more reservations required

Collaborative Opportunities

e Application Acceleration

* Accelerate Machine Learning

* Prep data
 Work on data

* Additional Use Cases (e.g. secure communication)

e Use simple ML Techniques
 Good area for collaboration

* In-network distributed programs

* Data movement optimization
* RDMA-Next

Summary

* #1 Avoid moving data whenever possible
* sPIN/INCA today
 Self-learning NICs tomorrow (INCA)

* #2 If you must move data do it as efficiently as
possible
* NiMC and machine learning today
* RDMA-next tomorrow

