SAND2019- 9827R

/'~ ‘ \
\ EXASCALE
) COMPUTING
\ PROJECT
Snpganit

ECP-U-2018-XXX

Documented Kokkos API
WBS STPR 04 Milestone 13

Authors
Christian Trott (1
Author Affiliations

U.S. DEPARTMENT OF

@ IENFRAY

Office of

Caimnman

NS

Sandia Natl onal Laboratorl&s is amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awhoIIy owned pistration

subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

DOCUMENT AVAILABILITY

Reports produced after January 1, 1996, are generally available free via US Department of Energy
(DOE) SciTech Connect.

Website http://www.osti.gov/scitech/

Reports produced before January 1, 1996, may be purchased by members of the public from the
following source:

National Technical Information Service
5285 Port Royal Road

Springfield, VA 22161

Telephone 703-605-6000 (1-800-553-6847)
TDD 703-487-4639

Fax 703-605-6900

E-mail info@ntis.gov

Website http://classic.ntis.gov/

Reports are available to DOE employees, DOE contractors, Energy Technology Data Exchange
representatives, and International Nuclear Information System representatives from the following
source:

Office of Scientific and Technical Information
PO Box 62

Oak Ridge, TN 37831

Telephone 865-576-8401

Fax 865-576-5728

E-mail reports@osti.gov

Website http://www.osti.gov/contact.html

This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States
Government nor any agency thereof, nor any of their employees, makes
any warranty, express or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that
its use would not infringe privately owned rights. Reference herein to
any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise, does not necessarily constitute
or imply its endorsement, recommendation, or favoring by the United
States Government or any agency thereof. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

—
/'Q \
\ EXASCALE
) COMPUTING
\ PROJECT
Snpganit

EXECUTIVE SUMMARY

This report documents the completion of milestone STPR04-13 “Documented Kokkos API”. The goal of
this Milestone was to generate documentation for the Kokkos programming model accessible to the open
HPC community, beyond what was available via the tutorials. The total documentation for Kokkos now
contains the equivalent of about 250 pages in text book format. About a third of it is contained in a more
text book like style like the Kokkos Programming Guide, while most of the rest is an API reference
modelled after popular C++ reference webpages. On the order of 175 pages was generated new as part of
the work for this milestone. -

%% U.S. DEPARTMENT OF

@/ ENERGY

omceot INJ N S,

—_—
\ EXASCALE
) COMPUTING
\ PROJECT

1. INTRODUCTION

In order to enable a growing user base across a wide array of institutions a quality documentation for
Kokkos is required. This will relieve pressure on answering questions via email, GitHub issues and Slack,
while making sure that the semantics of Kokkos capabilities are formaly documented.

2. MILESTONE OVERVIEW

2.1 DESCRIPTION

Develop a web based documentation of the Kokkos Core API that will enable users to quickly
navigate and review the semantics of Kokkos Core. This documentation will include detailed

information on parallel constructs, kernels, and data views of Kokkos Core.

2.2 EXECUTION PLAN

1) Review Kokkos core API and the explicit semantics of each.
2) Categorize the Kokkos core API by functionality and intent.
3) Document intent of each APl and semantics.

4) Gather feedback on documentation from Kokkos users.

5) Iterate on 1 - 4 to improve documentation quality.

6) Release documentation via public Kokkos website.

2.3 COMPLETION CRITERIA

A publicly available documentation for Kokkos’s API is implemented.

3. TECHNICAL WORK SCOPE, APPROACH, RESULTS

The Kokkos Wiki is integrated into https://github.com/kokkos/kokkos via the built-in Wiki capabilities of
GitHub. The content is provided via MarkDown text, which renders well as part of GitHub, can be
viewed via standalone plugins in most web browsers, and is still well readable as raw text. The Kokkos
Wiki currently consists of a total of 110 MarkDown documents, representing the equivalent of about 250
pages text book.

3.1 STRUCTURE OF THE KOKKOS WIKI
The Kokkos Wiki contains three major sections:

1) The Programming Guide

SAND2019-XXXX 1

’——\\
EXASCALE
E (')ID CompUTING
K PROJECT

2) API Reference
3) A Guide to Kokkos Testing and Issue Tracking.

The Programming Guide contains documentation for users written in text book style. That means
capabilities are introduced in prose, with motivation for the capability, use case descriptions as well as
wording which places the specific capability in the larger context of Kokkos and parallel programming in
general. As a compromise, features are often not exhaustively described with all their nuances and various
corner use cases. The audience of the programming guide are mainly new Kokkos developers.

The API Reference is meant as a complete description of each public API feature in Kokkos. The
inspiration for its style is taken from websites such as http://www.cplusplus.com/reference/ and
https://cppreference.com . It targets active Kokkos developers who want to quickly check syntax and
semantics of specific Kokkos functions, or want to check whether a certain capability is available. Going
forward, every new feature in Kokkos must as part of its pull request document that the appropriate API
Reference entry was generated. The API Reference contains the equivalent of about 150 pages in
approximately 60 different markdown documents.

A Guide to Testing and Issue Tracking documents the Kokkos Projects processes for testing as well as
how users report issues and request new features or enhancements of existing capabilities. It also
documents the release procedure in detail. In particular developers on the core Kokkos team need to be
aware of these processes. This section is the smallest with about 20 pages content.

3.2 API REFERENCE CONTENT

As described in the execution plan Kokkos capabilities had to be categorized into various feature areas.
This categorization is reflected in the content structure of the API Reference subsection.

At the highest level the API Reference is split into the Core, Algorithms and Containers sections. Below
that only Core is further divided into subcategories.

1) Initialization

2) View
a. View
b. subview
c. realloc
d. resize
e. create_mirror

f. create mirror view
3) Data Parallelism

a. parallel_for

b. parallel_reduce

c. parallel_scan

d. Built-in Reducers
4) Execution Policies

a. RangePolicy

b. MDRangePolicy
c. TeamPolicy
d. NestedPolicies

2 ECP-U-2017-XXX

—_—
\ EXASCALE
) COMPUTING
\ PROJECT
p—

5) Spaces
a. Execution Spaces
b. Memory Spaces
6) Task Parallelism
7) Utilities

a. Timer
8) STL Compatibility
a. Array
b. complex
C. pair

This categorization is reflected in a permanent sidebar of the Wiki, allowing easy navigation back to each
of the main points.

certain capabilities are used in Kokkos
API Reference

The Kokkos Eco-System

Content: Alphabetical

The Kokkos Programming Model is not the only resource available. There are a number of projects Content: Core
which can help HPC developers in their work.
. Initialization
. View

Kokkos-Tutorials

. Data Parallelism

. Execution Policies
This project has extensive Tutorials for Kokkos including hands-on exercises. New Kokkos developers,

even with little to no previous parallel programming experience will be taken through the basics of
using Kokkos to parallelize applications. There is also a tutorial available for learning the basics of
profiling.

. Spaces

. Task Parallelism
. Utilities

. STL Compatibility

0w N O O b WN =

Kokkos-Tools Content: Containers

. - . - . o . Content: Algorithms
Kokkos Tools provide profiling and debugging capabilities which access built-in instrumentation of

Kokkos. They make it significantly easier to understand what is going on in a large Kokkos application 1. Sort
and thus help you to find errors and performance issues. 2. Random Number

3.3 EXAMPLE: KOKKOS::SUBVIEW
A typical example for an API Reference page is subview. Generally the page is split into four sections:

1) Ashort description with a simple usage example.
2) A synopsis of the APL

3) A full description of the API.

4) A more detailed example.

The short description gives a overview of what this function is supposed to do, as well as a very brief one
liner example. The synopsis lists the API in form of a C++ declaration. The full description provides the
detailed description of each function, class member, typedef etc. in the particular capability. It will also

SAND2019-XXXX 3

_—
\ EXASCALE
COMPUTING
PROJECT
—

specify what each argument is, and what restrictions arguments have. Finally a more detailed example

provides more code to demonstrate how to use a Kokkos feature.

Kokkos::subview

Christian Trott edited this page 5 days ago - 2 revisions

Kokkos: : subview

Header File: Kokkos_Core.hpp

Usage:
auto s = subview(view,std::pair<int,int>(5,191),Kokkos::ALL,1);
Creates a Kokkos::View viewing a subset of another Kokkos::View .

Synopsis

template <class ViewType, class... Args>
IMPL_DETAIL subview(const ViewType& v, Args ... args);

Description

template <class ViewType, class... Args>
IMPL_DETAIL subview(const ViewType& v, Args ... args);

Returns a new Kokkos::View s viewing a subset of v specified by args... . The return
type of subview is an implementation detail and is determined by the types in Args... .

Subset selection:

o For every integer argument in args... the rank of the returned view is one smaller
than the rank of v and the values referenced by s correspond to the values
associated with using the integer argument in the corresponding position during
indexing into v .

o Passing Kokkos::ALL asthe r th argument is equivalent to passing

pair<ptrdiff_t,ptrdiff_t>(@,v.extent(r)) asthe r th argument.

o Ifthe rthargument arg_r isthe d thrange (std::pair, Kokkos::pair or

Kokkos: :ALL) in the argument list than s.extent(d) = arg_r.second-arg_r.first ,

3.4 RESOURCE ACCESS

All of the resources are available on the public Kokkos wiki.

» Pages D)

Home: 4

Programming Guide

Content: Core

. Introduction

. Machine Model

. Programming Model
. Compiling

. Initialization

View

. Parallel Dispatch

©® N OO A WN

. Hierarchical Parallelism

©o

. Custom Reductions

=
o

. Atomic Operations

-
-

. Subviews

<&
N

. Interoperability

. Kokkos and Virtual
Functions

=3
w

Content: Containers

. Dual View

. Dynamic Rank View

. Dynamic Length View
. Offset View

. Unordered Map

o hp W N =

Content: Algorithms

1. Sorting
2. Random Numbers

API Reference

Feature Location

General Wiki https://github.com/kokkos/kokkos/wiki

ECP-U-2017-XXX

—_—
\ EXASCALE
} COMPUTING
\ PROJECT

Programming Guide | https://github.com/kokkos/kokkos/wiki/The-Kokkos-Programming-Guide

API Reference https://github.com/kokkos/kokkos/wiki/API-Reference

4. RESOURCE REQUIREMENTS

The work performed here required 0.35 FTE.

5. CONCLUSIONS AND FUTURE WORK

One of the obversation made during this work was a difficulty of determining what needs to be
documented. It is non-trivial to determine every public API feature of a project like Kokkos. We are
exploring a way of making that determination through tools, possibly via plugins in the LLVM/Clang
family of tools. Potentially this would allow us to add automatic testing of pull requests, which put in a
warning if a new public API capability is added, so that the pull request approver can check whether the
appropriate documentation is written. Furthermore, such a test could ensure that nobody accidently adds a
new thing in the public namespace of Kokkos.

6. ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project (ECP), Project Number: 17-SC-20-SC, a
collaborative effort of two DOE organizations—the Office of Science and the National Nuclear Security
Administration—responsible for the planning and preparation of a capable exascale ecosystem—
including software, applications, hardware, advanced system engineering, and early testbed platforms—to
support the nation's exascale computing imperative.

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology
and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc.,
for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA-
0003525.

This work was performed under US Government contract DE-AC52-06NA25396 for Los Alamos

National Laboratory, which is operated by Los Alamos National Security, LLC for the U.S. Department
of Energy.

SAND2019-XXXX 5

