
Sandia National Laboratories

24 January 2019

Snippet Open-Source Specification
Use and Application

Brian Rigdon, 05834

R&D S&E, Cybersecurity

Prepared by

Sandia National Laboratories

Albuquerque, New Mexico 87185

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions

of Sandia, LLC, a wholly-owned subsidiary of Honeywell international, inc., for the U.S. Department of Energy's National Nuclear

Security Administration under contract DE-NA0003525.

1

SAND2019-10279R

Issued by Sandia National Laboratories, operated for the United States Department of Energy by

National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any of

their employees, nor any of their contractors, subcontractors, or their employees, make any

warranty, express or implied, or assume any legal liability or responsibility for the accuracy,

completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represent that its use would not infringe privately owned rights. Reference herein to any specific

commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation, or favoring by the

United States Government, any agency thereof, or any of their contractors or subcontractors. The

views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

2

Table of Contents

1 INTRODUCTION 5

2 ANNOTATION 7

2.1 ANNOTATION SPECIFICATION 7

2.2 ANNOTATION DATABASE INTERACTION 8

2.3 ANNOTATION BEHAVIORS 9

2.3.1 Annotation Display 10

2.3.2 Annotation Creation and Editing 10

2.3.3 Tags in Annotations 10

2.3.4 Annotation Search and Filtering 11

2.3.5 Code Integrity 11

3 CODE BROWSING 11

3.1 DOUBLE-CLICK NAVIGATION 12

3.2 RIGHT-CLICK NAVIGATION 13

3.3 SEARCHING 14

3.4 OUTLINE VIEW NAVIGATION 14

3.5 OMNIBAR NAVIGATION 14

3.6 G o TO LINE 14

4 RESULT SETS 14

4.1 RESULT SET FORMATTING 14

4.2 RESULT SET DISPLAY 15

5 ADDITIONAL FEATURES 16

5.1 CUSTOMIZATION 16

5.2 PLUGINS 16

5.3 CARTOGRAPHER 16

6 SNIPPET REFERENCE IMPLEMENTATION 16

APPENDIX A - TECHNICAL DESCRIPTION OF ANNOTATIONS 18

A.1 ANNOTATION JSON 18

A.1.1 Annotation JSON Schema 18

A.1.2 Annotation JSON Example 19

APPENDIX B - TECHNICAL DESCRIPTION OF RESULT SETS 20

B.1 HIERARCHICAL RESULT SET SCHEMA 20

8.1.1 Hierarchical "schema" Element 20

8.1.2 Hierarchical "table headers", "fields", and "data" Elements 20

8.1.3 Nested Hierarchical Results 22

B.2 NOTES RESULT SET SCHEMA 23

8.2.1 Notes "schema" Element 23

8.2.2 Notes "data" Element 23

APPENDIX C — KEY BINDING MAP 26

3

List of Figures
FIGURE 1. SNIPPET ANNOTATION DISPLAY 10

FIGURE 2. SAMPLE CROSS-REFERENCED SYMBOL (IN THIS CASE, DEBUGPRINT) 13

FIGURE 3. RESULT SET DISPLAY 15

FIGURE 4. HIERARCHICAL RESULTS DISPLAY 21

FIGURE 5. NESTED HIERARCHICAL RESULTS DISPLAY 22

FIGURE 6. FLAT RESULT SET DISPLAY 25

List of Tables
TABLE 1. SNIPPET ANNOTATION DEFINED 7

TABLE 2. SNIPPET'S EXTENDED USE OF THIS RESTFUL API THAT LEVERAGES THE ANNOTATION SERVICE 8

TABLE 3. REMAINDER OF THE ANNOTATION SERVER API 9

TABLE 4. ANNOTATION KEY BINDING 26

TABLE 5. CROSS REFERENCE NAVIGATION KEY BINDINGS 26

TABLE 6. CODE VIEWER NAVIGATION KEY BINDINGS 27

TABLE 7. MISC. U I SHORTCUT KEY BINDINGS 27

TABLE 8. MARK NAVIGATION KEY BINDINGS 28

TABLE 9. GLOBAL CODE VIEWER MOVEMENT KEY BINDINGS 28

4

Snippet Open-Source Specification
1 INTRODUCTION

Snippet is a collaborative software code auditing tool developed at Sandia National Laboratories

(Sandia) in conjunction with several sponsoring government agencies to enable software analysts,

individually or in groups, to non-destructively audit large codebases, share files and comments from

those audits, and develop Snippet plugins for use with other text editing software applications.

This specification defines the requirements and the reasoning behind the requirements for tools

developed to be compatible with the technology and purpose of Snippet. A condensation of the

requirements is given in the companion document, "Snippet Open-Source Specification Synopsis" also

generated by Sandia National Laboratories.

Snippet's approach to browsing through codebases is similar to a web browser navigating the internet.

Snippet software provides a code auditing environment with the following features:

• Project Definition — defines the audited source codebase and auditing team

• Annotation — analysts place annotations in line with the code to specifically locate their

comments about the software being audited

o Non-destructive — annotations do not corrupt the original file

o Collaborative — annotations are shared among the audit team

o Searchable — keywords within annotations are identified with a hashtag (#) to facilitate

finding annotations made with the Snippet file

• Browsing Capability — an easy-to-use interface for reading, making comments to, and searching

codebases

o Searching — locates keywords within a file or the entire codebase

o Result Sets — formalized search results can be saved and loaded, and enables other tools

to provide search results that Snippet can ingest

o Navigation — easily moves between locations within the codebase

• Analysis Result Handling

o Code-level static analysis support via Result Sets

o Plugin interface for extensibility

• Cartographer — a graphical navigation extension to Snippet providing a visual map of browser

activity

As Snippet grows in complexity and popularity, it has become evident that the care and maintenance of

Snippet is beyond the scope of a national laboratory. Many of the features in Snippet were developed

based on either web browsers or Interactive Development Environments (IDE). Given the advanced

state of most IDEs, it is not feasible for Snippet developers to remain up-to-date with continuous

updates and demands for new features. However, the auditing concepts of Snippet and its plugins can

be implemented for commercial-off-the-shelf (COTS) IDEs to provide most Snippet functionality within

code analysts' existing development environments. This provides analysts with the familiarity and power

of their COTS IDE with the benefits of Snippet's features.

5

Snippet's developers have determined that the best path forward for the lifecycle of Snippet is to

develop an open standard that defines Snippet functionality. The Snippet executable is also being open-

sourced as a reference implementation of Snippet functionality. Thus, Snippet is now both a tool and an

open standard. Any software tool that complies with Snippet's standard is usable by analysts to

collaborate with any other analyst using Snippet or another Snippet-compatible tool.

In contrast to most IDEs or text editors used for code auditing, Snippet is designed as an auditing tool.

While current IDEs and editors display and navigate through code, those applications primarily generate

code with priorities very different than those required for auditing. This reflects the difference between

software development and software auditing. For example:

Software Development:

• Create, change files as needed

• Keywords created to define new

objects, structures, interfaces, etc.

• Navigation is a secondary function

of an editing environment

• Comments are added to describe

functionality

Software Auditing:

• Examine and explore files as is,

modification is undesirable

• Keywords need to be understood

regarding what they represent and where

they are used

• Navigation is a primary function of

auditing

• Annotations do the same, but also capture

concepts related to the purpose of the

audit

Therefore, if a Snippet-compatible extension of an IDE is to be built, we strongly recommend that the

plugin adopt not only the annotations of Snippet, but the auditing-specific characteristics of Snippet—

that it meet the Snippet open standard.

To truly grasp what Snippet does comes from understanding how it enables auditing. Many actions built

into Snippet have no associated data, nevertheless, they greatly simplify code auditing tasks (e.g.,

double-click navigation). Other actions have data artifacts that must be standardized to ensure cross-

tool collaboration (e.g., searches resulting in Result Sets). The Snippet-standard features currently

specified in the Snippet application are as follows:

• Project Definition — the directory that contains the source to be audited (optionally, the version

and team members working the project, as well)

• Annotation — allows user-generated notes to be associated with code and displayed accordingly

• Navigation and Searching — the means to logically move within a multi-file/multi-directory

codebase

• Result Sets — an artifact of searches (whether performed by Snippet or another tool)

• Migration — applies annotations to different versions of the audited codebase

• Customization — makes it easier for the auditor to modify the interface to Snippet

• Plugins — extends Snippet behavior to enable customization and external tool support

6

Cartographer (Snippet's graph-based navigation aid) is included with the open-source Snippet codebase;

however, Cartographer is not a core Snippet capability and not part of the Snippet standard at the time

of this writing.

Snippet compatibility will assume that Snippet and compatible tools provide a graphic user interface

(GUI) that allows source code to be read, which is the definition of code auditing. All features in Snippet

are focused around a GUI pane that displays the code to the auditor.

2 ANNOTATION

Snippet enables an auditor to make notes on the software being audited. Each note corresponds to a

specific line in a specific file and represents the auditor's impressions, questions, remarks or suggestions

during code review of that line or section of code. An annotation comprises the text of the note with

relevant metadata to identify where the note belongs and who wrote it. To protect the integrity of the

source code, annotations are stored in an SQL database that is independent of the source code and its

directory hierarchy. A RESTfuI API has been developed by one of Sandia's collaborators to interface to

the annotation database. This RESTfuI API uses JSON as the data transfer format, and its description

serves as the data specification for Snippet's operation. Interfacing with a database is an absolute

requirement for a Snippet-based application to be Snippet-standard compliant. This section presents the

JSON representation and describes the RESTfuI API that Snippet supports.

2.1 ANNOTATION SPECIFICATION

Management of Snippet's annotations is one of two mandatory requirements for Snippet compatibility;

the other being Result Set specification. Managing annotations includes creating, editing, storing, and

deleting annotations as well as displaying them to the code auditor. The way Snippet-compatible

applications use the data and present reviewer annotations is implementation dependent. Most of this

document describes recommended application behaviors and what we've determined is useful for code

auditors in our community. Any application must adhere to this JSON description to be Snippet-standard

compliant. The actual Snippet JSON schema is provided in the appendices.

Table 1. Snippet Annotation Defined

Field Data Type Description

id string Database table index of this note (automatically generated)

filename string Relative path and filename of the file being annotated

linenum integer Line number (indexed from 1) associated with the note

txt string The notes' text

author string User id of the originating author

timestamp string Timestamp of the most recent edit of this note

ctimestamp string Creation timestamp of this note

tags array of strings A list of tags in the note

version string Used to associate this note with a particular revision of the code (e.g.,
git repository) (currently unused in Snippet reference

implementation)

7

When an annotation is Created, it does not have an index; that is automatically inserted by the

database. Subsequent access for that annotation, whether reads, updates, or deletions, will have the

index specified. Snippet's behavior modifies the timestamps when the annotation is Created or Edited. If

a Snippet-compliant tool is written to use the Database Server, that Database Server will manage

timestamps automatically.

2.2 ANNOTATION DATABASE INTERACTION

As mentioned above, one of Sandia's Snippet development partners has implemented a Snippet-

compatible SQL database web server. This Annotation Server allows auditors to use Snippet-enabled

editors or IDEs to collaborate with each other's annotations. To support this database, a RESTfuI API was

defined that greatly simplifies database compatibility and integrity. Third party tools interface more

easily through this API rather than directly to Snippet's database. Multiple projects can utilize the same

annotation service by sharing a common database.

Table 2. Snippet's Extended Use of This RESTfuI API That Leverages the Annotation Service

Category REST type URL ({inputs}) Returns

Administration

GET /api/v0.2/list projects List of project names

PUT
/api/v0.2/{new project}/fversionl

/create project
N/A

DELETE /api/v0.2/{project} N/A

Annotations

GET /api/v0.2/ 1 projectl/fversionl/get notes

List of annotation data
for all files in the

project

GET /api/v0.2/{project}/count notes
Integer number of
notes in the project

GET
/api/v0.2/{project}/fversionl

/get files with notes

List of filenames
which have
annotations

GET
/api/v0.2/{project}/{version}

/get notes for file/ffilenamel

Listofannotations
associated with the

specified file

POST /api/v0.2/{project}/fversionl/add note N/A

POST /api/v0.2/{project}/{version}/add notes N/A

PUT /api/v0.2/{project}/update note/{idx} N/A

DELETE /api/v0.2/{project}/delete note/{idx} N/A

GET /api/v0.2/{project}/{version}/stream

Initiates a stream
from the server with
updates to the project

8

Table 3. Remainder of the Annotation Server API (Not used by Snippet)

Category REST type URL ({inputs}) Returns

Access Control

G ET /api/v0.2/{project}/get auth required

True if authentication
is required for this

project

PUT
/api/v0.2/{new project}

/set auth required
N/A

PUT
/epi/v0.2/ 1 projectl

/set auth not required
N/A

GET /api/v0.2/{project}/list members List of user ids

GET /api/v0.2/{project}/list accessors

List of user ids who
attempted

unauthorized access

PUT
/api/v0.2/{new project}

/add member/fusernamel
N/A

PUT
/api/v0.2/{project}/add member

/{username}/{organization}
N/A

DELETE
/api/v0.2/{project}/remove member

/{username}
N/A

DELETE
/api/v0.2/{projectUremove member

/{username}/{organization}
N/A

Versioning of

Annotations

PUT
/api/v0.2/{project}/send diff/

/{commit a}/{commit b}
N/A

GET /api/v0.2/{project}/list versions List of version strings

GET
/api/v0.2/{project}/{version}

/list missing diffs

Differences missing
from the server for a
given version of the

project code

GET /api/v0.2/{project}/list missing diffs

Differences missing
from the server for
the project code

2.3 ANNOTATION BEHAVIORS

Snippet's key feature is the ability to display annotations in line with the code with the annotation

presented in such a way as to differentiate it from the source.

Any tool compatible with the Snippet2.4 standard specification must have a mechanism for displaying

annotations. Ideally, this mechanism would display annotations in line, as Snippet does, but anything

that automatically or readily brings annotations into view is acceptable.

Note: A quirk of the QT text display widget is that Snippet's annotations cannot be

placed ahead of the first line of code. Other tools have issues with the last line. These

implementation nuances do not affect compliance with the Snippet-standard

specification.

9

2.4.1 Annotation Display

When an annotation is placed in the code, it is inserted into the text above the line it describes. The

annotations are slightly indented, uniquely colored, and prepended with a vertical bar character to

distinguish the annotation from the code. The code line numbers are interrupted to keep code lines

enumerated correctly. A screen capture of a Snippet annotation is given in figure 1, which displays a

document with multiple users' annotations.

1 #include <stdio.h>
2 #include "game/game.h"
3 #include "test/test.h"
4
o I Parameters to the main #function:

argc: The number of arguments (including the executable name)
argv: a list of strings, zero indexed, one per argument

1 I wish the author had documented with function headers.
5 int main(int argc, char *argv())
{

if (argc > && strcmp(argv[I],"test")
{

}
else
{

}
}

return test();

run game();

==())

Figure 1. Snippet Annotation Display

2.4.2 Annotation Creation and Editing

The auditor creates an annotation in a variety of ways: (1) via drop-down menu, (2) right-click menu on

the line to be annotated, or (3) using the ';' ('semicolon') key binding shortcut. Snippet makes the

process of adding annotations very simple and straightforward for code annotation to become almost

reflexive to the auditor. When annotations are created/edited, reviewers can do so in line or via a pop-

up window per user preference. Saving and closing annotations is accomplished using the GUI or a 'shift-

enter' key binding. Annotations can likewise be deleted through menu operations.

Note: The annotation key binding is a prime example of the difference between Snippet

as a pure auditing tool and either an IDE or editor. The semicolon (;) key was chosen as

it is very easy to use (under the right pinky finger of a touch typist) and because it has

the same function in a binary auditing tool that is popular in our community. All our

auditors use that tool and are accustomed to using the semicolon for this purpose. In a

code editor, the semicolon simply inserts a r.

2.4.3 Tags in Annotations

The annotation shown in figure 1 has a Snippet tag defined in it. These tags become keywords for

Snippet annotations. In the first line of the annotation, the word function is prepended with a hashtag

symbol ('44'). This identifies it as a tag for special operations in Snippet. Snippet uses these tags to search

for all the instances of this tag. The auditor uses tags to associate thoughts or identify common code

features and to find those references more easily when needed.

10

The choice of keyword is determined by the auditor or team. Any word or sequence of alphanumeric

characters prepended with the hashtag is a valid tag.

2.4.4 Annotation Search and Filtering

Snippet provides an optional Annotation Info GUI pane to display all the tags each author has used. The

Annotation Info pane presents the tags and users with checkboxes. By selecting or deselecting the tag,

all annotations with that tag will be either displayed or hidden. Likewise selecting or deselecting the user

will display or hide all that user's annotations.

2.4.5 Code Integrity

It is impossible to modify the underlying codebase while auditing with Snippet; there is no mechanism

whereby the code can be modified. Snippet's display panes do not allow any modification of their

contents. The annotations are edited separately (via either dialog boxes or special in-line editors) from

their display window. Thus, Snippet protects the integrity of the code as it interacts on top of the code's

display and not directly with the code. This is a critically important distinction between Snippet and a

typical IDE. If an IDE is to be successfully extended to Snippet-standard compatibility, the extension

should incorporate Snippet's approach that prevents modifying files being audited. If possible, the IDE

edit widget should be disabled from changing the displayed code text.

3 CODE BROWSING

Snippet's primary function is to browse through code during auditing. Written to be a browser rather

than an editor/IDE, Snippet's expectations for user interaction are significantly different than most

software editing tools. Nevertheless, many intuitive, common key bindings and shortcuts are mapped

directly between editor/IDEs and Snippet. Snippet's key bindings are also customizable, enabling users

to align their Snippet experience with their own preferences (See Customization below).

Navigation is an intrinsic function of editors and IDEs, and, as such, users have strong opinions as to

what constitutes appropriate navigation. Snippet's approach and style of navigation is, therefore, an

optional but recommended component of the Snippet-standard's specifications.

As Snippet's intention is to facilitate the auditor's understanding of a codebase, navigation is optimized

to explore the symbols present in a program. By symbols, we mean constructs defined by the code

author: types, variables, functions, include files, etc. Snippet provides many ways to find uses and

definitions of symbols, giving each user individualized options to best perform her audit:

• Double-click — jumps from a symbol definition to a use, or from a use to a definition

• Right-click — menu options including finding references and opening in new tabs or splits

• Searching — string-based text-matching within a file

• Outline View — a GUI section that displays structs, typedefs, constants, functions, etc. — selecting

any of these symbols will navigate to the definition in the current file

• Omnibar — a GUI element that selectively searches based on user input — selecting from the

Omnibar navigates the user to files, typedefs, functions, etc.

• Go-to Line — as one would expect

11

• Result Set Navigation — Result Sets are presented to the user — selecting a result will navigate

the open browser window to display the file/line specified in the result

If there is only a single result to a navigation query, Snippet will jump directly to that location.

Navigation results satisfied by multiple locations (e.g., the uses of a typedef or calls to printf) are

presented to the user as a Result Set. Result Sets are an intrinsic part of Snippet's navigation. Because

Result Sets are a special case of navigation and they form a mandatory requirement of the Snippet-

standard specification, they are described in their own section below.

Snippet navigation is based on a cross-reference database built using Snippet's underlying context utility

("ctx"). Cross-references are logical connections between labels in the code, such as a variable

declaration and all its uses. If the Snippet utility is being mapped to another tool, it is assumed that tool

has cross-referencing capabilities to be used for navigation.

3.1 DOUBLE-CLICK NAVIGATION

Double-click navigation is probably the most significant difference between Snippet and a code

editor/IDE. While an IDE interprets a double-click as the selection of a word in the text, Snippet responds

to that double-click by performing cross-reference-based navigation on the codebase for the symbol

being selected.

When the user double-clicks a cross-referenced symbol (figure 2), she is navigating away from that

instance of the symbol. The navigation to is dependent on what she navigates from. If we are navigating

from a use of a symbol (e.g., a function call or the type of a variable declaration), the navigation

destination will be the definition of that symbol (the function declaration or typedef in our example). If

the user double-clicks a definition, the navigation will be toward the use of that symbol (figure 2). If

there are more than one potential destination, a Result Set will be generated and presented to the user.

Note: Snippet can map double-click navigation to text searching rather than cross-

reference searching, but that is not a typical use of double-click.

12

• usedef.cpp X

1 #include <stdio.h>
2 #include <vector>
3
4 void (const std::vector<int> &out)
5 for (size_t i=0; i < outsize(); ++i)
6 std::cout « out[i];
7 if (i < out.sizei)-1)

std::cout « ", ";
9 }
10 std::cout « std::endt;
11
12
13 int main (int argc, char ** argv)
14
15 std::vector<int> data;
16
17 initialize(data);
18 MWIlidata);
19
20 randomize(data). _ALIsesofdehugPrint

21 1111111Eluata);00
22
23 sort(datal!
24 111111161(data);
25
26 return 0;b
27
2B

{

Figure 2. Sample Cross-referenced Symbol

3.2 RIGHT-CLICK NAVIGATION

When users right-click a symbol, Snippet presents a menu of potential actions that can be taken from

that point in the file with the following options pertaining to navigation.

• Find declaration in this file — finds the first definition matching the symbol name in this file

(Note: This ignores scope: "int i;" may be declared multiple times but only one will be found)

• Find declaration in this function — finds the definition of the symbol in this function

• Find definition — jumps to the definition of the symbol (similar to double-click navigation)

• Find references — jumps to the use of the symbol (if only one) or presents a Result Set of all uses

(similar to double-click navigation)

13

3.3 SEARCHING

Many software and text editors provide quick search capabilities by typing a ctrl-f. Users of vi, on the

other hand, use the/or ? keys. Snippet supports the capability to use these commands when searching

through a file being audited (See Customization on how to change key bindings).

Once the string is found, pressing n or N will navigate the cursor to the next location of the string. The n

key takes the auditor in the direction of the search; N takes the auditor in the opposite direction.

As Snippet navigates to the next search term, instances of that term are highlighted. If desired, the user

may change the color highlighting the search term.

3.4 OUTLINE VIEW NAVIGATION

Snippet has an Outline View—a GUI pane that displays a high-level view of the file being audited.

Features such as functions, macros, typedefs, variables, etc. are alphabetically organized by category in

the Outline View. Double-clicking an entry in the outline will navigate the cursor to the definition of that

keyword.

3.5 Om N IBAR NAVIGATION

At the top of the Snippet window is the Omnibar. This is a type-in widget that quickly finds matching

files, functions, classes, etc. for the text as it is being entered. The auditor can quickly find all matches to

her search, refining the search as she types. The Omnibar behavior is modeled after the URL entry bar of

most web browsers. As search information is typed, these browsers provide recommendations based on

what has been entered so far.

3.6 GO TO LINE

Like most IDEs and editors, Snippet provides a mechanism to jump to a specific line. By default, this is

the ctrl-g key binding. A dialog box opens that prompts the auditor for the desired line. Upon entry, the

cursor navigates to that line and the view is adjusted accordingly.

4 RESULT SETS

Auditing is one of many methods for analyzing software. Numerous automated tools provide different

approaches to inspecting software and extracting features. Snippet can integrate these automated tools

if their search results can be extracted and re-composed for use by Snippet's navigation tools to identify

locations within the codebase.

Snippet navigates by identifying locations within a file; specifically, using the filename (including path),

line number, and column number (optional) for the requested location. Result Sets of requested

locations are typically generated from search results; however, sets of locations can be generated by

other analysis tools. Externally generated Result Sets can be passed to Snippet through a plugin or read

in from a file. Snippet displays Result Sets to the auditor in a table format. If the auditor double-clicks on

a result within the Result Set, Snippet navigates to that result's location.

4.1 RESULT SET FORMATTING

Snippet internally generates Result Sets based on information provided by the ctx index database.

Depending on the tool used to generate the index (CScope, Ctags, etc.), Snippet builds a data type

comprising the important location information. This data is presented to the auditor using a GUI

element.

14

For externally generated Result Sets, Snippet supports two representations of data: hierarchical and

notes schemas. Specification schema for these result representations are given in Appendix B.

Note: There are two other legacy schemas for which Result Sets can be parsed, but these

are essentially deprecated.

After Snippet was developed, an industry standard was generated to represent the results of source

code static analysis: the Static Analysis Result Interchange Format (SARIF (https://gitub.com/sarif-

standard)). Data represented in SARIF is a superset of data that Snippet needs. Therefore, a Snippet

auditor importing a SARIF file would likely parse out the file and location information in the Result Set to

display the data. At the time of this writing, Snippet does not ingest SARIF files.

Any tool that is Snippet-standard compliant must be able to generate and absorb Result Set data. Such

tools will be able to export Result Sets in a format that can be loaded by other Snippet-compliant tools.

We recommend the SARIF format be adopted for loading and storing Result Set information.

4.2 RESULT SET DISPLAY

Result Sets are presented to the auditor in table format as seen in in figure 3.

v File Line Context

D 23

1 25 int_nade

2 26 int_nocie

3 36 insert_int

4 49 insert_int_at

5 51 insert_int_at

6 77 int_list_to_string

7 92 delete_int list

8 93 clelete_int_list

9 26 <global>

10 29 <global>

11 32 <global.>

Description

struct *int_nocle(int val)

struct *node;

node = maEtoc (sizeof(struct int_list_nocle));

struct int_Ilist node *node;

struct int_list node *current = NULL;

struct int_Ilist_node *new = int_node(va1);

struct int_llist_node *current = NULL;

struct int Ilist_node *next = NULL;

struct int_llist_node *current = list;

struct int list_node

struct int_list_node *next;

typedef struct intiist_node *intlist;

NOte

Definition of int_list_note

0 19 int_list_node - 12 references 1Fitter terns

Figure 3. Result Set Display

Snippet generates the Result Set table with a list of headers using data provided to Snippet. In addition

to headers, the data contains a list of items from which table information can be extracted. Each item

must, at a minimum, contain the filename and line number to facilitate navigation. As seen in figure 2,

one of the optional items displayed is an annotation associated with line 26 of lib/list . h.

The GUI widget enables double-click callback on any of the table elements. This is the mechanism

whereby Snippet performs navigation. Snippet uses each data listing's table information to navigate to

the location for its display.

Snippet-compliant tools do not need to duplicate this display; however, they require some mechanism

to display the Result Set information to the auditor. A mechanism to use Result Set data for navigation is

also required for successful compliance.

15

5 ADDITIONAL FEATURES

5.1 CUSTOMIZATION

Snippet has many customizable features to individualize auditing experiences. Snippet's capability to

map key bindings to specific operations is one of its foremost features. Key bindings, primarily those

enabling navigation, are essential to the auditing experience. Snippet binds certain keys and mouse

actions to specific navigation features. These associations are intended to make code browsing as

intuitive as possible so that our auditors focus on auditing code, not operating the code auditing

software. Snippet is capable of matching key bindings to different editor environments to take

advantage of previous familiarity with specific key bindings. For example, if an auditor is accustomed to

using Visual Studio, searching is initiated by a ctrl-f, whereas in vi, searching is initiated with the/

character. Snippet provides key bindings based on several editors and enables users to change any key

binding per user preference.

We recommend that any tool developed to the Snippet standard provides customization of key bindings

to users.

All Snippet key bindings are listed in Appendix C.

5.2 PLUGINS

Snippet is extensible through its plugin interface, which essentially gives Snippet users the ability to

hook into Snippet internals. Typically, plugin interfaces extend the user interface for new tools or

analyses. In Snippet, the plugin interface integrates several independent analysis tools into the Snippet

auditing environment.

Snippet developed its plugin environment for a broad spectrum of use in the research arena Many

Snippet users developed custom plugins to facilitate their work. Tools based on the Snippet

specification, however, may not need a plugin interface. Annotation capabilities that are being added to

IDEs are often implemented as plugins. In these cases, the IDE's plugin interface supersedes that of

Snippet.

Plugin capability is not a requirement of the Snippet-standard specification.

5.3 CARTOGRAPHER

Cartographer is an extension of Snippet that provides a graph-based visualization of the auditors

navigation history. Cartographer exists as a separate pane from the Snippet GUI. The Cartographer GUI

displays navigation locations as nodes in a graph. As the user navigates away from their current location

in the code, Cartographer inserts a new node with the edge showing the fact that a navigation event

happened.

The graph is interactive; selecting a node in the graph will navigate Snippet back to the location

represented by that node. Nodes can also be arranged as needed by the user.

Cartographer has been shown to be useful helping auditors with their processes. However, it is not a key

capability of Snippet and not a part of the Snippet-standard specification.

6 SNIPPET REFERENCE IMPLEMENTATION

The most recent version of Snippet is provided as a representative implementation of the concepts

presented in this requirements specification. Users are encouraged to install and run Snippet to

16

familiarize themselves with the behaviors described in this document. Snippet's documentation is also

supplied to give supplemental information to this specification.

17

APPENDIX A - TECHNICAL DESCRIPTION OF ANNOTATIONS

A.1 ANNOTATION JSON
Annotations are stored in a database, but are imported or shared via JSON. The JSON transaction

mechanism allows the various annotation implementations to have customizable implementation using

a common sharing mechanism.

In addition to the import and export of annotations, the JSON representation of an annotation is the

correct data implementation when exercising the Annotation Server's RESTfuI API.

A.1.1Annotation JSON Schema

Annotations are supplied to the Annotation Service with JSON conforming to the schema as shown in

the text box below.

Annotation JSON Schema

"title": "Annotation",
"type": "object",

"properties": {
"id":{ "type":"string" },

"filename":1 "type":"string", "minLength": 0, "maxLength": 40000
"linenum": { "type": "integer", "minimum": 1, "maximum": 4000000

"txt": { "type": "string", "minLength": 0, "maxLength": 40000
"author": { "type": "string", "minLength": 0, "maxLength": 40

"tags": {
"type": "array",

"items": { "type": "string", "maxLength": 40 },

"uniqueItems": True,
"maxItems": 10

},

"timestamp": {

"type": "string",

"format": "date-time"
},

"ctimestamp": {

"type": "string",

"format": "date-time"
}

},

"required": ["filename", "linenum", "txt", "author", "tags"]

The id field found in the text box is automatically generated. When an annotation is created, it is passed

to the database without an id. The database action of saving the annotation will assign the annotation

its id. Subsequent operations with this annotation will then contain its id.

Additionally, JSON arrays of annotations can be built to handle multi-annotation interactions with the

Annotation Service.

Fields that are not specified in this document will be ignored by the current version of the Annotation

Service. The Annotation Service, however, may be extended after the time of this writing.

18

A.1.2 Annotation JSON Example

A truncated JSON export of a Snippet annotation database is below. The JSON is suitable to be imported

by Snippet or the Annotation Database.

Annotation JSON Example

"data": [

1
"author": "userl",

"ctimestamp": "2018-09-10T10:38:36.834246",
"filename": "#/main.c",
"linenum": 23,
"tags": [
"release"

],

"timestamp": "2018-09-10T10:39:30.210634",
"txt": "Primary code - this is what is in the #release version"

"author": "userl",
"ctimestamp": "2018-09-11T08:07:04.138652",

"filename": "#/main.c",
"linenum": 43,
"tags": [
"This",
"annotation",
"many",

"tags",
"like",
"not"

],
"timestamp": "2018-09-11T08:07:04.138652",
"txt": "#This is a #annotation with #many #tags. #like it or #not;"

},

{
"author": "user2",

"ctimestamp": "2018-09-10T10:35:08.224153",

"filename": "#/test.c",
"linenum": 23,
"tags": [],
"timestamp": "2018-09-10T10:35:08.224153",
"txt": "Debug version of get_user_input. It includes all the debug

prints"
}

],
"schema": f
"format": "notes",
"version": 1

19

APPENDIX B - TECHNICAL DESCRIPTION OF RESULT SETS

Snippet reads Result Set information to give the analyst a visual representation of the Result Set.

Snippet uses a table display as this visual representation. This table can then be used to navigate to the

locations specified in the Result Set.

For a Result Set to be ingested by Snippet or a Snippet-compliant application, it must be supplied as a

JSON object. The Result Set is displayed to the user in table format. Snippet currently supports two JSON

schemas. The first is a hierarchical format that enables source analysis tools to present nested results for

Snippet's use. The second format, called a notes schema, is based on an export of the Snippet

annotation database.

Result Sets are presented as both data and metadata. The metadata describes how Snippet parses and

displays the data. Both the data and the metadata are represented differently in the JSON for each

schema. Each schema is described below.

SARIF files are not yet supported by Snippet. It is a straightforward effort to ingest a SARIF object, then

build a Snippet Result Set object from that information. That task has simply yet to be written.

B.1 HIERARCHICAL RESULT SET SCHEMA
Snippet builds a table out of each result provided in the schema. Each row in the table is a different

result from the Result Set. The hierarchical schema provides a mechanism to group the rows. This

grouping is described in the "data" element description below.

There are four fields in the hierarchical Result Set schema. The list below gives the JSON name strings for

each of these fields along with a description of these fields.

• "schema" — identifies the hierarchical results schema

• "table headers" — a list of the table headers Snippet will display (the order of this list

describes how the data field will be extracted)

• "f ields" — the JSON names associated with each data member in the "data" field (this list

must be ordered exactly as the "table headers" field for the data to be correctly extracted

and displayed)

• "data" — the location information associated with the results

The "table headers", "fields", and "data" members all work together to build the table. Each

data element is defined as a parent in its JSON. This is to allow other data to be nested under that data

element. The nested data is presented as a list underneath the children of that data element. In turn,

each child element is defined as a parent, and can have children underneath it as well. This is explained

in deeper detail below.

B.1.1 Hierarchical "scheme Element

The "s chema" element must appear as follows to identify a hierarchical Result Set:

"schema": { "version" : 1, "format", "hierarchical results"}

B.1.2 Hierarchical "table headers", "fields", and "date Elements

The "table headers" and "f ields" elements are ordered lists of strings. Their ordering is crucial

because headers and fields are matched based on this ordering. The "table headers" provide the

headers for each column in the table that is presented to the user. Each string in the table headers

20

corresponds to a string in the "f ields" element; the first table header is associated with the first field,

the second with the second, etc. Each element in the "f ields" element is a name for the list of

name/value pairs in the "data" element. There are no restrictions on the headers or fields displayed by

Snippet.

Each element in the "data" array MUST have a "parent" object. The value associated with the
,'parent" name is a JSON element containing the information for this result. The parent object MAY

include data for each of the fields specified in the overarching fields array. If it does not have data for

that field, that table entry will be left blank. Additionally, to generate a navigation location for each

result, the parent object MUST include "f ilename" and "linenure fields, whether or not these are

included in the "table headers" and "f ields" arrays. The parent object may also contain an

OPTIONAL "colnure field to further resolve the location (the meaning and effect of the "children"

array is explained below). The "colnue field places the Snippet cursor on the specified column if this

field is present. If the "colnue field is not present, Snippet places the cursor on the first column (line

numbers are indexed from 1; column numbers are indexed from 0).

As an example, the JSON in the text box below will generate the table in figure 6.

Hierarchical Results JSON

"schema": {"version":1, "format": "hierarchical results"},

"table headers": ["File", "Line", "User ID", "Column", "Note"],
"fields": ["filename", "linenum", "author", "colnum", "txt"],

"data": [
{ "parent": {

"author":
{ "parent": f

"userl", "filename": "main.c", "linenum": 15} },

"author":
{ "parent": f

"user2", "filename": "test.c", "linenum": 44} },

"author": "root", "filename": "main.c", "linenum": 311 }

if (i == 0)
{

44 printf ("debug: leaving get user input with NULL\n");
return NULL;

}

inbuf[i] = '\0';
ret_str = (char t)strndup(inbuf, i);
printf ("debug: leaving get user input with '95s'\n", ret_str);
return retstr;

• File Line User ID Note

0 main.c 15 userl

1 test.c 44 user2

2 main.c 31 root

Figure 4. Hierarchical Results Display

21

B.1.3 Nested Hierarchical Results

Snippet's results nesting feature is provided so that analysis tools can generate groupings of results. In

the examples in figures 7 and 8, we show a grouping based on a line of code. We have expanded the

JSON above to include annotations and a grouping.

Grouping is accomplished with the "children" array in each data element. The "children" element

is an array holding more results. These results are identical in form to all the other results. That is, they

must have "parent", "filename", and "linenue fields ("colnure is optional). Additionally, they

must support the field names listed in the overall "f ields" array. The "children" array is an

extension of a parent object.

Nested Hierarchical Results JSON

"schema": {"version":1, "format": "hierarchical results"},
"table headers": ["File", "Line", "User ID", "Column", "Note"],

"fields": ["filename", "linenum", "author", "colnum", "txt"],
"data": [

{ "parent": {
"author": "userl", "filename": "main.c", "linenum": 15},

"children": [
{ "parent": {

"author": "userl", "filename": "main.c", "linenum": 15,

"colnum": 2, "txt": "First word"} },

{ "parent": {

"author": "userl", "filename": "main.c", "linenum": 15,

"colnum": 11, "txt": "Second word"} },

{ "parent": {
"author": "userl", "filename": "main.c", "linenum": 15,

"colnum": 16, "txt": "Third word"} }

},
{ "parent": f

"author": "user2", "filename": "test.c", "linenum": 44} },

{ "parent": f
"author": "root", "filename": "main.c", "linenum": 311 }

1

11 #include <stdlib.h>
12
13 /*
14
15 Warning: This lunction allocates memory to return to
16 the user. The user is responsibte for freeing
17 this memory.
18
19 41
20
21 #define MAXINPUT 100
22
23 char * get_user_input()

File

• 0 main.c

1 main.c

2 main.c

Line User ID Column Comment Notx.

15 userl

15 userl 2

15 userl

First word

11 Second word

3 main.c 15 userl 16 Third word

test.c

5 main.c

44 user2

root

Figure 5. Nested Hierarchical Results Display

22

Note: The Column and Comment fields are blank in the table for the results not

containing these data in their JSON parent elements.

Any element in the children array can, in turn, have its own list of children. The nesting is arbitrarily

deep.

B.2 NOTES RESULT SET SCHEMA

The notes Result Set schema is based on the information stored in the annotation database. lf one were

to export the database to JSON, it would be loadable as a Result Set. The notes Result Set JSON must

only contain two elements: (1) the "schema" from which the parsing is indicated, and (2) the "data"

array.

B.2.1 Notes "schema" Element

JSON for the notes Result Set must include the following "schema" element to ensure Snippet parsing of

the Result Set:

"schema": {nformat": "notes", "version": 1}

B.2.2 Notes "data" Element

The "data" element is an array of JSON elements. Each element is composed of the fields listed below.

Each element in the "data" array must contain "f ilename" and "linenure values; all other values

are optional. Snippet will display a table with File, Line, Author, and Note columns.

• "author" — displayed in Author column (optional)

• "ctimestamp" — creation timestamp (ignored, optional)

• "f ilename" — displayed in File column (required)

• "linenure — displayed in Line column (required)

• "tags" —tags in the annotation (ignored, optional)

• ''timestamp" — last edit timestamp (ignored, optional)

• "txt" — annotation string displayed in Notes column (optional)

An export of a demo annotation database resulted in the JSON in the following textbox. The display of

these as a Result Set is provided in figure 10.

23

Flat Result Set JSON (Notes Database Export)

"data": [

"author": "user3",

"ctimestamp": "2018-09-10T10:38:36.834246",

"filename": "#/main.c",

"linenum": 23,

"tags": [

"release"

],

"timestamp": "2018-09-10T10:39:30.210634",

"txt": "Primary code - this is what is in the #release version"

"author": "user3",

"ctimestamp": "2018-09-10T10:38:54.154072",

"filename": "#/main.c",

"linenum": 48,

"tags": [

"release"

1,

"timestamp": "2018-09-10T10:38:54.154072",

"txt": "Primary code - this is the #release main."

"author": "user3",

"ctimestamp": "2018-09-10T10:35:08.224153",

"filename": "#/test.c",

"linenum": 23,

"tags": [

"debug"

],

"timestamp": "2018-09-10T10:35:08.224153",

"txt": "Debug version of get_user_input. It includes all the #debug prints"

(cont.)

Flat Result Set JSON (Notes Database Export) (cont.)

"author": "user3",

"ctimestamp": "2018-09-10T10:35:49.324205",

"filename": "#/test.c",

44 ret_str = (char t)strndup(1nbuf, 1);
45 return ret_str;
46 }
47
o 1 Primary code - this is the #release main.
48 nt main(int argc, char ** argv)
49 {
50 char 'user data = NULL;
51
52 do {
53 user_data = get_user_input();
54 if (user_data)
55
56 printf("\nYou typed: %s\n\n", user data);

free user data •

• File Line Author Note

0 main.c 23 user3 Primarycode-thisisyvhatisintheonReaseversion

1 main.c 48 user3 Primary code - this is the #release main.

2 test.c 23 user3 Debugversionofget_userjnputAtindudesalltheodebugprints

3 test.c 30 user3 Thisisattdebugprint

4 test.c 31 user3 This is not a debug print, it's in the non-debug version as well

Figure 6. Flat Result Set Display

25

APPENDIX C- KEY BINDING MAP

Snippet's key bindings are listed in the tables below. These have been refined over time per Sandia's

auditor preferences. Snippet provides four sets of standard key bindings that map to the default Snippet

key bindings and different editor environments: vim, emacs and Windows. Auditors often prefer a

specific editor, and it makes sense that the key bindings closest to the auditor's expectation will be more

optimal for their usage. Snippet provides the user with the capability to personalize the key bindings

through the preferences dialog box.

Table 4. Annotation Key Binding

Action Snippet default VIM Emacs Windows

Add/Edit Annotation ; •; •; •,

Add New Annotation Ctrl+; Ctrl+; Ctrl+; Shift+;

Show Annotations A A A F8

Update Annotations Ctrl+R, F5 Ctrl+R, F5 Ctrl+R, F5 Ctrl+R, F5

Update All Annotations
Ctrl+Shift+R,

Ctrl+F5

Ctrl+Shift+R,

Ctrl+F5

Ctrl+Shift+R,

Ctrl+F5

Ctrl+Shift+R,

Ctrl+F5

Go to Next Annotation V V V F2

Go to Previous Annotation Shift+V Shift+V Shift+V Shift+F2

Annotation info CtrI+' Ctrl+' CtrI+' F9

Open lnbox Ctrl+/ Ctrl+/ Ctrl+/ Ctrl+/

Rename Tag

Table 5. Cross Reference Navigation Key Bindings

Action Snippet default VIM Emacs Windows

Open Cross Reference Dialog Ctrl+\ Ctrl+\ Ctrl+\ Ctrl+\

Smart Search Ctrl+H Ctrl+H Ctrl+H Return

Open in New Tab

Open in New Split Ctrl+Shift+S Ctrl+Shift+S Ctrl+Shift+S Ctrl+Shift+S

Search for Definitions Ctrl+]
Ctrl+],

Ctrl+Shift+-,g
Ctrl+] F12

Search for References Ctrl+[
Ctrl+[,

Ctrl+Shift+-,c
Ctrl+[Shift+F12

Search for File Alt+] Alt+] Alt+] F11

Pop XRef Location Ctrl+T Ctrl+T Ctrl+T Shift+Backspace

Go to Next Result Ctrl+N Ctrl+N Ctrl+N Ctrl+Alt+Down

Go to Previous Result Ctrl+P Ctrl+P Ctrl+P Ctrl+Alt+Up

Go to Newer Result Ctrl+. Ctrl+. Ctrl+. Ctrl+Alt+Right

Go to Older Result Ctrl+, Ctrl+, Ctrl+, Ctrl+Alt+Left

26

Table 6. Code Viewer Navigation Key Bindings

Action Snippet default VIM Emacs Windows

Search / /
/

Ctrl+S

/

Ctrl+F

Search Backward ? ? ? ?

Search Current Word Shift+8 Shift+8 Shift+8 Ctrl+S

Search Current Word

Backward
Shift+3 Shift+3 Shift+3 Ctrl+Shift+S

Search Next N N N
N

F3

Search Previous Shift+N Shift+N Shift+N
Shift+N

Shift+F3

History Forward Alt+Right
Ctrl+l

Alt+Right
Alt+Right Alt+Right

History Backward Alt+Left
Ctrl+O (letter)

Alt+Left
Alt+Left

Alt+Left

Backspace

Go to Line Ctrl+G Ctrl+G Ctrl+G Ctrl+G

Show Outline 0 (letter) 0 (letter) 0 (letter) F6

Show Results R R R F7

Focus Omnibar Ctrl+K Ctrl+K Ctrl+K
Ctrl+K

Ctrl+L

Focus Code Viewer

Go to Bracket Shift+5 Shift+5 Shift+5 Ctrl+]

Global declaration G, Shift+D G, Shift+D G, Shift+D Shift+Space

Local declaration G, D G, D G, D Space

Table 7. Misc. Ul Shortcut Key Bindings

Action Snippet default VIM Emacs Windows

Next Result Ctrl+Shift+J Ctrl+Shift+J > Ctrl+Down

Previous Result Ctrl+Shift+K Ctrl+Shift+K < Ctrl+Up

New Tab Ctrl+Shift+T Ctrl+Shift+T Ctrl+Shift+T Ctrl+T

Close Tab Ctrl+W Ctrl+W Ctrl+W
Ctrl+W

Ctrl+F4

Next Tab Ctrl+PgDown Ctrl+PgDown Ctrl+PgDown
Ctrl+Tab

Ctrl+PgDown

Previous Tab Ctrl+PgUp Ctrl+PgUp Ctrl+PgUp
Ctrl+Shift+Tab

Ctrl+PgUp

Open File
Ctrl+Shift+0

(letter)

Ctrl+Shift+0

(letter)

Ctrl+Shift+0

(letter)

Ctrl+Shift+0

(letter)

27

Table 7. Misc. Ul Shortcut Key Bindings

Action Snippet default VIM Emacs Windows

Open File in New Tab

Show Console Shift+1 Shift+1 Shift+1 Shift+1

Highlight Code Ctrl+1 Ctrl+1 Ctrl+1 Ctrl+1

Highlight Code Ctrl+2 Ctrl+2 Ctrl+2 Ctrl+2

Highlight Code Ctrl+3 Ctrl+3 Ctrl+3 Ctrl+3

Highlight Code Ctrl+4 Ctrl+4 Ctrl+4 Ctrl+4

Highlight Code Ctrl+5 Ctrl+5 Ctrl+5 Ctrl+5

Highlight Code Ctrl+6 Ctrl+6 Ctrl+6 Ctrl+6

Highlight Code Ctrl+7 Ctrl+7 Ctrl+7 Ctrl+7

Clear Highlights Ctrl+9 Ctrl+9 Ctrl+9 Ctrl+9

Highlight as Comment Ctrl+O (zero) Ctrl+O (zero) Ctrl+O (zero) Ctrl+O (zero)

Fold F F F F

Unfold Shift+F Shift+F Shift+F Shift+F

Table 8. Mark Navigation Key Bindings

Action Snippet default VIM Emacs Windows

Set Mark M M M M

Jump to Mark

Set Anon Mark M, Ctrl+M M, Ctrl+M M, Ctrl+M M, Ctrl+M

Cycle Anon Marks Ctrl+M Ctrl+M Ctrl+M Ctrl+M

Clear Anon Marks Ctrl+Shift+M Ctrl+Shift+M Ctrl+Shift+M Ctrl+Shift+M

Table 9. Global Code Viewer Movement Key Bindings

Action Snippet default VIM Emacs Windows

Right L
L

Space
Ctrl+F

Left H
H

Backspace
Ctrl+B

Up K K Ctrl+P

Down J J Ctrl+N

Begin G, G G, G G, G

End Shift+G Shift+G Shift+G

Start of Line 0 (zero) 0 (zero) Ctrl+A

End of Line Shift+4 Shift+4 Ctrl+E

Start of Word D D D

28

Table 9. Global Code Viewer Movement Key Bindings

Action Snippet default VIM Emacs Windows

End of Word E E E

Word Left B B B

Word Right W W W

View Top Shift+H Shift+H Shift+H Shift+H

View Middle Shift+M Shift+M Shift+M Shift+M

Center Ctrl+L Ctrl+L Ctrl+L Shift+L

Page Up Ctrl+B Ctrl+B
(Could not bind

Ctrl+Z)

Page Down Ctrl+F Ctrl+F Ctrl+V

Line Up Ctrl+Y Ctrl+Y

Line Down Ctrl+E Ctrl+E

29

