
Intelligent High-Performance
Networks Via INCA

PRESENTED BY

Ryan E. Grant

Center for Computing Research

Sandia National Laboratories

regrant@sandia.gov

.1114 co? OM'

Sandia National Laboratories is a nnultimission

laboratory managed and operated by National

Technology & Engineering Solutions of Sandia, LLC,

a wholly owned subsidiary of Honeywell

International inc., for the U.S. Department of

Energy's National Nuclear Security Administration

under contract DE-NA0003525.

Center for Compiginsr Riewarefr

SAND2020-0853PE



1
Outline

• General background — Why care?

• Research challenges — What's the problem?

• High speed data center networks — How to fix it?

• Smart networks — Why do we need them?

• Long-term Research Path — Where are we going?

• Conclusion



1
15 Second Research Philosophy

Our Two Rules of Data Center
Network Design:

#1 Avoid moving data whenever
possible

#2 If you must move data do it as
efficiently as possible



I
Background

• High performance networks (HPNs) and Cloud
• Cost — HPC is a small market ($s)
• Scale — HPC is a small market (volume)

• Viability — HPC is a small market (risk)

• HPNs can only keep up if they also help Clouds
• Clouds starting to need lower latency

• Higher bandwidth always helps
• Clouds catching up here already

• Network tuning problem for HPC and Cloud



I
Background

• From Cisco':
• Annual global IP traffic will reach 3.3 ZB by 2021

• Global IP traffic 3X by 2021 (127X 2005)

• Smartphone traffic will exceed PC traffic by 2021

• Where does all this data go?
• Data centers

• Data centers are the hotspots of the internet
• HPC centers have same problem (CERN)

I-Cisco whitepaper: Cisco Visual Networking Index: Forecast and Methodology, 2016-

2021 June 6, 2017





1
How do we handle all this data?

• Data center processing adds even more data to local
network

• Key concerns: bandwidth and latency

• Leading edge — high performance networks
• Mostly for scientific computing

• Expensive

• Only a few systems ever use them

• Lucky if you can sell more than 10 big systems



1
What makes HPNs fast?

• Not like a normal network interface (NIC)

• Can write data directly to memory
• No CPU or OS involvement

• No copying (zero copy)

• Called "OS Bypass" or user-level NICs

• Handles some message processing
• Checksums (correctness)

• Matching (data steering)



Switch

sPIN/INCA

RDMA
Memory

all

J, J,
-- !'" 

az = aa e aa:at la a:: tr.'

n

CPU

Traditional

Processing



1
What makes HPNs fast?

• Switches provide minimal features
• Fast — switching times in nanoseconds

• Efficient send-side
• Command queues are fast

• Addresses are known in advance

• User-level drivers
• No kernel level delays



1
Why not HPNs everywhere?

• Expensive

• Compute is cheap

• Sockets code can be slow
• Negates the benefit of an HPN

• No need yet (but it's coming)
• Not compelling business case for all uses

• Latency is still acceptable

• Consumer devices don't need too much bandwidth

• But: network speeds are driving chip package sizes which is
leading to lots of extra silicon available



1
So why do we care?

• Cloud will start dictating HPN design!

• Wireless 5G and 6G driving up demand
• Latency way down, bandwidth up

• Machine learning everything
• Unacceptable latency?

• Alexa — wait a couple seconds - annoying

• Self-driving car — deadly

• Humans can wait a long time

• Other computers cannot



1
What's so difficult? Make it faster

• Sockets
• Legacy — super easy to code

• Everything coded for it

• But...An onload model design
• Onload — CPU does it

• Latency needs means we need offload
• Offload — NIC does it

• Fundamentally different designs



I
Making it faster

• Design an offload model
• Easy to onload something designed for offload

• Not easy to offload an onload design

• TCP offload engines are complicated
• Also expensive

• Can we do better?
• Don't re-write code!



1
Research Challenges

• Our research is to make HPNs:
• Useful — compatible with sockets

• Fast — best exotic networks

• Reliable — best off the shelf hardware

• Flexible — software defined networking flexible

• Adaptable — adaptive to conditions

• Deployable — not just in data centers

• We can learn from what Cloud does better
• Clouds are reliable...



1
Our Two Rules of Data Center

Network Design:

#1 Avoid moving data
whenever possible

#2 If you must move data do it
as efficiently as possible



1
Goal: Avoid moving data

• Challenges in HPC and data centers — Power/Energy

• Moving data is expensive
• In time and energy

• Orders of magnitude more energy to move from
component to component

• Avoid copies

• Work on data where it is



sPIN/INCA

Switch

Memory



I
Problem = Opportunity

• HPNs need large die edge area to drive network
speeds

• Large perimeter means large area
• Don't need all of this die area for NIC logic

• HPNs are also driving to much smaller process size
very quickly
• From lOs of nm to 5-7 nm

• Explosion of area that is unused
• Use this to do work on data



1
Compute in Network

• Packet processing engines
• Only work on packets flowing through network

• HPNs are like highways
• Rush hour is only a small fraction of total usage time

• 80-90% idle or low activity

• Traditional in-network compute
• Unlimited data coming in, so limited time to work on it

• INCA approach
• Limited data coming in, unbounded time to work on it



I I NCA

• Two strategies for offloading:
• In-pipeline compute capabilities

• 'Processing near NIC'

• A third way:
• Leverage existing application-specific, in-pipeline resources

• Provide general-purpose compute capabilities

• Put resources to work when network idle

• Avoid imposing deadlines



I I N CA

Deadline

Deadline-Free

Inside Pipeline Outside Pipeline
dm.

Myrinet

Quadrics

SPiN (SC'17)

Atos BXI

Broadcom Stingray

Azure

INCA

1
Mellanox Bluefield



I I N CA

From
Network

To
Network

FIFO

FIFO

Data

1-1

FIFO

FIFO

1. Triggered Operations

Rx DMA Engine

Tx DMA Engine

FIFO

@
D
U
J
.
I
@
I
I
I
T
 
l
s
o
H
 

2. Message Matching 3. Atomic operations



I I N CA

Triggered
Operation

Matching
Atomic

Operation

1. Triggered operation 2. Unique matching

generates message element specifies buffer
containing 1st argument. containing 2nd argument

and atomic.

3. Atomic unit performs

specified operation and

stores result.

• Program: A list of tuples of triggered operations,
matching entries, and atomic operations, ordered by
triggering thresholds, sharing the same counter.



I I N CA

INCA-Q

  7

Q-Compiler

7 7

INCA-A >  Interpreter   Model

 i ,)



I I N CA

Algorithm 1 INCA-Q Dot Product

i =

9• i 1 p i < RO (in 

3: c = c + (A [i] * B [i]

4: 1 = 1 + 1

5:

Algorithm 2 INCA-A Dot Product

1 PUTL i,

2 PUTL ro,
3 LT r0, rip, 50

1, 1,
9 JMP 2
10 END



I I N CA

• Kernels:
• Matrix transposition

• Filter

• Matrix unpack

• Convolution

• Linear interpolation

• Hadamard product

• Dot product

• Matrix multiplication



I I NCA

• Model parameters:
• 200 millions messages/second

• Scratchpad scenario:
• 1 MiB local scratchpad memory
• lns access time

• Negligible loopback latency

• Vary payloads (work) from 128B to 8192B



'INCA Matrix Multiply
■

Average Speedup

wrt scratchpad

scratchpad 7.89 30.61 53.91 213.88 400.25 1597.64 3088.59

8KiB on 2." _.,rIZ Haswell CPU

10.56 - 139.49 microsecs

All times microseconds



'INCA Matrix Multiply
ME.
Scenario 128B 256B

scratchpad 7.89 30.61

parallel 1.13 3.61

advanced-

parallel
0.29 1.10

53.91

7.07

1.50

213.88

26.59

5.89

2048B

400.25

52.92

7.82

4096B

1597.64

208.86

31.29

3088.59

417.68

47.42

8KiB on 2.3GHz Haswell CPU

10.56 - 139.49 microsecs

All times microseconds

Average Speedup

wrt scratchpad 

7.68x

42.09x

1



I I N CA

• Use case: Application Acceleration

• (Mini)Apps
• MiniAMR

• MiniMD

• MiniFE

• LAMMPS

• Methodology:
• Identify regions of code as candidates for INCA offloading

• Time those candidates and the regions they appear in

• Calculate ideal speedup assuming 100% overlap



I I N CA

m
Potential speedup without

code refactor

Potential speedup with

code refactor

MiniAMR MiniMD

11%

26% 37.20%

2.98%

25.70%

LAMMPS

11.50%

28.90%



I I N CA

• INCA pros:
• General purpose offloaded compute capabilities

• Compute speed increases with network speed

• Harvest idle network resources

• Deadline-free kernel execution

• Fast handoff

• INCA cons:
• Slow out of the box

• But: Ample opportunities for acceleration through additional
hardware (SIMD or more exotic)

• Busy network = no INCA kernel progress

• But: our goal is to make it no worse off than if no acceleration were
used



1
Our Two Rules of Data Center

Network Design:

#1 Avoid moving data
whenever possible

#2 If you must move data do it
as efficiently as possible



1
Research Challenges

• Fast and Useful:
• RDMA — Direct Memory Access

• Competes with applications

• Hypothesis:

• Contention for memory resources should be
observable and significant

• Corollary:

• If contention exists, we can avoid it



1 Network-induced Memory Contention
2.4  

NiMC single node slowdown 

2.2
167)

2.0
o

(f) 1.8

c 1.6

-a

1.4
(13

1.2
z

1.0

1

I

I
I

rcc, 'css
,<\'C'N-• 

\es‘c\ ‘;,,C'
\-\). 

,c\cx`



I
NiMC Problem

• NiMC is a problem

• Can we detect it?
• Groves, Grant, Arnold, "NiMC: Characterizing and

Eliminating Network-Induced Memory Contention", IPDPS
2016

• What can we do if we can detect it?
• Groves, Grant, Gonzales, Arnold, "Unraveling Network-
induced Memory Contention: Deeper Insights with
Machine Learning" TPDS Vol 29 lss 8



More NiMC Data
TR
IA
D 
Ba

nd
wi

dt
h 

90

80

70

60

50

40

30
O

Impact of NiMC on STREAM w. Core
(SandyBridge-X2-onload)

Reserv.

• I

• I *
./ • ,• ,•

/

_111111t 1111 On in MI MI MI IN IN MI MI MI NI MI

"III, I,

I 1 I I I 1 DRAM N

DRAM N-1

LLC N

LLC N-1

/ • / •

*

• imr • 601 uld, IN IS NB NI 1111

• ,
.

•
•

0°Q' c):°°'1-)̀ 1.‹)
RDMA Bandwidth (MBPS)



1
Machine Learning Results

• Online data collection is limited to performance
monitoring counters
• Can only read 3-4 at a time on most CPUs

• Choosing the right 3 characteristics
• Can identify NiMC 99.5 times out of 100

• Worst case scenario
• False positives

• Unnecessary slowdowns

• Solution — slow stream first, then allocate new resources



1
Vision of the Future

• INCA: Non-deadline based methods redefine area
• Leverage/extend existing hardware

• Break deadline — allow rescheduling

• NiMC: The RDMA model is part of the problem
• RDMA is the local memory subsystem model

• Issues with knowing when operations complete

• Reserved resources per peer



I
Research Vision

• Self-learning NICs
• Solid ML use case for efficient data transfer

• Speed grows with line rate

• Eviction of programs
• Reschedule — feed back into pipeline

• No longer dependent on remote packets

• Fully distributed in-network only programs

• Independent network optimization programs
• Can use even when no application assistance needed



I
RDMA-next

• Re-design RDMA
• Hard to use and model mismatch exists

• Non-coherent memory

• Client centric resource ownership

• What can we use to redesign?
• Memory model -> Operations model

• Know how much data to expect
• Build in knowledge

• Don't know how much data?
• Build in buffer data thresholds

• Abstract away specific resource allocation
• No more reservations required



1
Collaborative Opportunities

• Application Acceleration

• Accelerate Machine Learning
• Prep data

• Work on data

• Additional Use Cases (e.g. secure communication)

• Use simple ML Techniques
• Good area for collaboration

• In-network distributed programs

• Data movement optimization
• RDMA-Next



I
Summary

• #1 Avoid moving data whenever possible
• sPIN/INCA today

• Self-learning NICs tomorrow (INCA)

• #2 If you must move data do it as efficiently as
possible
• NiMC and machine learning today

• RDMA-next tomorrow


