SANDIA REPORT i
SAND2019-8385 @ ﬁatignal

Laboratories

Printed July 17, 2019

EMPHASIS T™/Nevada UTDEM
User Guide Version 2.1.3

C. David Turner
Timothy D. Pointon
Keith L. Cartwright
Richard M. J. Kramer
Duncan A. McGregor
Ed Love

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

ABSTRACT

The Unstructured Time-Domain ElectroMagnetics (UTDEM) portion of the EMPHASIS suite solves
Maxwell’s equations using finite-element techniques on unstructured meshes. This document provides
user-specific information to facilitate the use of the code for applications of interest.

ACKNOWLEDGMENT

The authors would like to thank all of those individuals who have helped to bring EMPHASIS/Nevada
to the point it is today, including Mike Pasik, Dave Seidel, Bill Bohnhoff, Rich Drake, and all of the
NEVADA code team.

CONTENTS

1. Intr ion
[r. UTDEM Simulation Process|.oviii i e
L O P
nput File an eyworas
1. Solver formulationkeywordl. o oo
2. FEMbasisorderkeywordl.
3. Solver option keywords for PIC| o
4. Boundary condition keywords]. oo
5. Virtualedgesetkeyword].
6. Observerkeywords|......... . .
7. Source keywords|.
8. Loadkeywords|
9. Slotkeyword|.
to. Wirekeywords|. o
3. Running UTDEM Simulations]
4. nput Options|
1. Control OPtions|.o\ttt
k. OX PUOMS|. . ettt e
5. nput File and Keywords
1. PIC-Specific Keywords|.
>. UTDEM PIC-Specific Keywords|o
6. Framework keywords for UTDEM|
1. Block Options|.
2. Function Specification|........... ...
3. Lime Step Controls]ttt
4. Initial Reflnement]
Is. Initial Conditions|. o
[6. Periodic Boundary Conditions| i
[7. Simulation Control Keywords|
1. EdgesetKeyword|.
2. Simulation Termination Keywords|.oiiiiiii i
3. Restart Keywords|.

10

11
II
3
14
14
13
13
19
25
27
27

29

30
30
31

34

34
39

Output Keywords|.

Plot Variables|.

Linear Solver Keywords|

Debug Mode Keyword|.

Material Models for UTDEMI e

3.1 Simple Electricall ... o
3.2. Breakdown Electrical
[3.3. HP Gas Electricall
[.4. Foam Electricall
[.s. HP Foam Electricall.
[.6. Kinetic Gas Electricall oo
[.7. RIC Electricallo
[.8. Lorentz Polarization|.
[3.9. Face PML .. o
300. Edge PML... ..o o

3.11. Node PML . ..o

ybri

1.

Keywor;dsl ..

(10.Inlet-port Poisson Solutions|

[11.Running UTDEM PIC With ITS Source Data|

Volume Emission and Ener&Deposition|

Setting Up Time-Dependent Emission].ovuiiiiiiiiii e,

[References|

AYe]o

U
IA. Use of the PREP Mesh Preprocessor] ...,
B. Complete UTDEM inputfild
[C. Sideset Extractorinput file].ot
[D." Doisson Solution input file].

|E. Runtime ComEiler Functionaligzl ..

|E.1. [he RTC languagel ...

E.z. Using RTC and APREPRO| ...
E.;. Using RTC and ALEGRA Functions]ovviiuiiiniiiaiainn,
F. Templates for Hybrid Meshes|
G. IBCasaResistive Load|

LIST OF FIGURES

[Figure 1-1. The UTDEM simulation process| oo .. 10
[Figure 2-1. Typical UTDEM physics keywords.|. oo o o 11
[Figure 7-1. Typical simulation and output control keywords.|. oL 59
[Figure 9-1. Example hybridmesh.|....... o 82

LIST OF TABLES

[Table 7-1. Plot Variables for UTDEM]| i 62
[Table 7-2. Plot Variables for UTDEM PIC|. 0 i 63
[Iable 7-3. Column listing with descriptions for the auto_its beam.dat debugfile|............ .. 6s
[Table 8-1. Values for FOAM ELECTRICAL model coefficients|.t 70

1. INTRODUCTION

EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetics (UTDEM) is a general-purpose
code for solving Maxwell’s equations on arbitrary, unstructured tetrahedral meshes. The geometries and
the meshes thereof are limited only by the patience of the user in meshing and by the available
computing resources for the solution. UTDEM solves Maxwell’s equations using finite-element method
(FEM) techniques on tetrahedral elements using vector, edge-conforming basis functions [14].

EMPHASIS/Nevada Unstructured Time-Domain ElectroMagnetic Particle-In-Cell (UTDEM PIC) is
a superset of the capabilities found in UTDEM. It adds the capability to simulate systems in which the
effects of free charge are important and need to be treated in a self-consistent manner. This is done by
integrating the equations of motion for macroparticles (a macroparticle is an object that represents a
large number of real physical particles, all with the same position and momentum) being accelerated by
the electromagnetic forces upon the particle (Lorentz force). The motion of these particles results in a
current, which is a source for the fields in Maxwell’s equations.

1. UTDEM SIMULATION PROCESS

The UTDEM simulation process is shown in Fig. [i-1 The geometry of interest must first be modeled
and meshed using appropriate software. I-kDEAS is one option that provides both, but successtul
meshes have been generated using CUBIT and ICEM CFD Tetra as well. Regardless of how the mesh is
generated it must ultimately be written or converted to EXODUSII [g] format. CUBIT and ICEM do
this directly as does -DEAS with the addition of a special 3™ party feature. However, certain features of
UTDEM require sets of nodes (nodesets), edges (edgesets), or faces (sidesets) to be defined. In
particular, edgesets are not a part of the EXODUSII standard. The creation of these “edgesets” along
with nodesets and sidesets are handled along with the conversion from I-DEAS universal format to
EXODUSII format by the preprocessing step PREP [3]. Use of virtual edgesets (described later) avoids
the requirement to process edgesets through PREP. Further discussion of the use of PREP is found in

Appendix @

The actual input required for UTDEM consists of only two files, the Genesis file containing the mesh
and the problem-specific input file. “Genesis” normally describes a mesh description file in EXODUSII
format containing mesh only, no data.

A critical aspect of the mesh for UTDEM is that boundary conditions are described by EXODUSII
sidesets, edgesets, or nodesets. These requirements will be described later as each feature is covered in
detail. The tetrahedral elements should also be reasonably well shaped.

9

I-DEAS Universal mesh description (deprecated)

Genesis mesh description [e.g. CUBIT)

|
-

Genesis mesh description with
Prep-added edgesets (deprecatad)

Figure 1-1. The UTDEM simulation process.

UTDEM results are available in the form of observer time histories and plot dumps of specified
variables in an EXODUSII file. These results can be displayed with most any simple plotting package in
the case of time histories and by post-processing tools which can import EXODUSII, such as EnSight
or ParaView, in the case of plot dumps.

2. UNITS

All UTDEM simulations are performed in MKS (SI) units. As such, all input file values must be scaled
accordingly by the user. This is especially important for BOX IEMP simulations since
radiation-transport codes generally favor CGS units. Some exceptions are made for certain control
inputs, where different units are used for various reasons; these are noted throughout this manual when
encountered.

2. UTDEM INPUT FILE AND
KEYWORDS

The UTDEM input file uses the standard NEVADA input file format, which includes keywords for
debugging, physics type, solver control, output control, and more. Details of all of these except for the
specific physics can be found in the ALEGR A user guide [3]. A complete input file for one of the
UTDEM regression problems is given in Appendix|B]

UNSTRUCTURED TD ELECTROMAGNETICS

formulation, second order

aztec set, O

abc bc, sideset 4

pec bc, sideset 2

observer, nodeset 28

observer, nodeset 29

source, nodeset 31, function 1

slot observer, nodeset 19

slot, edgeset 123, aztec_set 1, width 0.00001, depth 0.0, int_mat 1, ext_mat 2

slot observer, nodeset 20

slot, edgeset 124, aztec_set 2, width 0.00005, depth 0.0, int_mat 1, ext_mat 2
END

Figure 2-1. Typical UTDEM physics keywords.

The format for specifying UTDEM physics and associated keywords is shown in Fig. The physics
keyword UNSTRUCTURED TD ELECTROMAGNETICS specifies to the Nevada framework that the
UTDEM physics model should be used for the simulation. Most of the remaining keywords are specific
to UTDEM and are described below along with many others. Case is ignored in the input file. It s
important to note that lines are limited to 160 characters or less. Keywords can be abbreviated to stay
below this limit. Additionally, when a floating-point value is required, the decimal point needs to be
included (i.e., 0. notsimply 0).

1. SOLVER FORMULATION KEYWORD

FORMULATION, type
Specifies the UTDEM solver formulation for this simulation. Options for type are:

II

SECOND ORDER
Utilize the unconditionally stable, 2" order electric-field wave-equation formulation. This
formulation works with all physical models implemented in the code and is recommended
for most applications.

SECOND ORDER ARTUZI
Utilize the SECOND ORDER formulation above with Artuzi late-time stability correction.
This formulation can suppress late-time drift due to the use of very large time steps. Note
that it causes all results to be advanced in time by 1/2 time step.

SECOND ORDER ARTUZI, STATIC LIMIT
Utilize the SECOND ORDER formulation above with Artuzi late-time stability correction
and the Artuzi rhs term [S]w" disabled. This should only be applied with caution and only
when the problem is essentially static, where element edge lengths are much, much smaller
than the wavelength. Although there is no theoretical justification for this modification, it
appears to work extremely well in the static limit.

SECOND ORDER FRIEDMAN, THETA real
Utilize the SECOND ORDER formulation, but with unconditional stability achieved using
the Friedman implicit method with adjustable damping [7], instead of the Newmark-Beta
method used for standard SECOND ORDER. The damping parameter ¢ (required) should be
in the range 0 < 0 < 1, where o is no damping and 1 is the maximum damping. This solver
is intended to be used only with PIC simulations to damp high frequency (w ~ 1/At)
noise from particle fluctuations. Our experience is that this method can very effectively
damp noise as — 1, but occasionally results in numerical instability in large production
simulations. The reason for this has not been determined, but is clearly problem-specific.
Using ¢ = 0.25 seems to be a practical safe value, although experimenting with values up to
= 1 may be successtul for further reduction of particle noise. Note that PIC simulations
have an additional constraint on the timestep. They must resolve the highest frequency
plasma oscillations in the problem, w,At < 1, where w, = /ne? /€y, and n is the plasma
density in C/m’.

CRANK NICOLSON
Utilize the CRANK NICOLSON time integrator for the first-order form of Maxwell’s
equations. This formulation is unconditionally (A) stable like the second-order
formulation, and can be shown to be algebraically equivalent for 5 = 1/4. Itis supports
PML boundaries, history dependent material models, and is compatible with PIC. Note
that some functionality is not available with CRANK NICOLSON.

BACKWARD EULER
Utilize the BACKWARD EULER time integrator for the first-order form of Maxwell’s
equations. This formulation is unconditionally (L) stable. It supports PML boundaries,
history dependent mateiral models, and and is compatible with PIC. Note that some
functionality is not available with BACKWARD EULER. The BACKWARD EULER option is
first order accurate and recommended only for determining stationary effects (with large
timesteps) or in the case of large electrical conductivities.

I2

BACKWARD EULER FRIEDMAN, THETA real
This is a first order system formulation of the SECOND ORDER FRIEDMAN option. This
option is algebraically equivalent to SECOND ORDER FRIEDMAN as long as initial
conditions are quiescant. BACKWARD EULER FRIEDMAN is therefore second order accurate
when started with quiescant initial conditions. The developers do not recommended that
this method be used with non-quiescant initial conditions. This method is unconditionally
stable and supports adjustable damping [7]]. It supports PML boundaries, history
dependent material models, and is compatible with PIC. Some functionality is not available
with BACKWARD EULER, FRIEDMAN.

FIRST ORDER
Utilize the conditionally stable, coupled 1** order formulation (not fully implemented).

For additional information on these options consult the UTDEM theory guide [14].

CONDITION NUMBER
Specifies that the system matrix condition number should be output to the history and/or exodus
files whenever the matrix is refilled.

2. FEM BASIS ORDER KEYWORD

BASIS ORDER, int
Specifies the order of the FEM basis or shape functions. Available values are:

BASIS ORDER, O
Default if no keyword specified
The default basis uses the Whitney tangential vector finite element with one degree of
freedom per edge. This is occasionally referred to as a o™ order or 1** order mixed element.
These shape functions are constant along an edge and linear across the element. In reality,
they behave more like o™ than r** order as the spatial convergence is observed to be nearly
linear.

BASIS ORDER, 1
This option adds one additional degree of freedom per edge by, for tetrahedrons, adding six
additional hierarchical shape functions to the original six Whitney functions. This 1** order
full element achieves full 2™ order or quadratic spatial convergence with the penalty of
doubling the number of unknowns in the FE system.

This optional basis is presently only available for tetrahedral elements, precluding its use
with hybrid meshing. It has been successfully tested with all algorithms in the code except
for the unconditionally stable wire.

13

3.

SOLVER OPTION KEYWORDS FOR PIC

GODFREY ALPHA1, real

4.

Specifies the coefficient of the forward time in the field solve. With FORMULATION SECOND
ORDER, one can specify GODFREY ALPHA1 > 0.25. The default is 0.25 and yields the
Newmark-Beta time advance [8]. Practical values of GODFREY ALPHA1 are between o.25 and 1.0;
at a value of 1 it is the same algorithm as Friedman with a theta value of 2. Note that [8] analyzes a
“Friedman” solver in detail, but this is a related explicit first-order algorithm, not the one enabled
in Emphasis with the SECOND ORDER FRIEDMAN keyword.

BOUNDARY CONDITION KEYWORDS

PEC BC, SIDESET int

Specifies a perfect electric conductor boundary condition.

The electric fields tangential to the surface described by the sideset having id int will be set to
zero. This sideset id must exist in the genesis file or Nevada will complain. Multiple pec bc’s may
exist in the same simulation.

As with all sidesets, multiple disjoint surfaces may exist in the same sideset. PEC surfaces may be
grouped into different sidesets for purposes of visualization.

PMC BC, SIDESET int

Specifies a perfect magnetic conductor or mirror-symmetry boundary condition.

The pmc condition is the natural boundary condition for the edge-conforming FEM
formulation and could simply be left “free”. However, for PIC simulations or any simulation
containing h-line integral observers, the user must specify a sideset defining the pmc using this
keyword. PIC simulations requesting the PIC_CURRENT plot variable must have multiple pmcs
specified using separate side sets.

The sideset id int must exist in the genesis file or Nevada will complain. Multiple pmc bc’s may
exist in the same simulation and PMC surfaces may be grouped into different sidesets for
purposes of visualization.

IBC BC, SIDESET int, IMPEDANCE real

Specifies an impedance boundary condition.

A 1 order surface impedance boundary condition with surface impedance value real will be
applied over the surface described by the sideset having id int. Presently, this “impedance” must
be real, a surface resistance only. Appendix describes how to use the IBC as a bulk load on a
surface, for example to terminate a transmission line. The sideset id must exist in the genesis file
or Nevada will complain. Multiple IBC bc’s may exist in the same simulation.

14

ABC BC, SIDESET int

Specifies an absorbing boundary condition.

A 1 order absorbing boundary condition will be applied over the surface described by the sideset
having id int. This sideset id must exist in the genesis file or Nevada will complain. Multiple abc
bc’s may exist in the same simulation.

An absorbing boundary condition is typically specified in conjunction with a port boundary
condition when the port is located on an exterior surface.

Boundary condition precedence is presently specified in the code as follows: PEC — IBC — ABC, i.e.,
an edge specified as both PEC and IBC or ABC will be PEC. An edge specified as both IBC and ABC
will be IBC.

To specify Perfectly Matched Layer (PML) boundaries to truncate a domain, see Chapter §|for details.
These are specified using a special material model in the block that defines the layer, and do not use a

boundary condition keyword.

5.

VIRTUAL EDGESET KEYWORD

PATH, EDGESET int,

6.

POINT, X=real Y=real Z=real POINT, X=real Y=real Z=real POINT,
Specifies a virtual edgeset to be created along an arbitrary user-defined path through the
geometry, as described by a sequence of POINT vectors, which is independent of mesh topology.

The best-fitting path of existing edges to match the desired line segment(s) entered will be found.
The user is responsible for picking a unique EDGESET id. If an id is chosen which exists in the
Genesis file, a warning is issued and the virtual edgeset is not used. If a specified segment
endpoint cannot be reached within the default tolerance (half the local minimum edge length) a
warning will be issued giving the actual endpoint used.

The order of the edges (and nodes) in the edgeset is determined by the order in which the
POINT’s are supplied. This is useful for the integration direction around an H LINE INTEGRAL.

These virtual edgesets may be used anywhere a mesh-defined edgeset can be used. The EXODUS
EDGE SETS keyword should not be applied to these edgesets.

OBSERVER KEYWORDS

OBSERVER, NODESET int

Specifies the simplest type of single-edge, electric-field-projection observer.

The edge will be located which is defined by the nodeset having id int. This nodeset MUST
contain only 2 nodes. Presently, UTDEM will not issue an error if it does not, the observer will
simply not be created. This will be fixed in a future version. Multiple observers of this type may
exist in the same simulation.

15

SLOT

WIRE

The observer time history will be written to a file with a generated name in the following format:
problem_name . obsnodeset_id . proc_id . dat, where nodeset_id is the requested nodeset id int,
and proc_id will be o for serial or the appropriate processor number for parallel. For parallel, each
processor who has the observer is synchronized to the correct value from the owner and writes a
separate observer time-history file. All of these files are identical at the end of the simulation.

The observer time history will be written to the hisplt database problem_name . his with the
name: 0BS-nodeset_id.

VOLTAGE OBSERVER, NODESET int, [DIRECTION X real Y real Z reall
Specifies a slot voltage observer.

The slot voltage at the node defined by the nodeset having id int will be monitored. This
nodeset MUST contain only 1 node. An error will be issued if it contains more than 1 node. If the
nodeset contains o nodes, the observer will simply not be created. Multiple slot observers may
exist in the same simulation.

The assumed positive direction of the voltage (actually “magnetic current”) can be specified by
the optional parameter DIRECTION. The direction here is that 2/ong the slot, normal to the slot
“gap” where the voltage would be measured across. If not specified, the natural direction (code
internally assumed direction) will be output. This can cause inversion of the results in parallel
depending on the number of processors. Consequently, it is recommended that the direction be
specified. If the specified direction is not very close to the assumed direction, a warning is issued.

The observer time history will be written to a file with a generated name in the following format:
problem_name . slotobsnodeser_id . proc_id .dat, where nodeset_id is the requested nodeset id
int, and proc_id will be o for serial or the appropriate processor number for parallel. For parallel,
each processor who has the observer is synchronized to the correct value from the owner and
writes a separate observer time-history file. All of these files are identical at the end of the
simulation.

The observer time history will be written to the hisplt database problem_name . his with the
name: SLOTVOLOBS-nodeset_id.

CURRENT OBSERVER, NODESET int, [DIRECTION X real Y real Z reall
Specifies the wire current observer.

The wire current at the node defined by the nodeset having id int will be monitored. This
nodeset MUST contain only 1 node. An error will be issued if it contains more than 1 node. If the
nodeset contains o nodes, the observer will simply not be created. Multiple wire observers may
exist in the same simulation.

The assumed positive direction of the current can be specified by the optional parameter
DIRECTION. If not specified, the natural direction (code internally assumed direction) will be
output. This can cause inversion of the results in parallel depending on the number of processors.
Consequently, it is recommended that the direction be specified. If the specified direction is not
very close to the assumed direction, a warning is issued.

The observer time history will be written to a file with a generated name in the following format:
problem_name . wireobsnodeser_id . proc_id .dat, where nodeset_id is the requested nodeset id

16

int, and proc_zd will be o for serial or the appropriate processor number for parallel. For parallel,
each processor who has the observer is synchronized to the correct value from the owner and
writes a separate observer time-history file. All of these files are identical at the end of the
simulation.

The observer time history will be written to the hisplt database problem_name . his with the
name: WIRECUROBS -nodeset_id.

E LINE INTEGRAL, EDGESET int, [DIRECTION X real Y real Z real]
Specifies an electric-field line-integral observer, f E-dl.

The electric-field projections on the edges in the edgeset are simply summed. The vector
DIRECTION is used to determine the direction of the integral and therefore determines the signs
of all the individual edge contributions to the integral by taking the dot product of the vector
edge direction with the DIRECTION vector. Generally, the mesh should be designed such that the
edges are aligned in the correct direction, but this is not required. Multiple observers of this type
may exist in the same simulation.

The observer time history will be written to a file with a generated name in the following format:
problem_name . elinintedgeset id . proc_id .dat, where edgeset_id is the requested edgeset id
int, and proc_zd will be o for serial or the appropriate processor number for parallel. For parallel,
each processor who has a portion of the observer is synchronized to the correct value from the
owner and writes a separate observer time-history file. All of these files are identical at the end of
the simulation.

The observer time history will be written to the hisplt database problem_name . his with the
name: EDL-edgeset_id.

H LINE INTEGRAL, EDGESET int
Specifies a magnetic-field line-integral observer, f H-dl.

The integration direction around the loop is determined by the order of the edges (and nodes) in
the edgeset. These edgesets are typically generated using the PATH keyword, which generates the
edgeset edges (and nodes) in the order in which the POINT’s are supplied. An average magnetic
field is computed for each edge in the edgeset by computing the magnetic field at the center of
each element connected to the edge. This vector magnetic field is then dotted with the edge
direction and the “sense” of the edge, as determined by the edgeset edge (and node) ordering.
These dot products on the edges in the edgeset are then summed. Multiple observers of this type
may exist in the same simulation.

In the case of legacy edgesets created before the PATH command existed, the edge "sense” is
determined from the beam elements in the original mesh defining the edgeset, specified using the
EXODUS EDGE SETS keyword. This usage is deprecated with the convenience of the PATH
command.

The observer time history will be written to a file with a generated name in the following format:
problem_name . hlinintedgeset id . proc_id .dat, where edgeset_id is the requested edgeset id
int, and proc_id will be o for serial or the appropriate processor number for parallel. For parallel,
each processor who has a portion of the observer is synchronized to the correct value from the

7

owner and writes a separate observer time-history file. All of these files are identical at the end of
the simulation.

The observer time history will be written to the hisplt database problem_name . his with the
name: HDL-edgeset_id.

Note that if the simulation contains h-line integrals along with PMC symmetry boundaries, the
PMC’s must be defined by sidesets using the PMC BC keyword.

SURFACE CURRENT, SIDESET int [int ...]
Enables the calculation of a surface current, n X H, on the nodes of the specified conductor
boundary sideset(s).

The surface current is computed from the magnetic field which itself is derived from the electric
field. As a result, the magnetic field value used in the surface current calculation is constant over
each element. An average normal is computed at each node from the normal of the element faces
that contain the sideset node. To enable output of the computed surface current values, be sure
to include SURFACE_CURRENT _DEN on the list of requested plot variables. Because some
post-processing tools may have problems with the length of the variable name the following is

suggested:

plot variable
surface_current_den, as "js"
end

The surface current will be output at all nodes in the simulation but will only have non-zero
values on the specified sidesets.

MAX OBSERVER, ID int, NAME variable_name [BLOCK int int ...]
Specifies a maximum-field (or other registered variable) observer, where the id INT is the
user-defined identifier and NAME is the registered variable to be monitored such as
ELECTRIC_FIELD. The block list is optional and is used to specify which element blocks are to
be monitored. If the name or block listed is invalid then the code will issue an error. If block is
not supplied then all blocks are used. Multiple max observers can exist for the same variable to
monitor different sets of element blocks.

Results are displayed each cycle to the screen and sent to the HISPLT time-history file at the
EMIT SCREEN frequency. If the variable is a vector, both the maximum vector (magnitude) is
monitored along with the individual maxima of each component. For a scalar variable only a
single value is monitored and reported. For screen results, in the case that a particular variable is
identically zero for that time cycle it is reported as ELECTRIC_FIELD == 0.

Typical screen results for two scalar fields and one vector field are:

MAX-5: ELECTRIC_FIELD_MAGNITUDE = 1.4325e+00 in Elem 13599
at (7.8396e+00,7.3799e-01,4.2033e-01)

MAX-6: ELECTRIC_FIELD_PROJECTION = 7.6761e-01 on Edge w/Nodes 10 - 347
at (7.8750e+00,6.2500e-01,1.6250e+00)

MAX-7: ELECTRIC_FIELD = (-1.8644e-01,3.9830e-01,1.3633e+00) in Elem 13599
at (7.8396e+00,7.3799e-01,4.2033e-01)

18

7.

SOURCE
The source keyword may be used in three different modes depending on the type of boundary set
(nodeset, edgeset, or sideset) specified along with it.

MAX-7: ELECTRIC_FIELD-X = -1.0047e+00 in Elem 8588

at (7.5214e+00,7.5055e-01,1.6395e+00)

MAX-7: ELECTRIC_FIELD-Y = 1.0235e+00 in Elem 13902

at (7.7500e+00,1.0000e+00,1.6250e+00)

MAX-7: ELECTRIC_FIELD-Z = 1.3633e+00 in Elem 13599

at (7.8396e+00,7.3799e-01,4.2033e-01)

HISPLT names for the same variables are:

MAX-5
MAX-6
MAX-7-X
MAX-7-Y
MAX-7-Z
MAX-7-C-X
MAX-7-C-Y
MAX-7-C-Z

SOURCE KEYWORDS

1. The following syntax specifies the simplest type of single-edge, electric-field-projection

Dirichlet source:
SOURCE, NODESET int, FUNCTION int, SCALE real SHIFT real

The edge will be located which is defined by the nodeset having id int. This nodeset
MUST contain only 2 nodes. Presently, UTDEM will issue an error if it has > 2 nodes. If it
has o or 1 nodes, possibly due to parallel decomposition, the source will simply not be
created. Multiple sources of this type may exist in the same simulation.

The keyword FUNCTION int specifies a source time history defined by a Nevada keyword
function definition described later. The function is scaled by SCALE and is shifted in time
by SHIFT.

The source time history will be written to a file with a generated name in the following
format: problem_name . stcnodeset_id.proc_id . dat, where nodeset_id is the nodeset id
parameter from the SOURCE line and proc_id will be o for serial or the appropriate processor
number for parallel. For parallel, each processor who has the source is synchronized to the
correct value from the owner and writes a separate source time-history file. All of these files
are identical at the end of the simulation.

The source time history will be written to the hisplt database problem_name . his with the
name: SRC-nodeset_id.

9

2. The following syntax specifies the next simplest electric-field-projection Dirichlet source-a
multi-edge, linear, distributed source:

SOURCE, EDGESET int, FUNCTION int, SCALE real SHIFT real

, DIRECTION, X real Y real Z real, LENGTH real

The edges will be located which are defined by the edgeset having id int. The source will be
applied polarized along the direction vector DIRECTION (d) and scaled to provide the
desired magnitude when integrated over the length LENGTH (£). The scale factor for each
edge in the source is1 - d /¢, where 1is the vector edge length (not normalized). For this
reason, this source makes sense only if the edges are linear and along a Cartesian axis.
Multiple sources of this type may exist in the same simulation.

The source time history will be written to a file with a generated name in the following
format: problem_name . 1insrcedgeset_id.proc_id .dat, where edgeset_id is the edgeset id
parameter from the SOURCE line and proc_7d will be o for serial or the appropriate processor
number for parallel. For parallel, each processor who has the source is synchronized to the
correct value from the owner and writes a separate source time-history file. All of these files
are identical at the end of the simulation.

The source time history will be written to the hisplt database problem_name . his with the
name: LINEARSRC-edgeset_id.

3. The following syntax specifies the final type of electric-field-projection Dirichlet source—a
multi-edge, belt-distributed source:

SOURCE, SIDESET int, FUNCTION int, SCALE real SHIFT real

, DIRECTION, X real Y real Z real, LENGTH real

This source is applied over a surface and can, for example, be used to create a delta-gap
source on a coax center conductor. The edges will be located which are defined by the
sideset having id int. The source will be applied polarized along the direction vector
DIRECTION (d) and scaled to provide the desired magnitude when integrated over the
length defined by LENGTH (¢). The scale factor for each edge in the source is1 - d /¢, where 1
is the vector edge length (not normalized). Multiple sources of this type may exist in the
same simulation.

The source time history will be written to a file with a generated name in the following
format: problem_name . dstsrcsideset_id.proc_id . dat, where sideset_id is the sideset id
parameter from the source line and proc_id will be o for serial or the appropriate processor
number for parallel. For parallel, each processor who has the source is synchronized to the
correct value from the owner and writes a separate source time-history file. All of these files
are identical at the end of the simulation.

The source time history will be written to the hisplt database problem_name . his with the
name: DISTSRC-sideset id.

20

PORT SOURCE
A port source is specified with one of the following commands:

PORT SOURCE, COAXIAL, SIDESET int, FUNCTION int, SCALE real SHIFT real

, CENTER, X real Y real Z real

PORT SOURCE, PARALLEL PLATE, SIDESET int, FUNCTION int, SCALE real

SHIFT real, DIRECTION, X real Y real Z real, SEPAR real

PORT SOURCE, FIELD DIST, SIDESET int, FUNCTION int, SCALE real SHIFT real

Port sources are soft (non-Dirichlet) sources used to drive specific conductor configurations. The
simplest are the coax and the parallel plate, which have been implemented. More complicated are
rectangular or circular waveguide port sources, which require fourier transforms. These have not
yet been implemented. Multiple port sources may exist in the same simulation. When a port
source is applied to an external surface, an absorbing boundary condition is also typically applied
to the same sideset.

Other than the normal waveform description, the coaxial port requires only the spatial CENTER
be specified. The TEM excitation is applied over the specified sideset with E polarized in the
radial direction and the proper variation of

b
rln(b/a)

Here, a is the inner radius and b is the outer radius, which are determined by the code from the
sideset information.

The parallel-plate port requires, in addition to the waveform description, an E-polarization
DIRECTION and a plate separation SEPAR. The TEM excitation is applied over the specified
sideset with polarization DIRECTION and magnitude SCALE/SEPAR such that the voltage across
the plates is SCALE.

The field-distribution port obtains the port field from the sideset distribution factors in the
original 3D genesis file. For a description of how to obtain this distribution, see section rolon
inlet-port Poisson solutions.

The source time history will be written to a file with a generated name in the following format:
problem_name . prisrcsideset_id.proc_id .dat, where sideset_id is the sideset id parameter
from the port source line and proc_id will be o for serial or the appropriate processor number
for parallel. For parallel, each processor who has the source is synchronized to the correct value
from the owner and writes a separate source time-history file. All of these files are identical at the
end of the simulation.

21

The source time history will be written to the hisplt database problem_name . his with the name:
COAXPORTSRC-szdeset_id or PPLTPORTSRC-sideset_id.

WIRE VOLTAGE SOURCE
Specifies a voltage source applied on a single wire edge:

WIRE VOLTAGE SOURCE, EDGESET int, FUNCTION int, SCALE real SHIFT real,
DIRECTION, X real Y real Z real

The source is applied “in series” with this edge, along the wire. If a WIRE LOAD is present on
this edge, the two are in series on the edge. The polarity of the applied voltage will be determined
by the DIRECTION parameter which should be reasonably close to the edge direction.

The edgeset must contain only 1 edge otherwise an error will be issued.

The source time history will be written to a file with a generated name in the following format:
problem_name .wiresrcedgeset_id.proc_id .dat, where edgeset_id is the EDGESET parameter
from the WIRE VOLTAGE SOURCE line and proc_id will be o for serial or the appropriate
processor number for parallel. For parallel, the owning processor writes the source time-history

file.

The source time history will also be written to the hisplt database problem_name . his with the
name: WIREVOLSRC-edgeset_id.

J SOURCE, BLOCK int [int int ...], [options]
Specifies a volumetric vector current-density source. Options available are:

FUNCTION int, SCALE real SHIFT real
DIRECTION, X real, Y real, Z real
CENTER, X real, Y real, Z real
ATTEN real

PROP bool | string

PROPDIR X real, Y real, Z real
RADTRANS bool | string

ANNULUS bool | string

ORIGIN X real, Y real, Z real

If FUNCTION and DIRECTION are specified, the current density will be applied at all zodes in one
or more mesh BLOCK(s), flowing in the direction DIRECTION, having the time history specified
by FUNCTION.

If ATTEN is nonzero, (default is zero) an exponential attenuation is applied across the mesh
according to exp(—ATTEN x z), where z is the normal distance from the source plane to the node
at which the current is required. The attenuation is in the PROPDIR direction, so PROPDIR and
CENTER must be provided.

22

If PROP is true or yes, (default is no) the source will emanate from a plane passing through the
point CENTER traveling in direction PROPDIR. The source plane must be outside and behind the
mesh volume with respect to the propagation direction, otherwise the code will issue a fatal error.
If PROP is false or no, the source will simply follow the specified time history simultaneously
throughout the mesh block(s). If PROP is yes, then CENTER and PROPDIR must be defined.

If RADTRANS is true or yes, (default is no) then the current direction will be defined by data
imported from a radiation-transport code such as CEPTRE. This data is written to the
simulation genesis file by the transport code.

If ANNULUS is true or yes, (default is no) then a phi-directed current will be generated about the
axis defined by DIRECTION. An ORIGIN for the annulus coordinate system must be provided
which lies on the axis defined by DIRECTION.

The source time history will be written to the hisplt database problem_namehis with the name:
JSRC-1001. If a FUNCTION is specified, that time history is written but is not related to the time
history of the externally defined source. The correct external-source time history can be written
to the problem_name.exo file by requesting “CUR_DEN” under plot variables.

EXTERNAL J SOURCE, BLOCK int [int int ...], ext-j-spec
Two variations of ext-j-spec are available. The first specifies an external Exopus-format file
containing current (and optionally, conductivity) with the options:

FILE, file-name (problem_name)
LOADEXTERNALCONDUCT, bool | string (true)
HALTEXTERNALSIM, bool | string (true)
CURDENNAME, string (TRANS_CUR_DEN)
CONDUCTNAME, string (CONDUCTIVITY)

This option directs the code to look for time planes of nodal current-source data in either the
problem genesis file (if the FILE keyword is not set) or the alternate file name specified by the
FILE keyword. Note that the alternate file only works for serial, if parallel is desired then the data
must be placed in the problem genesis file. The LOADEXTERNALCONDUCT keyword specifies
whether to read external conductivities from the same file; the default is to read them and must
be disabled by entering no or false. The CURDENNAME keyword specifies the name in the genesis
or alternate file of the current-density data. The defaultis “TRANS_CUR_DEN”. The
CONDUCTNAME keyword specifies the name of the conductivity data. The default is
“CONDUCTIVITY?”. If the data is not found an error will halt execution.

If the simulation termination time exceeds the external time planes available, the simulation will
gracefully terminate and complete post-processing steps such as far-field transient calculations.
The HALTEXTERNALSIM keyword set to “no” or “false” can be used to modity this behavior to
continue the simulation with] fixed at the final time plane provided.

Note that frequency-domain far-field patterns cannot be generated by de-convolution using this
current source, so far-field patterns from external j-sources are not supported. Far-field transient
waveforms use no de-convolution.

23

The external current-source time history can be viewed in the problem_name.exo file by
requesting the plot variable “CUR_DEN?”. Since the external source is volumetric, there is no
associated time history variable in this case.

The second form uses the RT'C functionality to allow the user to specify current as a vector
function of space and time with the ext j-spec value user defined. The RTC function is
C-style code that must be enclosed in double quotation marks ("..."). Special variable names are
time, which uses the simulation time value, coord, an array of three values corresponding to the
nodal coordinates (z, y, z), and field, an array of three values that specifies the vector J. A full
description of the options available with the RTC is given in Appendix An example of this

usage follows.

EXTERNAL J SOURCE, BLOCK 1, USER DEFINED
n
double pi = acos(-1.0);
double freq = 1.e8;
field[0] = 0.0;
field[1] = 0.0;
field[2] = -sin(freq*time) * sin(pi*coord[0]);

EXTERNAL ELEMENT CONDUCTIVITY
This option directs the code to import element-centered conductivity data. The full syntax is as
follows:

EXTERNAL ELEMENT CONDUCTIVITY, BLOCK int [int ... int],
[FILE, file-namel]
[HALTEXTERNALSIM, bool | string]
[CONDUCTNAME, string]

END

The conductivity data is imported from either the file specified by the FILE keyword or the
problem genesis file if the FILE keyword is not set. Note that the FILE keyword only works for
serial. If parallel is desired, then the data must be in the problem genesis file. The CONDUCTNAME
keyword specifies the name of the conductivity data in the imported file. The default is
“CONDUCTIVITY”. If the data is not found an error will halt execution.

If the time planes of the imported data are not aligned with those of the simulation, the code will
linearly interpolate the conductivity. If the simulation termination time exceeds the external time
planes available, the simulation will gracefully terminate. The HALTEXTERNALSIM keyword set
to “no” or “false” can be used to modify this behavior to continue the simulation with the
conductivity fixed at the final time plane provided.

The code internally adds the imported conductivity to conductivity provided by material models.
In order to ensure that the conductivity in the simulation consists of only the imported
conductivity, the user must specify that the material models in the input deck have zero
conductivity.

24

The external conductivity time history can be viewed in the problem_name.exo file by requesting
the plot variable “EECON”.

PLANE WAVE SOURCE, SIDESET int, BLOCK int [int int ...], FUNCTION int,

EDGE

POLARIZATION X real Y real Z real, PROPDIR X real Y real Z real,
[CENTER X real Y real Z real]
Specifies a plane-wave source.

A plane wave will be launched in one or more mesh BLOCK(s), with polarization given by the
vector following POLARIZATION, propagating in the direction given by the vector following
DIRECTION, having the time history specified by FUNCTION. These block(s) define the total-field
region which is bounded by the supplied SIDESET. Any remaining blocks in the simulation will
be the scattered-field region.

The optional parameter CENTER specifies the location of the phase center of the plane-wave
source in mesh coordinates. This can be any point in the source plane. If this parameter is not
supplied, the code will compute a phase center which is just on the incident side of the total-field
region, normal to the propagation direction PROPDIR. The user should take care to provide a
phase-center location which makes sense relative to the total-field region and the propagation
direction.

The source time history will be written to the hisplt database problem_name . his with the name:
PWSRC-sideset id.

LOAD KEYWORDS

LOAD
The following syntax specifies a single-element load on an element edge:

EDGE LOAD, NODESET int, type, VALUE real

EDGE LOAD, EDGESET int, type, VALUE real

If NODESET is specified, the edge will be located which is defined by the nodeset having id int.
This nodeset should contain only 2 nodes. UTDEM will issue an error if it contains more than 2
nodes. If it contains less than 2 nodes no load will be applied.

If EDGESET is specified, the edge(s) specified in the edgeset is(are) used. Unlike the NODESET
description above, the edgeset may contain one or more edges. If it contains more than 1 edge, the
load will be divided equally between the edges in the edgeset. The assumption is that the edgeset
contains edges in a "line" such that series connection of the sub-loads makes sense. If the edgeset
contains no edges, no load is applied.

The parameter type is limited to “R”, “L”, or “C”: a single resistor, inductor, or capacitor,
respectively. Multiple EDGE LOADs of the same or different types may exist in the same
simulation, but not on the same edge.

25

If it is desired to monitor the voltage across the load, an observer should be assigned to the same
NODESETorEDGESETuﬁngtheOBSERVERorE LINE INTEGRALkeyWOHh.

SPICE LOAD
The following syntax specifies a load described by a Spice deck on an element edge:

SPICE LOAD, NODESET int, DECK, filename [, XYCE]

SPICE LOAD, EDGESET int, DECK, filename [, XYCE]

If NODESET is specified, the edge will be located which is defined by the nodeset having id int.
This nodeset should contain only 2 nodes. UTDEM will issue an error if it contains more than 2
nodes. If it contains less than 2 nodes no load will be applied. If EDGESET is specified, the edge
specified in the edgeset is used. The edgeset should contain only 1 edge. If if contains more than 1,
UTDEM will issue an error. If it contains no edge, no load will be applied.

If the optional keyword XYCE is present on any load, all loads will be solved with Xyce [4] rather
than the default Spice library.

The SPICE DECK containing the description of the spice load in the form of a sub-circuit must be
provided with the SPICE LOAD keyword.

SPICE MODEL spice_option
Specifies how SPICE/Xyce is utilized and the origin of the spice model deck for the simulation.
Options for spice_option are:

build Lumped-parameter SPICE/Xyce deck will be auto-created and written to a file during
startup, this is the default;

use Lumped-parameter SPICE/Xyce deck will be read from file.

Generally, an initial simulation is accomplished using the build (default) option which writes
the SPICE/Xyce deck to a file (see SPICE FILE keyword below). If custom changes are desired
to this deck for subsequent simulations, the file can be edited and the use option invoked
thereafter. If the SPICE MODEL keyword is not present, the default is to auto-build the deck.

SPICE FILE "filename"
Specifies the filename from which to read the SPICE/Xyce model deck if SPICE MODEL, use is
specified, or the file to which to write the deck if SPICE MODEL, BUILD is specified or not
present.

The argument "filename" is an ascii string and the quotes are required. If SPICE FILE is not
specified, the SPICE deck is either read from or written to the default filename,

problem_name . in. Note that this file, either the default or that specified by SPICE FILE, will
be OVERWRITTEN for the next simulation if it is left in place on the file system.

SPICE STEP FRACTION real
Specifies the fraction of the simulation time step which is to be used for the maximum SPICE
internal time step. The default value is o.1.

26

9.

SLOT KEYWORD

SLOT, EDGESET int, AZTEC_SET int, WIDTH real, DEPTH real,

10.

INT_MAT int, EXT_MAT int
Specifies a single sub-grid, thin-slot model.

The slot is defined to lie along the edges defined by the edgeset int with the specified WIDTH and
DEPTH. Since the slot is solved using a separate linear system, an independent AZTEC_SET is
defined for the slot (see Linear solver keywords). The id of this aztec_set should be something
other than o (the default), which is reserved for the primary system solve. An example of this can
be found in the input file given in Appendix Multiple slots may exist in the same simulation.

Since the slot algorithm requires a differential H-field drive based on fields on both sides of the
PEC plane containing the slot, the materials on those sides must be defined by different material
indices. These are defined by int_mat and ext_mat and are the same material id’s as defined in
the framework BLOCK keyword described below. These materials can in fact have identical
constitutive parameters, but they must be entered as two different materials.

Terminating a slot on a periodic boundary has not been tested and is not recommended.

WIRE KEYWORDS

WIRE, EDGESET int, AZTEC_SET int, RADIUS real

Specifies a single sub-grid, thin-wire model.

The wire is defined to lie along the edges defined by the edgeset int with the specified RADIUS.

Since the wire is solved using a separate linear system, an independent AZTEC_SET is defined for
the wire (see Linear solver keywords). The id of this aztec_set should be greater than o, which is
reserved for the primary system solve.

Multiple wires may exist in the same simulation. Wires end conditions must either be open or
terminating on a PEC or periodic boundary. The ends of two wires cannot connect together as
this condition is not implemented. If this situation arises, simply use a single wire with a bend or
whatever is required.

The ends of the wire may be placed on opposite periodic boundaries to make the wire look
"infinitely long". The user is responsible for verifying that the wire indeed lies in the mesh as
expected. If somehow only one end of the wire is on a periodic boundary the code will proceed
with possibly undesirable results as the periodic boundary implementation makes it difficult to
detect this situation.

UNCSTABWIRE, EDGESET int, AZTEC_SET int, RADIUS real

Specifies a single sub-grid, unconditionally stable thin-wire model.

The wire is defined to lie along the edges defined by the edgeset int with the specified RADIUS.
Since the algorithm uses a separate linear system, an independent AZTEC_SET is defined for the

27

wire (see Linear solver keywords). The id of this aztec_set should be something other than o,
which is reserved for the primary system solve. Multiple wires may exist in the same simulation.

WIRE LOAD, NODESET int, R, VALUE real
Specifies a single thin-wire lumped resistive load.

The resistor is defined to lie along the edge defined by the nodeset int with resistance VALUE.

WIRE LOAD, EDGESET int, R, VALUE real
Specifies a single thin-wire lumped resistive load.

The resistor is defined to lie along the edge defined by the edgeset int with resistance VALUE.

2.8

3. RUNNING UTDEM SIMULATIONS

Running a UTDEM simulation requires a Genesis mesh geometry file, problem_name.gen, and an
input file, problem_name.inp (example in Appendix[B). Assuming a standard Nevada user’s
environment or a subset thereof exists in the user’s operating environment, simulations are run in one
of two ways:

$ alegrabal -p <int> <problem_name>
$ Alegra <problem_name>

or
$ runAlegra <problem_name>

The alegrabal script invokes mesh decomposition software to divide and load balance the mesh
among int processors. If serial execution is desired, this step is not required.

The Alegra or runAlegra script actually runs the simulation. For a parallel simulation being run for
the first time after the alegrabal script is invoked, the decomposition is completed before the
simulation starts. For batch runs on clusters, this may not be the case and “Spread
<problem_name>” needs to be run after alegrabal. If your cluster job runs extremely slowly this is
likely the problem because the job was run serial.

After the parallel simulation is completed, the Alegra script performs the necessary joining of the
parallel ExoduslII results into a single ExoduslII file.

For EMPHASIS distribution releases, “alegra” or “Alegra” in the above commands is replaced with
“emphasis” or “Emphasis”, such that alegrabal becomes emphasisbal and runAlegra becomes
runEmphasis. Additional options for each command can be obtained using “~h”, such as
“runAlegra -h”.

29

4,

1.

UTDEM INPUT OPTIONS

CONTROL OPTIONS

TIME STEP MOD, real

Specifies a global modification to the UTDEM-computed stable time step.

The default is 1. This value does not effect the time step if specified using the framework keyword
CONSTANT TIME STEP.

Time step information is written to the output stream and appears just after the
“EMPHASIS/UTDEM?” banner under the title “Time Step Info:”.

The first time step given is the 3D Courant time step computed from the global minimum edge

length.

The second is the EMPHASIS recommended time step modified by TIME STEP MOD. This time
step will be used for the simulation unless CONSTANT TIME STEP is specified or, for PIC
simulations, COURANT FACTOR is specified. This time step is slightly larger than 3D Courant and
should be fine for most simulations, even PIC simulations with non-relativistic particles.

The third is a larger, empirically determined time step based on the maximum edge length and
should provide good results for most pure electromagnetic simulations. To use the first or third
time step the simulation will have to be restarted specifying the desired time step using
CONSTANT TIME STEP.

COMPUTE ENERGY, bool | string

Specifies whether or not electric, magnetic, and total energy is computed throughout the
computational volume.

The possible options are true (or yes) and false (or no). The default is presently false. If true,
appropriate energy global variables are registered and the energy time histories are compute and
written to the hisplt database problem_name.his with the names: E-ENERGY, H-ENERGY, and
TOT-ENERGY. Energies are defined as

1
EENERGY = 5 / ¢E - EdV, (11)
1
H-ENERGY = 5 / w 'B-BdV, (1.2)
TOT-ENERGY = E-ENERGY + H-ENERGY. (13)

30

JOULE HEATING, string
A more detailed energy diagnostic which tallies changes in energy due to Joule heating and
currents. The possible options are ON and OFF. When turned on, this option also sets
COMPUTE ENERGY to true; therefore, the COMPUTE ENERGY option is redundant when
JOULE HEATING is turned on.

In addition the following quanties are computed. Two element variables are generated. Define T'
as given output time. In each element P the local power densities are stored

1
JOULE_POWER_DENSITY = o / oE(T) - E(T)dV, (1.4)
P
1
SOURCE_POWER_DENSITY = / J(T) - E(T)dV. (L)
P

If requested these outputs appear in problem_name.exo. In addition global time histories are
written to the hisplt databas problem_name his

GLOBAL_JOULE_POWER = / oE(T) - E(T)dV (1.6)
GLOBAL_SOURCE_POWER = / J(T) - E(T)dV (1.7)
T
GLOBAL_JOULE_ENERGY = / oE(T) - E(T)dVdt (1.8)

0
T
GLOBAL_SOURCE_ENERGY = / J(t) - E(t)dVdt (1.9)
0

2. BOX IEMP OPTIONS

BOX IEMP [, LOAD CURRENT] [, LOAD DOSE]
Specifies a Box IEMP simulation.

If the BOX IEMP keyword is given alone, variables are registered for DOSE and DOSE_R ATE
and the j source time history is normalized such that it’s time integral is unity. If the LOAD
CURRENT keyword is added, the vector current is loaded as provided by radiation transport
through the simulation genesis file. This requires the RADTRANS keyword to be specified in the J
SOURCE. If the LOAD DOSE keyword is added, the energy deposition is loaded as provided by
radiation transport, again through the genesis file.

Note also thata BOX IEMP simulation requires that the RIC Electrical or HP Gas Electrical
material model be used for all dielectrics. This requirement is enforced by UTDEM. The
box-iemp source also requires that the corresponding material model use nodal variables (selected

by not specifying NDOF, ie, taking the default).

BOX CABLE
Specifies a coupled Box IEMP/Cable SGEMP simulation.

31

The use of this keyword requires EMPHASIS/CABANA [r3] to also use the keyword. The two
codes, EMPHASIS/UTDEM 3D and EMPHASIS/CABANA 2D, then communicate through
the SPICE or Xyce solve to couple a UTDEM SPICE LOAD to a single cable conductor. Both
codes must be using the same time step, termination time, and spice control.

For UTDEM, BOX IEMP must be specified along with a SPICE LOAD. A deck will be required
for the SPICE LOAD; use something like

SPICE LOAD, EDGESET 1, DECK, "resistor.in" [, XYCE]

The coupling works with either the default SPICE or Xyce library. Place a resistor in “resistor.in”
that will be used in the setup step below and ignored for the coupled simulation. Instead, a

pre-edited spice deck will be used by both codes, specified by

SPICE MODEL, USE
SPICE FILE, "box_cable.in"

In CABANA, the cable is described as usual along with the two keywords above in the same

format.
The coupled simulation is executed similar to single simulations using

$ runEmphasis -x $EMPHASIS_3D_EXE -n emphasis box :
-x $EMPHASIS_2D_EXE -n emphasis cable

Instructions for generating the box_cable.in file are the following:

1. In the UTDEM input deck box.inp, comment SPICE MODEL, USEand SPICE FILE,
"box_cable.in" so that the SPICE/Xyce deck is built. Similarly, do this for the
CABANA input deck cable.inp while adding “SPICE MODEL, BUILD”.In addition,
comment out the BOX CABLE keyword in each input deck. Now run both codes
uncoupled, either using the execution line above or separately, generating initial

SPICE/Xyce decks for the uncoupled problems, box.in and cable.in.

2. Copy the UTDEM SPICE/Xyce deck box.in to box_cable.in and edit the file:

a) Switch nodes 1 and 10001

b) Change node 2 to 20001

c¢) Change node 3 to 30001

d) Change ISRCr1 to ISRC

e¢) Change Crto C

f) Remove the X1 line

g) Remove the SUBCKT stuft

h) Keep the TRAN, .OPTIONS, .PRINT TRAN, and END lines
3. From the CABANA SPICE/Xyce deck cable.in:

a) Copy in the circuit description

32

b) Remove the first line comment and the R1 line

c) Add the V(*)’s from the . PRINT TR AN line(s) to the PRINT TR AN line from

box.in, not exceeding 8 per line

d) The TRAN and .OPTIONS in cable.in should be identical to those already in
box_cable.in from box.in. Only one set should remain.

At this point, revert the two input decks by removing the comments from “BOX CABLE”,
“SPICE MODEL, USE”and “SPICE FILE, "box_cable.in"” lines. Comment the “SPICE
MODEL, BUILD” line in cable.inp.

UPDATE MAT STATE, bool | string, TSTART real TEND real INTERVAL real
Specifies whether material state is updated at the end of each time cycle.

Options are true (or yes) and false (or no) [default]. If specified, the material state is updated and
a matrix refill is triggered. This is generally used only with the BREAKDOWN ELECTRICAL
material model. The time window over which this applies can be controlled using the TSTART
and TEND keywords. The INTERVAL keyword specifies how often within the specified time
window the update/refill is triggered. If INTERVAL is o., then it is triggered every time cycle.

This keyword is not necessary for BOX IEMP simulations using energy deposition to drive the
RIC ELECTRICAL material model since UTDEM forces the matrix refill in that case.

33

5. UTDEM PIC INPUT FILE AND
KEYWORDS

The UTDEM PIC input file also uses the standard NEVADA input file format. It permits all of the
UTDEM physics-specific command keywords described in the preceding sections, as well as several new
command keywords that are described later in this section.

The keyword UNSTRUCTURED TD ELECTROMAGNETIC PIC speciﬁes to the Nevada framework that
the UTDEM PIC physics model should be used for the simulation. All the UTDEM keywords are
available, as well as several more that are specific to UTDEM PIC. As before, case is ignored in the input
file and lines are limited to 160 characters or less. And remember that when a floating-point value is
required, the decimal point needs to be included (i.e., 0. not simply 0).

1. PIC-SPECIFIC KEYWORDS

The following keywords are available to UTDEM PIC physics but are also available to the Structured
Time-Domain ElectroMagnetics (STDEM) PIC physics model (see [1]).

DEFINE SPECIES
The DEFINE SPECIES command keyword group provides a means of defining charged-particle
species to be used with the various particle emission and diagnostic commands. One or more
particle species may be defined in one DEFINE SPECIES keyword group using the following
syntax:

DEFINE SPECIES
string, MASS = real, CHARGE STATE = int, [MARK_AS_USED,]
[REGISTER_DENSITY]

END

Each species is specified by three required parameters. The first parameter is a string that provides
a user-specified name for the species. This name is used to reference the defined species in the all
other input commands that require the use of a particle species in their specification. The two
remaining parameters for specifying a species are the MASS and CHARGE STATE, which describe
the particle species mass (in AMU), and charge state, respectively. The charge state is a signed
integer that gives the particle’s charge relative to that of a proton. For example, an electron’s
charge state would be -1 and triply ionized carbon would be +3. The optional MARK_AS_USED
keyword indicates that this species is to be immediately marked as use without waiting for

34

another command that references it. The optional REGISTER_DENSITY keyword indicates that
the charge density for this species will be unconditionally stored in its own registered variable. If
not supplied, this specie’s charge density will only be stored in its own registered variable if the
variable name RHO_string, where string is the name of the species, is specified by the PLOT
VARIABLE command.

GAS DRAG
The GAS DRAG command keyword enables a gas drag model for interaction between electrons
and a high pressure gas. The drag force slows down the electrons, and the corresponding energy
loss is computed in each element as an IONIZATION_RATE variable to be used as a source of
electron-ion pairs for the gas-breakdown plasma. If this command keyword is used then a HP
Gas Electrical material model must also be used. Currently the gas drag model requires the same
high pressure gas be present throughout the entire simulation domain. The gas drag model also
requires that the corresponding material model use elemental variables (selected by setting
NDOF=1). The HP Gas Electrical model also has keywords to enable angular scattering of the
electrons in addition to the drag force.

ITS FILE, ["surface" | "volume"], [file-name]
The ITS FILE command keyword is used to provide the name of the file containing the ITS
distribution datasets needed by either the BEAM EMISSION or VOLUME EMISSION command
keywords when using the FIELD DISTRIBUTION = ITS option.

For backward compatibility, if the file type (surface or volume) is not specified, this command
defines the name for the BEAM EMISSION file. For VOLUME EMISSION, the type is required. If
file-name is not specified, the name 7z5.pff will be used for the surface emission file. Note that
unless the file name consists of only identifier characters (uppercase letters, digits, and underscore
‘), the supplied file-name must be quoted. Since this restriction eliminates almost all
commonly used names for files, it is recommended that the filename always be quoted.

CROSS SECTION DATABASE string
The CROSS SECTION DATABASE command keyword is used to provide the pathname of the file
containing the gas cross section database. Currently this file is used by the KINETIC GAS
ELECTRICAL material model below.

The required string is the pathname of the database. If this keyword is not specified, the file
CrossSections.txt in the current run directory will be used. Note that unless the file name consists
of only identifier characters (uppercase letters, digits, °_’), the supplied filename must be quoted.
Since this restriction eliminates almost all commonly used names for files, it is recommended that
the filename always be quoted.

PARTICLE HISTORY
The PARTICLE HISTORY command keyword group provides a means of requesting output
history diagnostics for various types of aggregate particle information. One or more such requests
may be made in one PARTICLE HISTORY keyword group. The required syntax is:

PARTICLE HISTORY
his_type, history_specification

35

END

The initial his_type string defines the type of the history request. Supported request types are:

I.

2.

3.

count, which gives the number of particles of the specified species.
energy, which gives the total kinetic energy of all particles of the specified species.
charge, which gives the total charge of all particles of the specified species.

merge stats, which gives various statistics regarding the performance of the particle
merger algorithm.

. merge counts, which provides various data on merged particles.

kpflux, which requests one or more “killed particle flux” (KPF) histories tallying
information about particles killed on a surface.

Three forms of history_specification are available:

I.

his_type, [SPECIES = string,] [STATUS = string,] [LABEL = "string"]

This form provides global tallies, which can be filtered by species using the SPECIES
keyword, and by particle status using the STATUS keyword. Options available in this
specification are:

SPECIES = string | all
Specifies whether a single particle species or all species contribute to the history. This
keyword can take the value of a single species as defined by the DEFINE SPECIES
command, or the special value all to combine the information for all particle species
in the simulation. Defaultis all.

STATUS = string
Legal values for the STATUS keyword depend on the history type, as follows:

For merge stats:
STATUS = fail | fail_reject | fail_qerr | fail_qlow |
fail_emax
The fail value will report the total number of merge failures for any reason; the
others will report counts of merge failures by each specific failure mechanism.

For merge counts:
STATUS = sampled | created | killed | netkilled
Note that netkilled is the difference between the total number of killed
pre-merge particles and the total number of newly merged particles created to
replace them.

For all other history types:
STATUS = created | killed | surviving
These request the cumulative number of particles created during the simulation,
the cumulative number of particles killed during the simulation, and the number
of particles that currently survive in the simulation, respectively.

36

LABEL = "string"
Specifies the label to be used for the history output for this request. If not supplied, a
default label will be constructed based on the values of the other keywords.

This form cannot be used with the kpf 1ux history type.

. his_type, KINETIC GAS MODEL = int, [SPECIES = string,] [GAS = string,]
[INTERACTION = string,] [LABEL = "string"]

This form provides information associated with kinetic gas collisions from a KINETIC GAS
ELECTRICAL material model, and can be filtered by the incident species of the collision, the
gas molecule of the collision, and the type of collision. Options available in this
specification are:

KINETIC GAS MODEL int
The required KINETIC GAS MODEL keyword is specifies the integer ID of the material
model, i.e., the ID supplied with the material model’s definition.

SPECIES = primary | secondary | all
Specifies the electron species of the incident particle in a collision. Defaults to ALL if
not supplied. Here, primary and secondary indicate the electron species specified
by the material model’s PRIMARY and SECONDARY keywords, respectively, and
all specifies that the contributions from both species be combined.

GAS = string
Limits contributions to those from collisions with a specific gas molecule of the
material model, where the supplied string is the name of the molecule as defined in the
material model. If this keyword is not supplied, contributions from all gas molecules in
the model are combined.

INTERACTION = elastic | excitation | ionization | attachment | all
Specifies the type of collisions to be included in the history. If this keyword is not
supplied, ALL will be used, indicating that the contributions from all interactions are
to be combined.

LABEL = "string"
Specifies the label to be used for the history output for this request. If not supplied, a
default label will be constructed based on the values of the other keywords.

This form cannot be used with the kpflux history type.

. kpflux, SPECIES = string, SIDESET = int [... int], TYPE = label,
[... TYPE = label]

This form is exclusive to the kpf lux history type and is specific to UTDEM; KPFLUX
histories are not currently implemented in STDEM. It provides information on particles
killed on boundary surfaces. Options available in this specification are:

SPECIES = string
(Required) Specifies the name of the single species to be reported. The special value
all cannot be used with this history type.

37

SIDESET = int [... int]
(Required) Defines the boundary surface of interest with one or more sideset indices.

TYPE = number | current | mean_energy | mean_px | mean_py |
stdv_energy | stdv_px | stdv_py | stdv_pz
One or more TYPE = label pairs may be provided within a KPFLUX history
specification. The units for the output values are Amps for current, m/s for
momentum, and ¥ — 1, i.e., E/mc?, for energy.

It is much more efficient to group all KPF history types for a given species and sideset(s) into
a single KPF request. The reason is that for a given killed particle, the code only needs to
find which KPF request to update once. However, it is legal to create histories spread across
two or more KPF requests with the same species and sideset(s). A more important reason to
group all histories into a single request is that the number of requests is limited. For each
species, the maximum number is determined by the smaller of the number of bits in an
‘unsigned long’ or ‘double’, For almost all modern 64-bit machines, this limit is 64. Note
that this does create a portability issue for running problems with more than 32 histories on
older machines where the limit may be 32. However, this is an increasingly unlikely
occurrence.

PARTICLE SNAPSHOT
The PARTICLE SNAPSHOT command keyword group provides a means of requesting output
snapshot diagnostics for particles. One or more such requests may be made in one PARTICLE
SNAPSHOT keyword group. The data for all requested particle snapshots will be written to the file
problem_name.par.pff in PFF format.

PARTICLE SNAPSHOT
maxl, [max2], SPECIES = string, ATTRIBUTES = string, LABEL = string,
FRACTION real FIRST int LAST int SKIP int

END

Each request has one, or optionally two, integers (max1 and max2), which control the number of
particles for which data will be output. The larger is the maximum number of particles to be
output. The smaller is the maximum number of particles from a single processor to be output. If
only one value is specified, the two values are assumed to be equal. The SPECIES keyword allows
the specification of output for a single particle species as defined by the DEFINE SPECIES
command keyword group, or the special value ALL, which outputs data for all particle species in
the simulation. If not explicitly specified, SPECIES defaults to ALL. The ATTRIBUTES keyword
is a string containing the characters “P” and/or “Q”, indicating that momentum and/or charge
particle attributes are to be output in addition to the particles’ spatial locations. Default is an
empty string (“ ”), indicating that only particle spatial locations will be output. The LABEL
keyword allows the user to supply a title prefix for the PFF dataset that will be written to the
output file for this request. The simulation time will be appended to this prefix. If not supplied, a
title prefix will be generated automatically from the SPECIES and ATTRIBUTES keyword values.
The FRACTION keyword is used to specify a real number, between o and 1, indicating the
maximum fraction of the simulation particles that will be output. If not specified, it defaults to

38

1.0. Note that if the product of this fraction and the total number of simulation particles exceeds
max1, the actual fraction of the particles output will be less than the value specified by the
FRACTION keyword. The FIRST, LAST, and SKIP keywords are used to control the output
frequency for the diagnostic request. The FIRST and LAST keywords specify the first and last
timestep indices, respectively, for which particle data will be output. The SKIP keyword is a
positive integer that specifies the number of timesteps between outputs for this request. A value
for SKIP must be specified. If FIRST is not specified, its default value is that of SKIP. If LAST is
negative, there is no upper limit for the timestep index. If not specified, LAST defaults to —1.

2. UTDEM PIC-SPECIFIC KEYWORDS

This section describes keywords available only to UTDEM PIC.

EMISSION Keywords
Two EMISSION command keywords define a surface over which particles are emitted into the
simulation region. The BEAM EMISSION source creates particles to match a user-specified
current, /(t), emitted from the surface. The FIELD EMISSION source applies a
space-charge-limited (SCL) algorithm locally on each face, creating enough charge to satisty
Eormal = 0. The particle species and other emission characteristics are provided by the several
available parameter options. The two commands, whose formats are shown below, are grouped
together here because they have several common keywords. In addition, there are a few more
keywords that apply only to one or the other of the commands, or are interpreted somewhat
differently by each command. The specific formats are:

BEAM EMISSION
SIDESET int
SPECIES = string
[CYCLE INTERVAL int]
[COUNT int]
[EMIT PROBABILITY reall
[SPATIAL DISTRIBUTION = FIXED | RANDOM]
ENERGY DISTRIBUTION = CONSTANT real | RANDOM real [real] |
MAXWELLIAN real |
ITS [int] [, MERGE_PHI]
[, PHIO, X=real Y=real Z=reall]
[ANGLE DISTRIBUTION = NORMAL | CONSTANT, X=real Y=real Z=real |
RANDOM [real real] | COSINE]
[NORMAL TOLERANCE real]
[AMPLITUDE reall
[TEMPORAL function-set]
[QPMIN_FUN function-set]
[QPMIN_FLOOR reall
END

39

FIELD EMISSION
SIDESET int
SPECIES = string
[CYCLE INTERVAL int]
[COUNT int]
[EMIT PROBABILITY reall
[SPATIAL DISTRIBUTION = FIXED | RANDOM real [reall]
ENERGY DISTRIBUTION = CONSTANT real | RANDOM real [real]
[ANGLE DISTRIBUTION = NORMAL | CONSTANT, X=real Y=real Z=real |

RANDOM [real real] | COSINE]
[NORMAL TOLERANCE real]

HEIGHT DISTRIBUTION = FIXED real | RANDOM real [real]
BREAKDOWN real
[GRADUAL TURNON delay_time [fracO ramp_time]]
[QPMIN_FUN function-set]
[QPMIN_FLOOR reall

END

Options common to BEAM EMISSION and FIELD EMISSION commands:

SIDESET int

Provides the number of the sideset in the Genesis input file that provides the set of faces
that comprise the emission surface for this beam.

SPECIES = string

Provides the name of the particle species to be emitted and must match the name of a
species that has been defined using the DEFINE SPECIES command keyword.

CYCLE INTERVAL int

Specifies the emission frequency in timesteps, with a default value of 1.

COUNT int (1)

Specifies the number of particles emitted from each face in the emission per timestep, with
a default value of 1.

EMIT PROBABILITY real (1.0)

Allows the specification of the probability, between o and 1, that any particle will actually be
inserted into the system. It defaults to 1.0.

ENERGY DISTRIBUTION

Describes the energy distribution of the emitted beam particles. The BEAM EMISSION and
FIELD EMISSION commands have two common options: CONSTANT and RANDOM.
The CONSTANT option has a single value that gives the beam energy in electron Volts
(eV). The RANDOM option has two values that give the minimum and maximum
energies (in eV) for a uniform distribution of beam energy. If only one value is specified, it
is assumed to be the maximum energy of the distribution, and the minimum energy is
assumed to be zero. The BEAM EMISSION command has two additional options; see below.

40

ANGLE DISTRIBUTION
Describes the direction of emission with respect to the polar angle (¢) from the surface.
Four options are available: NORMAL, CONSTANT, RANDOM, and COSINE. The
NORMAL option has no parameters, and specifies that particles are to be emitted with an
initial velocity normal to the face from which they are emitted (i.e., = 0). The
CONSTANT option has three values that represent the three components of a vector in
Cartesian (z, y, z) space. Particles emitted from the emission surface will be given an initial
velocity in the direction of this vector, regardless of the orientation of the emission face
from which they is emitted. The RANDOM option has two values that give the minimum
and maximum 6 (in degrees) for a uniform distribution over 6. If these values are not
specified, default values of 0° and 90° will be used. The COSINE option will use a cosine
distribution (i.e., dN/df = cos) over the range from 0° to 90°. Note that if ANGLE
DISTRIBUTION is set to RANDOM or COSINE, the emitted particles will be randomly
distributed (uniformly) in azimuth relative to the emission face. Note that if the ANGLE
DISTRIBUTION keyword is not explicitly specified, it will default to NORMAL, unless
ENERGY DISTRIBUTION is specified to be MAXWELLIAN, in which case ANGLE
DISTRIBUTION defaults to COSINE.

NORMAL TOLERANCE real (0.001)
Allows the user to specify the tolerance (¢) with which the code determines that the unit
normal vectors of two distinct faces are equal. That is, if [, — 73| < €, they are considered
to be equal. If not specified, € will default to o.001. For all cases except ANGLE
DISTRIBUTION = CONSTANT, each face in an emission surface needs an object that
contains, among other things, the face’s unit normal vector in order to generate the velocity
of an emitted particle. To the extent that multiple faces have the same normal vector, they
can utilize the same object. Consequently, use of this keyword is primarily related to code
efficiency. Note that this keyword’s value provides an upper bound for the error in the
normal vector for any face.

QPMIN_FUN function-set
The optional QPMIN_FUN and QPMIN_FLOOR keywords define a minimum charge weight
for creating particles on the segment. The intention is to reduce the total particle count by
inhibiting the creation of “insignificantly low-weight” particles. The minimum particle

weight is defined by:

gpmin(t) = gpmin_floor, or
gpmin(t) = max(scale x fun(t), gpmin_floor)

Defining just the QPMIN_FLOOR keyword selects the first option, a fixed qpmin(¢). The
QPMIN_FUN keyword selects the time-dependent option, and uses the standard Nevada
function syntax ‘FUNCTION int [SCALE reall’ to define the function number and an
optional scale factor. For this option, the QPMIN_FLOOR value defines an absolute
minimum charge value for a created particle.

Choosing these parameters for FIELD EMISSION is necessarily empirical. However, values
for BEAM EMISSION are easier to determine 4 priori. The charge-to-create at each face of
area A, Qce, is a running sum of 1 (£) AAZ ey / Asegmenes Where I (%) is the time function

41

defined by the TEMPORAL keyword, and Aty = cycle_interval X timestep. Once this sum
exceeds qpmin(t), IV particles are created, where N = min(int(Q) . /qpmin), count) and
()cre is reset to zero. Information to guide the choice of qpmin parameters for both standard
and ITS beam emission is printed to the output file. For each segment, the code prints out
values of min(Q)), mean(Q.), and max (@) for the faces. The actual runtime values of
these quantities are scaled by I (t) X cycle_interval.

Options specific to the BEAM EMISSION command:

SPATIAL DISTRIBUTION FIXED | RANDOM
Describes the spatial distribution of the emitted beam particles. Two options are available:
FIXED and RANDOM. If FIXED is specified and the COUNT keyword has a value of 1,
then the single particle emitted will be placed at the barycenter of the emitting face. If
FIXED is specified and the COUNT keyword has a value greater than 1, then the particles
emitted will be placed according to a fixed, quasi-uniform algorithm over the emitting face.
If RANDOM is specified, each emitted particle is placed at a random point on the emitting
face. The distribution of these randomly-chosen emission points is uniform per unit area.
If not specified, SPATIAL DISTRIBUTION defaults to FIXED, unless the COUNT keyword
is specified to be greater than 1, in which case it defaults to RANDOM.

AMPLITUDE real (1.0)
Provides a scalar multiplier to specify the amplitude of the beam current, in amperes, with a
default value of 1.0.

TEMPORAL function-set
Provides a means to specify non-constant time dependence for the amplitude of the beam
current. If specified, the amplitude at any instant in time is the product of the scalar
multiplier provided by the cmdoptamplitude keyword and the value of the function-set
evaluated at the current simulation time. If TEMPORAL is not specified, the beam current is
just the value supplied for the AMPLITUDE keyword, independent of simulation time.

Presently, the beam current is assumed to be distributed uniformly over the entire emission
segment, i.e., the current density is constant. It should be noted that, by convention, the
product of the AMPLITUDE value and the value of the TEMPORAL function at any given time
must be non-negative. If the user supplies a combination of AMPLITUDE and TEMPORAL
that results in a negative value for the amplitude of the beam current, it will be clipped to
Zero.

The BEAM EMISSION command has two additional options for ENERGY DISTRIBUTION:
MAXWELLIAN, and ITS. The MAXWELLIAN option has one value that gives the
temperature of the distribution in eV. For this option, the energies of the emitted particles will be
distributed using

Y

dN m \3/2 5
av _ —E/KT
@B (QWkT) €

where k7" is the supplied temperature of the distribution.

The ITS option requests that the energies (and angles) for emitted particles are obtained by
randomly sampling from data in a PFF file [10] computed by the I'TS Radiation Transport code

42

[6] (or any other source that follows the ITS/Emphasis convention for writing energy-angle
(E, 8, ¢) emission distributions to PFF datasets). See Ch. [t for more details. The name of the
source PFF file is specified using the ITS FILE command keyword.

The optional ITS keyword zn¢ value depends on the type of PFF file being used. For an
original-version-o file, this value is required—the user must explicitly define the PFF dataset to
use for the sideset. For curved surfaces with these files, the user must also often use the PHIO
keyword to explicitly set a vector to define the ¢ = 0 axis. For version-o and version-1 files,
Emphasis auto-fits the sideset to the ITS subsurface(s), so the 7z value and the PHIO keyword are
not required Note that for a version-o file, the auto-fit may occasionally fail, and explicitly
providing the PFF dataset number may fix the problem. The 77# value is always ignored for a
version-1 file. Setup errors with these files indicates a fatal inconsistency between the I'TS and
Emphasis geometries. Note that if the 7z¢ value is omitted, a comma is required for between
"ITS" and either "MERGE_PHI" or "PHIo".

Finally, the ITS option also has the optional keyword MERGE_PHI, which indicates that
multiple azimuth (¢) bins in the supplied dataset are to be merged into a single bin. In this case,
the code can always internally define a ¢ = 0 axis, and the emission angle is randomly selected
from the range [0, 27].

Options specific to the FIELD EMISSION command:

SPATIAL DISTRIBUTION FIXED | RANDOM
The SPATIAL DISTRIBUTION keyword describes the spatial distribution of the
SCL-emitted particles. Two options are available: FIXED and RANDOM. If the COUNT
keyword has a value of 1, the FIXED and RANDOM options behave identically — the
single particle emitted will be placed at a location (x) in the emitting face chosen to best
correct the charge deficit at each node of the face. If the COUNT keyword has a value greater
than 1, then the particles are emitted in pairs. If the value of the COUNT keyword is odd, an
additional single particle is emitted at xp. If the SPATTAL DISTRIBUTION keyword is
FIXED, one particle of each emitted pair will be placed according to a fixed, quasi-uniform
algorithm over the emitting face. Similarly, if RANDOM is specified, one particle of each
emitted pair is placed at a random point on the emitting face. The distribution of
randomly-chosen emission points is uniform per unit area. For both the FIXED and
RANDOM options, the location of the second particle as well as the charges of both
particles are chosen to best correct the charge deficit at each node of the face, with the
added constraint that the second particle’s location be within the emitting face. If not
specified, SPATIAL DISTRIBUTION defaults to RANDOM.

HEIGHT DISTRIBUTION FIXED | RANDOM
Specifies the height above the emission face that each emitted particle will be injected into
the simulation. The value provided should be between o and 1, and represents the height as
a fraction of the height of the element into which the particle is being emitted. Two options
are available: FIXED and RANDOM. The FIXED option has a single value for the
emission height fraction. The RANDOM option has two values that give the minimum
and maximum for the emission height fraction. If only one value is specified, it is assumed

43

to be the maximum, and the minimum is assumed to be zero. There is no default for the
HEIGHT DISTRIBUTION keyword so it must always be specified.

BREAKDOWN real
Specifies the electric field intensity (E), normal to the surface of an emission face, required
to initiate emission from that face. Its value should be provided with units in volts/meter.
Until the normal electric field at any face exceeds this supplied breakdown value, that face
will not emit any particles. Once the supplied value is exceeded, the face will emit particles
in an SCL fashion for the remainder of the simulation. There is no default for the
BREAKDOWN keyword so it must always be specified.

GRADUAL TURNON delay_time [fracO ramp_time]
By default, as soon as the normal electric field exceeds the breakdown threshold, the face
immediately starts emitting—and immediately at the full SCL value. This optional
keyword specifies a gradual turn-on of emitted charge from a face after it breaks down. The
units of delay_time and ramp_time are seconds. The delay time is a required parameter.
Once a face exceeds the breakdown threshold, it does not actually start emitting until after
the specified delay. The main purpose of this delay is to ensure that neighboring faces also
break down before emission starts. The other two parameters are optional (but ramp_time
must also be defined if fraco is). After the initial delay is over, the emitted charge computed
by the baseline algorithm is multiplied by a fraction that linearly ramps up from fraco to 1
over ramp_time. After this full emission is enabled for the rest of the simulation.

VOLUME EMISSION
This command keyword enables emission of electron/ion pairs or just electrons from a volume
defined as the union of one or more element blocks. It is a volume analog of the BEAM
EMISSION command, in which a total emission current I(?) is specified for the entire volume.
The full syntax is as follows:

VOLUME EMISSION
BLOCK int [int ... int]
SPECIES = string
[COUNT int int int]
[CYCLE INTERVAL int]
[EMIT PROBABILITY reall
[SPATIAL DISTRIBUTION = FIXED | RANDOM]
ENERGY DISTRIBUTION = MAXWELLIAN real | ITS [MERGE_PHI]
[MOMENTUM X=real Y=real Z=reall
[ANGLE DISTRIBUTION = RANDOM [real reall]
[AMPLITUDE reall
[TEMPORAL function-set]
[QPMIN_FUN function-set]
[QPMIN_FLOOR real]
END

’rheopdonsCYCLE INTERVAL, EMIT PROBABILITY, AMPLITUDE, TEMPORAL, QPMIN_FUN
and QPMIN_FLOOR have exactly the same meaning as the beam emission command, while the

44

options BLOCK, COUNT, and MOMENTUM have the same meaning as the particle preload (see below).

The emission volume is defined by the element block list, where each int is a block-ID as defined
in the Genesis file. The string for the SPECIES option can either be the name of a single
electron species, or a quoted, space-delimited string of an electron species name followed by one
or more ion species names (note: currently, only one ion type is supported). Creating just
electrons is equivalent to creating electron-ion pairs with infinitely massive ions. However, in this
case, the V - D — p diagnostics will be corrupted since they do not currently include the ion
space-charge. The COUNT option defines three integers whose product is the number of particles
loaded per element. These integers denote the spacing of a 3D lattice which distributes the
inserted particles uniformly throughout the element. If not supplied, it defaults to “r11”. The
SPATIAL DISTRIBUTION option defines whether to distribute the particles either randomly
(the default) or uniformly.

There are two broad categories of supported electron energy-angle distributions: ITS and
non-ITS, For non-ITS emission, the MOMENTUM keyword is required input, to define py = vy,
where 7 is the relativistic factor (1 — (vg/c)?)~'/2. This defines a reference direction for emission
that is analogous to the surface normal for BEAM EMISSION. The default option is to emit a cold
beam with p = py for all particles. Currently, there are only two other options: (1) a warm beam
with an isotropic Maxwellian distribution about py defined by “ENERGY DISTRIBUTION =
MAXWELLIAN theta”, where theta is the temperature in eV, or (2) all particles emitted with

|p| = po in a cone around py with polar angles defined by the ANGLE DISTRIBUTION keyword.

For ITS emission, the user supplies a PFF file with I'TS volume electron emission data, analogous
to the ITS option for BEAM EMISSION. The PFF file name is defined with the ITS FILE
command. EMPHASIS automatically fits the centroid of each emission element to an ITS
emission subzone. At run time, the energy and angles are randomly sampled from a table built
from the ITS subzone emission tally, f(E, 6, ¢). Note that unlike surface emission, the reference
frame for 6 and ¢ for each tally in the file is fixed for all emission subzones, i.e., with respect to the
global (z,y, 2) coordinate frame of the ITS simulation.

The ITS emission option also supports the loading of ITS energy deposition data in all elements
of the blocks. This is used as a direct ionization source for the HP gas model (in addition to PIC
particle energy loss). An ITS volume emission file can contain both energy deposition and
particle emission datasets. By default, all data in the file is loaded unconditionally (and
transparently to the user). There is very little overhead for implementing energy deposition.
However, there are cases where it useful to turn off particle emission. This can be done by
explicitly defining the COUNT option with three integers whose product is zero, e.g. “0 0 0”.

Finally, note that there is currently no user control over the created ion energy-angle distribution
if ion creation is specified. All ions are created with a non-drifting Maxwellian at room
temperature (20°C).

DIPOLE EMISSION
This command allows the emssion of straight line current sources through the pic interface. This
has been used to couple CTH or ALEGRA and EMPHASIS calculations where the sources are
generated by post-processing the hydro calculation and generating appropriate dipole files. This
interface spoofs the PIC push algorithm to place current on the mesh.

45

DIPOLE EMISSION
BLOCK int [int ... int]
SPECIES = string
FILE = string
SMALL CHARGE FACTOR [real>0. (default = 0.0)]
END

TheBLOCK command determines which blocks the emission occurs in. As all events are present in
the file at start time reducing the block size reduces the number of elements needed to search for

the dipoles.

The SPECIES determines the species string for emssion. When the species is declared the charge
state should be declared as zero to avoid changing the paths due with the lorentz force.

The FILE is a path to a tab deliniated file describing the dipole events. A single line of this file has
the following structure:

TO CX CY Ccz TYPE INT .. .PARAMETERS. . . DX DY DZ

The parameter TO is the start time of the event and (CX,CY,CZ) describes the center of the dipole.
The final three parametrs (DX,DY,DZ) is a line-segment describing the dipole. The supported
values of TYPE are 1 and 120. In both cases INT=6. Both type 1 and type 120 have three additional
parameters that describe the structure the profile of the dipole current:

T 0 t <t ()
cI. 2.1
P poexp(—(pit + pat?)) t >t

0 t <ty
Type 120 : pop1 £ty (2.2)

Ltexp((;-—p2)'/?)

In both cases pg, p1, p2 are the three arguments passed after INT and before DX. It is
recommended that a different dipole emission type be used for each TYPE and that files be
seperated by TYPE.

SMALL CHARGE FACTOR delete a dipoles from the list of emitted dipoles if the total charge of
that event is less than the factor. This can be tuned to improve the memory performance of this
emission option.

COURANT FACTOR real, [REFERENCE TYPE = ref_type]
This command keyword allows the user to specify a factor Fiv > 0 to multiply the Courant time
step Ate = U/ c, where (is a specified scale length. This results in a simulation time step

At = FolAte.

The specific scale length used can be selected using the REFERENCE TYPE keyword. Available
values for ref _type are:

minimum edge length
average edge length
minimum element height

46

The first two length scales are the minimum and average lengths of any edge in the problem
domain, respectively, and the third is the minimum height of any element in the problem
domain. The minimum height of an element is defined to be the minimum distance from any
face of the element to any other node of that element that is not in that face. If not supplied,
minimum edge length will be used.

If the CONSTANT TIME STEP keyword (see [3]) is also specified, then the time step will be set to
the smaller of the time steps determined from the two specifications. If neither COURANT
FACTOR nor CONSTANT TIME STEP is specified, the default UTDEM time step (see the TIME
STEP MOD keyword) will be used (not recommended practice). It is important to note that the
time step due to the electromagnetic field solver formulation being used should not be exceeded
regardless of the method chosen for setting the time step.

RANDOM SEED int [, MULTIPLIER = int]
This keyword changes the initial random seed for random numbers.

Without this keyword, the default behavior is to use an initial random seed of 1 for each new
simulation. The optional MULTIPLIER defaults to 1. The new initial seed is RANDOM SEED +
MULTIPLIER X processorNumber.

ELECTRON SURFACE DATABASE, TYPE=string, NAME=string, FILE=string [,
LOGARITHMIC]
This command keyword adds a new table to the database of electron-surface interactions. Each
table has data defined on a 2D grid of incident electron energy and polar angles. The data at each
point is obtained from a single I'TS run. The Emphasis lookup table is built by merging a set of
ITS runs over all 2D grid values.

The TYPE keyword takes the values ‘scatter’ or ‘heating’. Data is read from the PFF file specified
by the FILE keyword, and given a table name defined by the NAME keyword. The optional
LOGARITHMIC keyword specifies that logarithmic energy interpolation for the incident electrons
is used. By default, linear energy interpolation is used. This table can then be accessed by name
for one or more ELECTRON SURFACE INTERACT commands.

ELECTRON SURFACE INTERACT
This command block defines an electron-surface interaction (ESI) model for a single electron
species on a specified surface domain, consisting of one or more sidesets, with the syntax:

ELECTRON SURFACE INTERACT
PRIMARY string, SIDESET = int [... int]
[HEATING_TABLE = string, RHO_CV = real]
[SCATTER_TABLE = string, SECONDARY = string
[, QPMIN_FUN function-set] [, QPMIN_FLOOR real] [, ECUTOFF realll]
END

The terminating END to close the block is required syntax. This command enables either electron
deposition heating, electron back-scatter (reflection), or both, for electrons incident on a
conducting surface. Each data table is specified by name in the electron- surface database built
with ELECTRON SURFACE DATABASE commands. If both a heating and a back-scatter table are
requested, it is assumed that they are defined on the same energy-angle grid for incident electrons.

47

In this case, it is much more efficient to group them together in a single ESI model, since they can
share a single interpolation of the primary electron in the incident energy-angle grid. The
PRIMARY keyword defines the primary (incident) electron species, and the SIDESET keyword
defines the spatial domain of the conducting surface as the union of one or more sidesets.

The HEATING_TABLE keyword enables electron deposition heating with the named table. For
heating, the RHO_CV keyword is required input. It defines the product of the density, p, and heat
capacity, cy, for the surface material in MKS units (J/m?/ K).

The SCATTER_TABLE keyword enables back-scattering with the named table. The required
SECONDARY keyword defines the secondary electron species, which can be the same as the
primary. A secondary electron will be created with smaller charge and lower energy than the
primary, sometimes substantially. For multiple generations of scattering, the particle charge and
energy can become very small. The optional QPMIN_FUN and/or QPMIN_FLOOR keywords define
a minimum charge weight for creating secondaries:

gpmin(t) = max(scale x fun(t), gpmin_floor).

By default, gpmin(t) = o. If only QPMIN_FLOOR is specified, then qpmin(t) is time-independent.
The QPMIN_FUN keyword defines a time-dependent floor, using the standard Nevada function
set syntax ‘FUNCTION int [SCALE reall’ to define the function number and optional scale
factor. Similarly, the optional ECUTOFF keyword defines a minimum energy (in MeV) for
creating secondaries; the default value is zero.

PARTICLE BALANCE [options]
This keyword controls the dynamic load balancing of the particle workload in parallel
simulations. Available options are, in order:

TRIGGER = real
Controls when load balancing is attempted by comparing the specified value to the current
imbalance.

TARGET = real
Specifies the imbalance that the load-balancing algorithm attempts to achieve. A perfectly
balanced particle workload has an imbalance of 1.0.

MIN_TOL_INCR = real
Specifies the fractional amount above the imbalance obtained at the last balance before
rebalancing is attempted.

MIN_PART_PER_CELL = real
Specifies the minimum average number of particles per cell required before load balancing
is attempted.

MAX_STEP_COUNT = int
Specifies the maximum number of time steps after balancing occurs before rebalancing will
be attempted again.

48

Z0LTAN = parameter_name "parameter_value"
Provides advanced user control over Zoltan library parameters by accepting pairs of values:
an identifier for the parameter name and a string containing the parameter value (enclosed
in quotes even if the value is numeric). Refer to the Zoltan documentation for a description
of the available parameters.

Time history diagnostics indicating the instantaneous and cumulative particle load imbalance are
provided in parallel simulations. When dynamic load balancing is enabled the unbalanced values
of these imbalance time histories are also included. The total number of elements exported
between processors to balance the particle workload for the current time step is also provided as a
time history diagnostic. Both absolute and normalized (to the local element count scaled by ratio
of the difference between the local and average local particle count to the local particle count)
values are provided.

PARTICLE MERGE
This keyword controls the merging of particles with the syntax:

PARTICLE MERGE, [SPECIES = namel [... nameN]] | EXCLUDE = namel [... nameN]],
CYCLE INTERVAL = int, TRIGGER = int [int]
[, options]

By default, the merger operates on all particle species. The SPECIES keyword defines a list of
species on which the merger operates, while the EXCLUDE keyword defines a list of species on
which the merger does not operate. These two keywords are mutually exclusive.

The CYCLE INTERVAL keyword is required and controls the frequency of merging. The
TRIGGER keyword, also required, specifies the minimum number of particles of a single species in
an element that will trigger an attempt to merge those particles. It has an optional second lower
value (#7igz) that specifies the number required to continue the merge operation after some of the
particles have been rejected for merging by the merge algorithm. If #74gz is not supplied, it is set to
90% of the TRIGGER value.

Available options are, in order:

TARGET = int
Specifies the target number of particles to remain in the cell after a successful merge; its
default value is 50% of the TRIGGER value.

BLOCK = int [int ...]
By default, particles in all element blocks will be merged. However, if one or more element
blocks are specified with the BLOCK keyword, only particles in elements of the specified
element blocks will be merged.

SUBGRIDS = int (3)
Provides a scale factor for sub-gridding each element, defaulting to 3. The number of actual
sub-elements used will be the cube of this value.

MAX_ITERATIONS = int (1)
Specifies the number of iterations used in testing for particle rejection due to thermal
velocities much larger than the mean thermal velocity. Default is 1.

49

VTH_FRAC = real (8.0)
Specifies the multiple of the thermal velocity above which a particle will be rejected due to
large thermal velocity. Default is 8.0.

QTOT_FRAC = real (5.0)
Specifies the rejection of heavyweight particles. Any particle whose charge is more than this
value times the mean particle charge will be rejected. Default s s.0.

QMAX_OVER_QMIN = real (2.0)
Specifies the nominal ratio of the maximum and minimum charge of any particle in an
element after merging has been performed. Default is 2.0.

SPREAD = real (1.0)
Specifies a scale factor determining the size of the volume into which merged particles
associated with a single sub-grid region will be positioned. Default is 1.0.

QERR_TOL = real (1.0e-6)
Controls merge rejection due to nodal charge errors. The merge will be accepted only if the
sum of charge errors over all element nodes is less than this value times the total charge in
the element. Default is 1075.

QLOW_TOL = real (0.2)
Controls merge rejection due to low-weight merged particles. The merge will be accepted
only if the minimum charge of any merged particle is greater than this value times the mean
charge of all merged particles in the element. Default s o.2.

EMAX_TOL = real (4.0)
Controls merge rejection due to high-energy merged particles. The merge will be accepted
only if maximum energy of any merged particle is less than this value times the maximum
energy of any of the original, pre-merged particles in the element. Default is 4.0.

PARTICLE PRELOAD
Preloads the specified BLOCKS with the specified particle distribution using the syntax:

PARTICLE PRELOAD,
BLOCK int [int ...]
SPECIES = string
[COUNT int int int]
DENSITY = [real | DISTRIBUTION int]
MOMENTUM = [X real Y real Z real | DISTRIBUTION int]
[TEMPERATURE = real]
[POSITION = DISTRIBUTION int]
END

Because the particle preload command does not adjust the electromagnetic fields, the user is
responsible for ensuring the initial system is charge- and current-neutral. Since only one species
can be preloaded at a time, this means the particle preload commands will come in pairs. Options
for particle preload are as follows:

50

COUNT int int int
Specifies three integers whose product is the number of particles loaded per element. These
integers denote the size of a 3D lattice which distributes the inserted particles uniformly
throughout the element. If not supplied, the defaultis “111”, in which case a single particle
is loaded at each element’s barycenter. In order to create current-neutral distributions when
a mean thermal temperature is specified using the TEMPERATURE keyword, pairs of particles
will be created (with opposite velocities) at each location.

DENSITY real | DISTRIBUTION int
A real value specifies the particle density in units of m™~3. Optionally, a spatial distribution
may be specified for the density, where the integer refers to the distribution ID that specifies
a scalar density distribution for the preload.

MOMENTUM vector | DISTRIBUTION int
A vector value specifies the mass normalized momentum of preloaded particles in units of
m/s. Optionally, a spatial distribution may be specified for the momentum, where the
integer refers to the distribution ID that specifies a vector momentum distribution for the

preload.

TEMPERATURE real
Optionally specifies the mean temperature of the Maxwellian distribution (in the rest
frame) in units of eV. The default value is zero.

POSITION DISTRIBUTION int
Optionally specifies a spatial distribution for particle position, where the integer refers to
the distribution ID that specifies a vector position distribution for the preload that perturbs
the initial particle insertion location from the element lattice locations. Beware that this is
not checked for consistency within the element boundaries.

PRELOAD DISTRIBUTION int
Specifies a scalar or vector distribution function for the PARTICLE PRELOAD command using
the RTC functionality. The command block must be terminated with an END key.

PARTICLE SORT [options]
Controls the sorting of particles. Available options are:

CYCLE INTERVAL int
Controls the frequency of sorting. The default is to sort every cycle.

CELL
Sorts particles by cell (default).

SPECIES
Sorts particles within a cell by species.

BLOCK = int [int ...]
By default, particles in all element blocks will be sorted. If one or more element blocks are
specified with this option, only particles in elements of the specified element blocks will be
sorted.

SI

6. FRAMEWORK KEYWORDS FOR
UTDEM

This section describes keywords inherited from the Nevada framework, which is shared with the
ALEGRA application [3]. These keywords must be placed within the physics block (defined by the
keywoniUNSTRUCTURED TD ELECTRDMAGNETICS)

1. BLOCK OPTIONS

The BLOCK keyword defines a finite-element block, to associate a mesh block ID () with a material
definition with the syntax:

BLOCK {int | int TO int}
MATERIAL int
END

Note that END is required. Most block controls available in ALEGRA are not relevant to EMPHASIS,
but the following may be used:

DELETION CYCLE int
Specifies the cycle at which the element block is to be deleted from the problem.

DELETION TIME real
Specifies the time at which the element block is to be deleted from the problem.

DELETE DATA
Deletes the element block by deleting all vertex, edge, face, and element data associated with the
block. The coordinates are reset to their original value and the block is filled with void.

DELETE TOPOLOGY
Deletes the element block by deactivating all vertices, edges, faces, and elements associated with

the block.

52

2.

FUNCTION SPECIFICATION

The FUNCTION keyword allows the user to define a function, of the form f(z), from a selection of
commonly used options. The specified function(s) will be referenced by an integer identifier when used
by other input deck commands. The following functions are available:

FUNCTION int [LINEAR (default) | SPLINE]

END

real real
real real

Defines a function as a table of real ordered (z, f(x)) pairs. A valid function must specify at least
two pairs, and the END keyword is required.

A default, predefined, constant function is provided with ID o, equivalent to

FUNCTION O
-REAL_MAX/2. 1.
REAL_MAX/2. 1.
END

Because this function uses ID o, any user-specified function cannot reuse the identifier o (any
positive integer may be used).

The optional keywords, LINEAR and SPLINE, define how values between the table points are
calculated. With the default LINEAR interpolation, values are interpolated linearly between the
table points and extrapolated to zero order outside the table endpoints. This gives a
C"-continuous result bounded by the table values. For SPLINE interpolation, Catmull-Rom
cubic splines are used [3], which are guaranteed to pass through the table points, and will be
C'-continuous within the specified range. However, interpolated function evaluations are not
bounded by the table values, so undershoots and overshoots will be produced. Addition of
“control” points to the table can help control the behavior of the spline near sharp transitions or
discontinuities.

FUNCTION int GAUSSIAN [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH

real (1.0)]

i) 2
f(z) = scale x exp (_%) |

FUNCTION int DOUBLE EXPONENTIAL [, SCALE real (1.0)] [, SHIFT real (0.0)] [,

ALPHA real (0.0)] [, BETA real (0.0)]

f(z) = scale x (exp [—alpha x (z — shift)] — exp [—beta x (2 — shift)]) .

53

FUNCTION int SINE [, SCALE real (1.0)] [, SHIFT real (0.0)] [, FREQUENCY
real (0.0)]

f(x) = scale x sin (frequency x x + shift) .

FUNCTION int SINE SQUARED [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH
real (0.0)]
— shifi
f(x) = scale x sin? M , 0 <z < width.
width

FUNCTION int TRIANGLE [, SCALE real (1.0)] [, SHIFT real (0.0)] [, WIDTH

real (0.0)]
— shift
scale x x—s1t>’ 0 <z < width/2,
x — shift — 0.5 x widt
| 1-— idth/2 < x < width.
scale X 05 % widdh), width/2 < z < widt

3. TIME STEP CONTROLS

The following time step controls are available in addition to the TIME STEP MOD option described in
Section[4}

GRADUAL STARTUP FACTOR real (0.01)
Specifies the factor by which the initial physics-based time step should be multiplied. The default

value is 0.01.

This has the effect of gradually marching into an abrupt transient. This value should always be
greater than zero and less than or equal to 1.0; for UTDEM, the value is normally set to r.0.

MAXIMUM INITIAL TIME STEP real (0.0)
Specifies the maximum initial time step. It is useful where unusual transients would otherwise
result in an instability in the starting time step. Ignored if set to zero.

MAXIMUM TIME STEP LIMIT real (1.e30)
Specifies a maximum time step value that will never be exceeded during the simulation.

MAXIMUM TIME STEP RATIO real (1.2)
Specified the maximum ratio by which a time step may grow from one cycle to the next.

MINIMUM TIME STEP real (1.e-20)
Specifies the minimum permissible time step. If the stable time step is computed to be less than
this value, the calculation will cease and write the final output records for a normal completion.

54

CONSTANT TIME STEP real
Specifies a constant time step for the entire simulation.

If no CONSTANT TIME STEP is specified, UTDEM determines a time step based on the Courant
stability criteria. This can provide a starting point for setting the time step. However, for the
unconditionally stable SECOND ORDER formulation, a much larger time step may be utilized. If
this is done, the solution will remain stable but the required conjugate-gradient iterations
required for system solution at each cycle will increase. Generally, for large simulation times, the
overall simulation CPU time will be reduced by increasing the time step.

4. INITIAL REFINEMENT

The DOMAIN keyword defines domain-level (i.e., global) options with the syntax:

DOMAIN
[options]
END

The domain options specify behavior that is not broken down to the block level, so will apply to
multiple blocks. For EMPHASIS, only the initial refinement option available in ALEGRA is relevant.
This capability allows the resolution of a GENESIS file to be increased inline, after the parallel
decomposition, which could be useful when attempting to run with very large and/or detailed mesh
files. For each level of refinement, it will increase the resolution of a tetrahedral or hexahedral mesh by a
factor of eight by splitting each refined edge into two new sub-edges. At present, it cannot refine hybrid
meshes.

The syntax for initial refinement is:

DOMAIN
MAXIMUM LEVELS = int
INITIAL REFINEMENT
[geometry]
END
END

The MAXIMUM LEVELS keyword specifies the number of levels of refinement to be performed, and is
required. Options for geometry within the INITIAL REFINEMENT block are:

ALL BLOCK
All blocks will be refined to the highest refinement level.

BLOCK BOUNDARY
Elements on the boundaries of all element blocks will be refined to the highest refinement level.

55

SIDESET int
Refines the sideset to the highest refinement level.

SIDESET int SPHERE real vector
Refines the sideset to the highest refinement level while mapping surface nodes to a sphere of
radius real centered at position vector.

SIDESET int CYLINDER real vector vector
Refines the sideset to the highest refinement level while mapping surface nodes to a cylinder of
radius real with axis defined by the vector pair.

SIDESET int RECONSTRUCT
Reconstructs a local smooth surface through the sideset nodes using approximate surface
normals at these nodes.

BLOCK int
Refines the specified element block to the highest refinement level.

BLOCK int, LEVEL int
The element block specified will be refined to the refinement level specified. The specified
refinement level must be less than the maximum level set by the MAXIMUM LEVELS keyword.

Note that some uses of these options will generate irregular meshes, where an element may neighbor
another elements that is refined to one level higher or lower than itself.

5. INITIAL CONDITIONS

USER DEFINED INITIAL CONDITION, variable
[, BLOCK int int ...]
[, MATERIAL int int ...]

[c-code declarations]
[c-code initializations]
[c-code conditionals]
[c-code assignments]

n

END

This provides a general method for initializing known field variables on the mesh, using the runtime
compiler (RTC) feature (see Appendixfor more information on writing RT'C functions and for using
aprepro with RTC functions). The variable is a name, such as ELECTRIC_FIELD_PROJECTION.
Any material, element, node, edge, or face variable (that is a scalar or space-dimensional vector field)
may be used, but the name must correspond to the name in the RUNID.out file (including
underscores), and is not necessarily the same name as is printed in the RUNID.exo file that may have the
material number or the vector/tensor component designator appended to it. For some variables, this
feature may give the user more than enough rope to hang themselves with, so if you have trouble with

56

this feature contact alegra-help@sandia.gov to get a developer to assist you. Beware in particular that no
attempt is made to ensure that V - D — por V - B are zero.

As a C-language function, the double-quoted body has available one input array of coordinates, coord,
and one output array of field values, field. The input coordinates are set prior to executing the quoted
function, appropriate to the output variable centering (node coordinates for node variables, cell
midpoint coordinates for element variables, etc.). The user may overwrite the coord array variables, but
they are only RTC temporary variables, and are deleted after execution of the RTC function. More
importantly, the field array variables that the user defined RTC function acts on are also RT'C
temporary variables initialized to zero. They are copied over to the appropriate EMPHASIS variables
after RTC function execution.

The function is expected to use the coordinates in some way to set the return value. The return value is
an array whose length depends on the type of variable. A scalar variable has length one, a vector has
length 3 (for 3D), etc. Note that in the special case of edge- and face-centered variables, the user specifies
a vector field, which is projected onto the edges/faces to determine the scalar values.

The optional BLOCK keyword can be used to trigger the initial condition function only for certain
element blocks, specified by their ids. For nodal variables, the function is called if the node touches any
element that is contained in the block(s) specified.

The optional MATERIAL keyword can be used to apply the initial condition function to only those
elements which have the given material(s) present. Nodal variables will be set if they touch an element
with the designated material(s) present. The integers must specify material ids that are specified in the
input deck.

A presentation of the capabilities and limitations of runtime compiled ’C’ functions is included in
Appendix[E]
Example:

$ The ELECTRIC_FIELD_PROJECTION is an edge-based scalar,
$ so specify the vector field to be projected onto the edges
user defined initial condition, ELECTRIC_FIELD_PROJECTION
double pi = acos(-1.0);
field[0] = 0.0;
field[1] = 0.0;
field[2] = sin(pi*coord[0])*sin(2.0*pi*coord[1]);

end

6. PERIODIC BOUNDARY CONDITIONS

PERIODIC BC, SIDESET int, TRANSLATE, X float Y float Z float, SIDESET int,
TOLERANCE float (1.e-5)

57

This applies a periodic boundary condition between the two, generally planar, sidesets given. The
TR ANSLATE vector points from the first SIDESET to the second and must start and end exactly on
those sideset planes. The TOLER ANCE parameter is often required to be significantly smaller than the

default r.e-5, generally 1.e-8 is more effective.

The user is responsible for creating a mesh on the two periodic surfaces such that all the edges align,
which is not always a trivial task. For example, unless measures are taken, CUBIT will almost certainly
not align in the required manner. Assuming the proposed periodic surfaces are nice flat rectangles, such
as the ends of a box, a method in CUBIT which has been show to create the desired aligned surface
mesh is the following. After setting appropriate mesh size on the volume or surfaces, mesh the surfaces
with "surf1 2 scheme map" then "mesh surf 1 2" which will create nice quads. Then split these into
triangles by first setting "set qtri split 4" followed by "qtri surf 12". This will place a node at the center of
each quad and then split into 4 triangles.

58

7. SIMULATION CONTROL KEYWORDS

These keywords are framework keywords [3] which are required for a successful UTDEM simulation
and appear outside the UNSTRUCTURED TD ELECTROMAGNETICS block. An example of typical
simulation control keywords is shown in Figure[7-1}

termination time = 1.e-8

emit screen, cycle interval =1
emit plot, cycle interval = 10
emit hisplt, cycle interval = 1

plot variable
electric_field
econ

end

Figure 7-1. Typical simulation and output control keywords.

1. EDGESET KEYWORD

EXODUS EDGE SETS (int, int, ...)
Specifies a list of sideset ids that exist in the Genesis file that are to be converted to Nevada
edgesets. The list of sideset ids must be enclosed in parentheses. Virtual edgesets defined by a
PATH keyword should not be included in this list; the sidesets on this list are the ones encoded by
the preprocessor or the mesh generation software for the purpose of being converted to edgeset(s)
by the Nevada framework. This step is necessary because the standard ExoduslI file format has no
notion of a list of edges.

2. SIMULATION TERMINATION KEYWORDS

The following keywords control termination of a simulation. If multiple termination keywords are
specified, the simulation will terminate when any of the criteria are satisfied.

59

[EXACT] TERMINATION TIME real
Total time for which to run the simulation. If the optional EXACT keyword is specified, the time
steps for the last ten cycles will be adjusted as necessary to ensure that the calculation terminates
at the exact time specified. Otherwise, by default the termination time may be overshot by some
fraction of a time step.

TERMINATION CYCLE int
Total cycles for which to run the simulation.

TERMINATION CPU real
Specifies the CPU time, in seconds, at which the calculation is to terminate. This termination
control must be used together with a TERMINATION TIME and/or a TERMINATION CYCLE
keyword.

3. RESTART KEYWORDS

Controls for restarting from an existing simulation are described briefly below.

RESTART DUMPS int (2)
Retain the last number of restart dumps, defaults to 2.

READ RESTART DUMP int
Restart simulation by reading the restart dump with the given index. Restart will fail if no dump
with the given index exists. If the special value -1 is given, the latest available restart dump is used
by consulting the dump list file, problem_name.dpl. If this file is empty or does not exist, a new
simulation is started.

READ RESTART TIME real
Restart simulation at the closest restart dump to the given time. If a negative time is given, a new
simulation is started.

The frequency at which restart dumps are written is controlled by the EMIT RESTART keyword. A
restart dump is also created at the end of the simulation.

Upon restart, plot-dump data is appended to the problem_name.exo file. However, rather than
appending to the problem_name.his file, additional files are created with names problem_name.his_o,
problem_name his_i, etc. These must be concatenated together with the original problem_name.his to
generate the entire time history.

4. OUTPUT KEYWORDS

EMIT SCREEN, output-frequency
Print status line to standard out at the requested frequency.

EMIT PLOT, output-frequency
Write plot variables to Exodus file at the requested frequency.

60

EMIT HISPLOT, output-frequency
Write global variables to hisplt file at the requested frequency.

EMIT RESTART, output-frequency
Write restart dumps at the requested frequency.

The output-frequency specification takes one of the following forms:

TIME INTERVAL real [output-range]
Output occurs at the specified simulation time interval. Because the simulation time step is not
modified, the actual write time may overshoot the requested interval by some fraction of a time
step.

EXACT TIME INTERVAL real [output-range]
Output occurs at the exact simulation time interval specified. The time step is modified such that
output is triggered at the requested interval.

CYCLE INTERVAL int [output-range]
Output occurs at the specified cycle interval.

WALL CLOCK INTERVAL number | hms [output-range]
Output occurs at the specified wall clock interval. Wall clock time must be specified either as an
integer or real number of seconds, or in the form 12h 34m 56s.

NUMBER int [output-range]
Output occurs the specified number of times over the course of the simulation. If an
output-range is specified, then the number of output triggers will occur within that range.

The output-range option takes one of the following forms:

FROM number [TO number]
Specifies beginning (and optionally ending) values that form a range. The units of the range are
assumed to be the same as the units of the output-frequency specification.

FROM TIME real [TO real]
Specifies a simulation time range.

5. PLOT VARIABLES

Variables to be written to the Exodus [9] plot file are specified with the following syntax:

PLOT VARIABLES
[ALL VARIABLES]
[NO DEFAULT OUTPUT]
[NO REGION VARIABLES | ALL REGION VARIABLES]
[NO MATERIAL GLOBALS | ALL MATERIAL GLOBALS]
[NO UNDERSCORES]
registered-variable-name, [modifier]

61

registered-variable-name, [modifier]

END

Valid plot variables for UTDEM are shown in Table

Table 7-1. Plot Variables for UTDEM

Variable Name Type Explanation

ELECTRIC_FIELD vector | Electric field (E).

MAGNETIC_FIELD vector | Magnetic field (H).

MAGNETIC_FLUX_DENSITY vector | Magnetic flux density (B).

CUR_DEN vector | Current density for external J-sources.

ECON scalar | Electrical Conductivity (o), from Simple Electrical,

RIC Electrical and Breakdown Electrical material
models, and external J-sources.

ELECTRON_CONCENTRATION scalar | Electron concentration, from HP Gas material
model.

NEGATIVE_ION_CONCENTRATION | scalar | Negative ion concentration, from HP Gas material
model.

AVALANCHE_RATE scalar | Avalanche rate, from HP Gas material model.

ATTACHMENT _RATE scalar | Attachment rate, from HP Gas material model.

PERMITTIVITY scalar | Electric Permittivity (€) from material model.

PERMEABILITY scalar | Magnetic Permeability () from material model.

RELUCTIVITY scalar | Magnetic Reluctivity (1) from material model.

SPEED_OF _LIGHT scalar | Speed of light from material ((ep) ~/?).

IMPEDENCE scalar | Real intrinsic impedence of the material (\/g)

Additional valid plot variables for UTDEM_PIC are shown in Table Averaged variables, prefixed
with AVE_, are quantities averaged over cycle intervals. An individual particle species’ charge density is
separately computed only if it is referenced using the RHO_species or AVE_RHO_species plot
variables, or explicitly defined with the REGISTER_DENSITY option of the DEFINE SPECIES input
command (34). If the AVE_RHO_species plot variable is listed then EMPHASIS calculates the
RHO_species variable, but the non-averaged charge density is only output if specifically requested in
the plot variable list. If there are any remaining particle species whose charge densities are not computed
separately due to one of these two reasons, their charge densities are combined and available in aggregate
using the CHARGE__DENSITY plot variable. Note that multiple PMC symmetry planes must be defined
by separate side sets for the PIC_CURRENT variable to be accurate.

For a complete list of available plot variables and options, consult the Alegra manual [g].

Time-history variables to be written to the hisplt file are specified with the following syntax:

HISTORY PLOT VARIABLES
[NO DEFAULT QUTPUT]

62

Table 7-2. Plot Variables for UTDEM_PIC

Variable Name Type Explanation

PIC_CURRENT vector | Particle current applied to the mesh.
AVE_PIC_CURRENT vector | Average PIC current.
RHO_species scalar | Charge density of species.
AVE_RHO_species scalar | Average charge density of species.

AVE_ELECTRIC_FIELD | vector | Average electric field.

AVE_MAGNETIC_FIELD | vector | Average magnetic field.

CHARGE_DENSITY scalar | Aggregate species charge density.

DIVD_M_RHO scalar | V-D —p.

[NO REGION GLOBALS]

[NO MATERIAL GLOBALS]

[NO UNDERSCORES]
registered-variable-name, [modifier]
registered-variable-name, [modifier]

END

Time-history data for all specified global variables, and for spatial locations specified in the TRACER
POINTS keyword, will be written to the hisplt database file, problem_name.his. By default, all global
variables will be written. Tracers located in wedge elements will not be found.

6. LINEAR SOLVER KEYWORDS

Solution of an EMPHASIS problem requires specification of a linear solver, which uses the AZTEC
syntax [1z]. A typical example is:

aztec
solver, cg
precond, none
scaling, sym_diag
output, none
tol =1.e-9
polynomial order, 1
max iterations, 1000
end

This specifies the conjugate gradient (cg) method with no preconditioning, but with symmetric
diagonal scaling. No output is requested from AZTEC after each solve to a tolerance level of 1.e-9, with

63

a maximum number of cg iterations set to 1000 (default is s00). The POLYNOMIAL ORDER should

always be set to “1” for efficiency.

The next example again specifies cg, but with jacobi preconditioning and without scaling. The
convergence norm is set to be relative to the rhs rather than default, which is the initial residual. If large
conductivity values (on the order of 1 or higher) exist in the simulation, the convergence norm must be
set to rhs to achieve convergence due to numerical considerations.

aztec
solver, cg
precond, jacobi
scaling, none
convergence norm, rhs
output, last

tol =1.e-9
polynomial order, 1
end

For convergence with very large time steps, the Multi-Level (ML) preconditioner should be specified.
The following settings are typical to achieve a successful ML solution with limited testing. Others are
possible and perhaps even desirable. The Alegra-MHD manual [z] may provide some guidance for
advance ML settings.

aztec
solver, cg
precond, jacobi
output, none
tol = 1.e-9
polynomial order, 1
multilevel
fine sweeps =1
fine smoother = Hiptmair
coarse sweeps = 6
coarse smoother = Hiptmair
multigrid levels = 10
interpolation algorithm = AGGREGATION
smooth prolongator
hiptmair subsmoother = MLS
end
end

This final example mimics as closely as possible using Aztec the solver technology used in the legacy
unstructured code:

64

aztec
solver,
precond,

cg
dom_decomp

subdomain solver, icc
type overlap, symmetric

output,
tol

none

1.e-15

polynomial order, 1

end

7. DEBUG MODE KEYWORD

Specific code debug information at run time can be requested using the following syntax:

DEBUG MODE: debug-opt
Some relevant values for debug-opt are:

LOCATION
Provides a quick way to observe in the standard out stream progress through the code

execution, and in particular to see where the most time is being spent.

SIGNALS | FPE
These will catch and report events such as floating-point exceptions.

AUTO ITS BEAM SETUP
This mode is specific to PIC. It requests detailed data to compare the auto-fit ITS beam
setup with the corresponding I'TS simulation that built the input PFF file. The results are
placed in the file anto_its beam.dat.

The auto_its_beam.dat file contains a table with an entry for each I'TS subsurface fitted to at least one
emitting face of an Emphasis beam-emission sideset, with the columns listed in Table

Table 7-3. Column listing with descriptions for the auto_its_beam.dat debug file.

Column Description

EmSurf# Emphasis emission surface number (1-N)

SideSet Emphasis Sideset ID

ITSsurf# ITS surface # in the PFF file

ITSsubsurf# | Subsurface # of the ITS surface: 1 — Nudiv X Nvdiv, where Nudiv and Nvdiv are the
two ITS surface subdivision parameters, and the 1-D # is v + Nvdiv x (u — 1) (ITS
ordering).

#-cells # emitting faces fitted to the subsurface

ITS-emitfrac

Total emission fraction (per single source particle) for the subsurface

arca

Sum of Empbhasis emission face areas fitted to subsurface

emDensity

emitfrac/area

8. MATERIAL MODELS

1. MATERIAL BLOCK

Defines a model or models for a material with the syntax:

MATERIAL int
MODEL int

END

Relates the material identified with the index int to material MODEL(s). For UTDEM, only one model
applies to each material.

2. MATERIAL MODEL BLOCK

Defines a material model with the syntax:

MODEL int model-name
[PARAMETER value]
[PARAMETER valuel

END

Relates the material model identified with the index int to a specific model type defined by the name
model-name and defines parameters specific to that model.

3. MATERIAL MODELS FOR UTDEM

The following models are valid model-name options for UTDEM. Every model will specify EPS, the
relative permittivity of the material (€), MU, the relative permeability of the material (1), and SIGMA (or
SIGMAO), the conductivity of the material (0"). Models that have a NTIMESTATES parameter st have
it set to 3 for proper UTDEM functionality. If not, the code will halt and notify the user.

66

3.1. Simple Electrical

SIMPLE ELECTRICAL
EPS real
MU real
SIGMA real
[NDOF int]
[NTIMESTATES 3]
END

This is the simplest electrical material model, specifying constant values for €, i, and 0. A simple usage
example is

MODEL 1 SIMPLE ELECTRICAL
EPS 2.
MU 1.
SIGMA 1.e-3

END

The NDOF and NTIMESTATES keywords are only needed for the specific case of UTDEM PIC
simulations with multiple element blocks, some using Simple Electrical, and others using HP Gas
Electrical. In this case NDOF and NTIMESTATES must have the same values for both models. In
particular, NTIMESTATES = 3 to consistently handle time-dependent conductivity.

3.2. Breakdown Electrical

BREAKDOWN ELECTRICAL
EPS real
MU real
SIGMAO real
THRESHOLD real
SIGMA_BKDN real
END

The BREAKDOWN ELECTRICAL model is a simple material breakdown model whereby the electric field
in each element is monitored and if it reaches THRESHOLD V/m, the conductivity in that element is
changed to SIGMA_BKDN, where it remains for the remainder of the simulation. The UPDATE MAT
STATE keyword must be used with this model. A simple usage example is

MODEL 2 BREAKDOWN ELECTRICAL
EPS 2.
MU 1.
SIGMA O.

THRESHOLD 2000.0
SIGMA_BKDN 1.e7
END

3.3. HP Gas Electrical

HP GAS ELECTRICAL
EPS real
MU real
SIGMAO real
DENSITY real
WATER_FRACTION real
[GASNAME "string"]
[XIEV real]
[NDOF int]
NTIMESTATES 3
[SCATTER "string"]
[NKEBINS int]
[KEMIN real]
[KEMAX real]
[NSUBCYCLE int]
[LIMIT_PROB real]
[ELECTRON_EMIN real]
END

The HP GAS ELECTRICAL model is a high-pressure gas chemistry model containing the additional
parameters DENSITY, WATER_FRACTION, XIEV, and NDOF, and optional parameters to enable angular
scattering of electrons from the gas (see below). The gas density is specified in MKS units, kg/m®. The
XIEV and NDOF parameters are optional. The parameter XIEV can be used to override the default mean
ionization energy of the gas (34 V). If not specified, NDOF will default to the number of nodes in an
element, in which case the model variables will be node based. Setting NDOF to one will make the model
variables element based. The optional GASNAME parameter can be used to specify the gas. The model
will read the gas parameters from the file “gasname.dat” in the run directory. If not specified, the default
gas model is the ITT model for air which can also be specified explicitly with the string itt_air. Note
that WATER_FRACTION is a required parameter for itt_air, butis not used for an explicitly requested
gas file.

In a PIC simulation, the HP GAS ELECTRICAL model can used in combination with the GAS DRAG
command to enable interaction of electrons with the background gas. This applies a drag force to slow
down the electrons, but does not change their direction. The SCATTER parameter enables angular
scattering of the electrons. The string takes exactly the same form as the mixture parameter for the
KINETIC GAS ELECTRICAL model, and uses the same cross section data file (see below). The optional
parameters NKEBINS, KEMIN, and KEMAX correspond to the KINETIC GAS ELECTRICAL parameters
NEBINS, EMIN and EMAX respectively, and with the same defaults (renamed here to avoid confusion

68

with electric field bins). Elastic scattering is enabled with a table of the total cross section (summed over
all processes) for each gas on the specified energy grid. The optional NSUBCYCLE and LIMIT_PROB
keywords provide user control to reduce the maximum probability of interaction, P = novAt, for
very high density gas. By default NSUBCYCLE = 1. If a value greater than 1 is entered, the scattering is
done NSUBCYCLE times per PIC timestep, with At.,c = Atp;c/NSUBCYCLE. The LIMIT_PROB
explicitly limits P by brute force for all processes at all energies.

The ELECTRON_EMIN parameter (in eV) requests that electrons be killed if their energy falls below this
value. Typically, this value will be near the ionization threshold for the gas. Killing electrons in space will
corrupt V - D — p diagnostics, but here the electrons are presumably being killed where the
conductivity is non-zero. In this case the V - D — p diagnostics are already corrupted, and additional
errors from killing particles are reduced over time by being conducted away.

A simple usage example is

MODEL 3 HP GAS ELECTRICAL
EPS 2.
MU 1.
SIGMAO O.
DENSITY 1.23
WATER_FRACTION 0.02
NDOF 1
NTIMESTATES 3

END

3.4. Foam Electrical

FOAM ELECTRICAL
EPS real
MU real
SIGMAO real
COEF1 real
COEF2 real
COEF3 real
DENSITY real
NDOF int
NTIMESTATES 3

END

The FOAM ELECTRICAL model is an empirical radiation-induced conductivity (RIC) model for foam
that takes the following form:

oc=o00+¢ (¥’ + ey +c3), (3.1)
69

where o is the conductivity in Mho/m, oy is the dark conductivity in Mho/m, ¢ is the permittivity in
F/m, c1, ¢2, and c3 are the coefficients COEF1, COEF2, and COEF3 in (Mho/F)/(Rad/s), and 7 is the dose
rate in Rad/s.

If the DENSITY (pounds/ft®) is specified as either s or 10, the correct coefficients will be supplied by the
code for polyethylene foam and any supplied coefhicient values will be ignored. Supplying other
densities will generate an error. If DENSITY is not supplied, arbitrary coefficients can be supplied and
will be used. In either case, the user must supply the appropriate dielectric constant. Typical values for
polyethylene foam are ¢ = 1.105¢, for a density of 5 Ibs/ft*, and & = 1.2¢ for a density of 10 Ibs/ft?.
Tableshows the code-stored coeflicients for 5 and 10 pound foams.

Table 8-1. Values for FOAM ELECTRICAL model coefficients

Density (Ibs/ft’) | s 10

c1 1.963 x 10712 | 1.347 x 10712
Co 5.027 x 1071 | 8.265 x 1072
C3 —7.863 x 10° | —2.228 x 107

3.5. HP Foam Electrical
HP FOAM ELECTRICAL
EPS real
MU real
SIGMAO real
DENSITY real
WATER_FRACTION real
GASNAME "string"
VF real
XIEV real
NDOF int
NTIMESTATES 3
END

The HP FOAM ELECTRICAL model is an experimental foam model based on the field-exclusion foam
model of Stringer and Dumcum [xx1]. This model is similar to HP Gas Electrical with one additional
parameter VF, the volume fraction of gas in the foam. The gas definition here refers to the gas in the
foam “bubbles”. SIGMAO is the background conductivity of the gas and EPS is the dielectric constant of
the solid portion of the foam forming the bubble walls.

3.6. Kinetic Gas Electrical

KINETIC GAS ELECTRICAL

70

EPS real (1.0)
MU real (1.0)
SIGMAO real (0.0)
P_TORR real
MIXTURE "‘/Estring"
[NO_ATTACHMENT]
[FRACTIONAL IONIZATION fractional-ionization-specification]
[PRIMARY string]
[SECONDARY string]
[EMIN reall
[EMAX reall]
[NEBINS int]

END

The KINETIC GAS ELECTRICAL model is a gas chemistry model that handles collisions between
electrons and molecules in a background gas kinetically. Only the MIXTURE and P_TORR parameters are
required. If not supplied, EPS, MU, and SIGMAO default to values of 1.0, 1.0, and 0.0, respectively.
P_TORR is the pressure of the gas at standard temperature, in torr. The MIXTURE parameter is a string
containing space-delimited pairs, each pair comprised of a string for the name of a gas molecule followed
by a real value representing this molecule’s fraction of the mixture (by volume). Note that the total of
the fractions for all molecules in the mixture must sum to one. If the fraction for the last gas is not
specified, its value will be computed automatically subject to this constraint. For example, the following
MIXTURE specification could be used as an approximate model for dry air: "N2 0.79 02".

The NO_ATTACHMENT parameter is used to indicate that all attachment interactions should be
neglected; if not supplied, attachment will be modeled. The PRIMARY and SECONDARY parameters
provide the species names of two electron species that are used in the material model when treating
collisions. These are the only particles that will be considered as incident electrons for collisions with the
background gas molecules. The primary electron species is used for electrons which come from other
sources in the problem, such as beam or field emission surfaces. The secondary electron species is used
by the material model to create the electron byproducts of ionizing collisions with the background gas.
If either is unspecified, both default to the string electron. To compute the probability of any
interaction with the gas, the energy-dependent cross sections of the various interactions are interpolated
from a table that is constructed from data in the Cross Section Database (see the CROSS SECTION
DATABASE command for more details). Three input parameters are used to control the construction of
the table. The EMIN and EMAX parameters control the upper and lower energy bounds of the table,
respectively, and are specified in eV. Default values are 10~' and 10°. The NEBINS parameter controls
the number of bins into which the energy range of the table is logarithmically divided, and its default
value is 600. Consequently, the default values for these three parameters provide 100 bins/decade.

The FRACTIONAL IONIZATION parameter is used to help control exponential growth in particle count
by providing a time-dependent function specifying minimum charge magnitude gy, for secondary
electrons created by an ionizing collision. If the magnitude of the charge of a secondary electron to be
produced by an ionizing collision, ||, is less than gmin, an ionization fraction Fy, is computed
using

Fon = |QSec |/Qmina

71

subject to the additional constraint that
F}on > Fbase-

The probability of the collision is then reduced by Fj,,, and if the collision still occurs, gy is increased
1/ Fion. There are two forms available for fractional-ionization-specification:

FUNCTION int [, SCALE = real] [, BASELINE = real]
Provides a time-dependent specification of gmin (in Coulombs). The SCALE parameter defaults
to 1.0 if not provided.

real [, SCALE = real] [, BASELINE = reall]
Specifies a constant value, such that gmiy is the product of the constant and the value of the
SCALE parameter.

In either case, the optional BASELINE parameter specifies the value of Fi,, which defaults to o.o.
Finally, if the FRACTIONAL IONIZATION keyword is not provided, the fractional ionization model is
not used.

A database of gas cross section data must be available to the KINETIC GAS ELECTRICAL material
model. See the CROSS SECTION DATABASE command for how to specify this file. In addition to the
particle species specified by the PRIMARY and SECONDARY parameters, any gas molecules in the gas
mixture that have ionizing interactions will require a corresponding positive ion species. Similarly, any
gas molecules with attachment interactions will require a corresponding negative ion species (assuming
the NO_ATTACHMENT parameter was not specified). By convention, the model assumes the names of any
required positive or negative ion species will be the name of the gas molecule with the suffix “_P” or
“_N” appended, respectively. If any of these particle species needed by the model are not explicitly
defined using the DEFINE SPECIES command above, the model will automatically attempt to define
them.

3.7. RIC Electrical

FOAM ELECTRICAL
EPS real (default 1.0)
MU real (default 1.0)
SIGMAO real (default 0.0)
COEFFICIENT real
EXPONENT real
NDOF int
NTIMESTATES 3

END

The RIC ELECTRICAL model is an empirical radiation-induced conductivity (RIC) model which takes
the following form:

o =0+ K",

72

where o is the conductivity in Mho/m, oy is the dark conductivity in Mho/m, ¢ is the permittivity in
F/m, K is specified by COEFFICIENT in (Mho/F)/(Rad/s), 7 is the dose rate in Rad/s, and e is specified
by EXPONENT. Typical values for kapton are € = 3.5¢¢, K = 3.23 x 1075, and e = 0.95.

A simple usage example is:

MODEL 4 RIC ELECTRICAL
EPS 2.
MU 1.
SIGMAO O.
COEFFICENT 3.23e-6
EXPONENT 0.95
NTIMESTATES 3

END

3.8. Lorentz Polarization

This model is history dependant and supported only by CRANK NICOLSON, BACKWARD EULER, and
BACKWARD EULER FRIEDMANthnehuegnuom.

LORENTZ POLARIZATION

EPS real (default 1.0)

MU real (default 1.0)

SIGMA real (default 0.0)

ELECTRON DENSITY real

COLLISION FREQUENCY real

NATURAL FREQUENCY real (default 0.0)
END

The Lorentz Porlarization Model is a classical dispersive dielectric model. This model assumes
constitutive laws

D=¢¢qE+P, H=y"'B, J=0E+J. (3.2)

P+ P+ wiP = eoersz (3.3)
where v is the collision frequency, wy is the natural frequency, and wz is the electron plasma frequency.
The plasma freqyenc is given by the relationship

e’n,

w2 = : (3.4)
€g Me

We therefore request . the electron number density directly. e model is history dependant and
Suppoﬂfd(nﬂybyCRANK NICOLSON, BACKWARD EULER, and BACKWARD EULER FRIEDMAN time
integrators. If we select the natural frequency to be zero this model is a plasma model (or Drude) model.
Both the electron density and collision frequency should be positive for the model to be dissipative.

73

3.9. Face PML

This model is history dependant and supported only by CRANK NICOLSON, BACKWARD EULER, and
BACKWARD EULER FRIEDMAN time integrators.

FACE PML
EPS real (default
MU real (default
SIGMA real (default
NORMALO_X real
NORMALO_Y real
NORMALO_Z real
INTERFACE_STARTO real
LAYER_THICKNESSO real
CENTER_X real (default
CENTER_Y real (default 0.0)
CENTER_Z real (default = 0.0)
POLYNOMIAL_GRADING real (default = 2.0)
SCALE_FACTOR real (default = 0.01)
COMPLEX_FREQUENCY_SHIFT real >= 0.0 (default = 0.0)
BENDING_FACTOR real >= 1.0 (default = 1.0)
NDOF int
NTIMESTATES 3

END

Il
N~

.0)
.0)
0.0)

0.0)

FACE PML is a one dimensional sponge layer used to truncate domains. For some physical, 3D domain
call I' a planar surface which we wish to model as an “open boundary.” We use the Unsplit Perfectly
Matched Layer (UPML) technique and therefore attenuate outgoing waves by using a non-physical,
anisotropic, dispersive material. The relative permittivity €,, relative permeability z,., and electrical
conductivity o are passed to inputs EPS, MU, SIGMA respectively. If these parameters are unspecified
then vacuum conditions are assumed, i.e. €, = jt, = 1,and o = 0. This layer should be impedence
matched to the physical domain. That is,

2(w) = /e iwo) g (53)
should be the same in the PML as the physical domain. Impedance matching is only guaranteed when

truncating SIMPLE ELECTRICAL materials with SIGMA =0.0. The complex permittivity and
permeabilities of the PML are given as

e(w) =ereox(w), p(w) = prpox(w) (3.6)
x(w) =s(w) ' n®n+ sw)(l—-n®n), (3.7)
s(w) = (1 + T—I—v (3-8)

74

Here (3 is the BENDING_FACTOR and 7 is the COMPLEX_FREQUENCY_SHIFT. The vector n is the unit
normal in the direction (NORMALO_X,NORMALO_Y,NORMALO_Z). The vector

c= (CENTER_X,CENTER_Y,CENTER_Z) (3.9)
is point inside the physical domain. It must satisfy a condition, namely
(x—¢c) n=¢&>0 (3.10)

The minimum value of £’s (called ;) must be passed to INTERFACE_STARTO. If the physical domain is
convex then ¢ may be any point in the physical domain including I'. For any physical domain, if ¢ is
chosen on I" then &, = 0.

The parameter LAYER_THICKNESSO is the depth of the layer, . It is recommended that the layer be
meshed by sweeping from the surface I" 15—20 elements deep. This formulation is of course agnostic to
element type although we have found improved results using wedges aligned with n to truncate
unstructured tetrahedral meshes.

Call the argument passed to SCALE_FACTOR «. By default this parameter is assumed to be o« = 0.01.
The minimum relaxation time of the PML is given by

4y Co
T=0—, c=

c NG

While UPML are impedence matched in the continuum, discretization errors can induce spurious
reflections at the boundary of the PML and the physical domain. The standard methodology to
overcome this problem is to smoothly turn on the PML. We employ polynomial grading to achieve this
effect. Let p be the argument passed to POLYNOMIAL_GRADING. By default this parameter is assumed to
be p = 2. Atlower resolution it may be useful to increase the polynomial grading to p = 4; however,
testing at higher resolution shows that for very thin sponge regions large p can induce reflections. The
PML is functionally graded such that for some point X in the PML we have

Lzl (5_60)27 (3.12)
%(5) T £y ' '

(3.11)

Similarly the parameters v and 3 are also graded as

0= (0) o-1+6-0(*22) . oo

Default parameters were selected so that a plane wave travelling incident to I" would attenuate by -8o dB
in 2¢. Note that while it may be tempting to reduce « to very low values (i.e 107'2) this will increase the
stiffness of the PML. Thus some balancing between reducing 7 and increasing layer thickness is
required.

75

3.10. Edge PML

This model is history dependant and supported only by CRANK NICOLSON, BACKWARD EULER, and
BACKWARD EULER FRIEDMAN time integrators.

EDGE PML
EPS real (default = 1.0)
MU real (default = 1.0)
SIGMA real (default = 0.0)

NORMALO_X real
NORMALO_Y real
NORMALO_Z real
INTERFACE_STARTO real
LAYER_THICKNESSO real
NORMAL1_X real
NORMAL1_Y real
NORMAL1_Z real
INTERFACE_START1 real
LAYER_THICKNESS1 real

CENTER_X real (default = 0.0)
CENTER_Y real (default = 0.0)
CENTER_Z real (default = 0.0)

POLYNOMIAL_GRADING real (default = 2.0)
SCALE_FACTOR real (default = 0.01)
COMPLEX_FREQUENCY_SHIFT real >= 0.0 (default = 0.0)
BENDING_FACTOR real >= 1.0 (default = 1.0)
NDOF int
NTIMESTATES 3

END

Edge PMLs are used when two face PMLS are applied to truncate a corner. For example, if physical
domain is cube and two open boundaries meet at an edge. Call their physical boundaries I'g and I';.

If n; is the outward normal of T';, the center vector ¢ and interface start locations §; must satisfy
If ¢ is chosen as a pointon I'g N I'y then §; = 0.

Scale factors, complex frequency shifts, bending factors, polynomials gradings, relative permittivities
and permeabilities, and electrical conductivities should agree between the two Face PMLs and the edge
PML. If both Face PMLs are meshed with swept wedges then an edge PML can be a regular hexahedral
mesh.

76

3.11. Node PML

This model is history dependant and supported only by CRANK NICOLSON, BACKWARD EULER, and
BACKWARD EULER FRIEDMAN time integrators.

NODE PML
EPS real (default = 1.0)
MU real (default = 1.0)
SIGMA real (default = 0.0)

NORMALO_X real
NORMALO_Y real
NORMALO_Z real
INTERFACE_STARTO real
LAYER_THICKNESSO real
NORMAL1_X real
NORMAL1_Y real
NORMAL1_Z real
INTERFACE_START1 real
LAYER_THICKNESS1 real
NORMAL2_X real
NORMAL2_Y real
NORMAL2_Z real
INTERFACE_START2 real
LAYER_THICKNESS2 real

CENTER_X real (default = 0.0)
CENTER_Y real (default = 0.0)
CENTER_Z real (default = 0.0)

POLYNOMIAL_GRADING real (default = 2.0)
SCALE_FACTOR real (default = 0.01)
COMPLEX_FREQUENCY_SHIFT real >= 0.0 (default = 0.0)
BENDING_FACTOR real >= 1.0 (default = 1.0)
NDOF int
NTIMESTATES 3

END

Node PMLs are used when three face PMLS are applied to truncate a corner. A node PML will also
have three neighboring edge PMLs. For example, if the physical domain is a cube and three open
boundaries meet at node or vertex. Call their physical boundaries I'g, I'y, and I's.

If n; is the outward normal of T';, the center vector ¢ and interface start locations &y, &1, & must
satisfy

ni-(x—c)zfiZO,Vxef‘oﬂflﬂFQ (315)

If c is chosen as a point as the pointin I'y N I'; N I'y then &; = 0.

77

Scale factors, complex frequency shifts, bending factors, polynomials gradings, relative permittivities
and permeabilities, and electrical conductivities should agree between all adjacent PMLs. If the Face
PML are meshed with swept wedges then the node PML may be meshed with regular hexahedra.

78

9. HYBRID FETD/FDTD

Presently only STDEM, which is classical Finite-Difference Time-Domain (FDTD), contains both the
Perfectly Matched Layer (PML) boundary condition and the Near-To-Far (N'TF) field transformation.
Therefore it remains useful for EM scattering and RCS simulations. Additional useful keywords for
STDEM can be found in [].

A key requirement with HTDEM is that since it involves FDTD, it is conditionally stable and the
Courant stability condition must be met. If a very rapid instability is seen this is the first place to look.
For cubical cells with A the globally smallest spatial dimension, the condition is

At < ——

A
V3

In general

The user can specify the time step to be used using the CONSTANT TIME STEP keyword. If no
CONSTANT TIME STEP keyword is present, the code will compute an appropriate Courant time step
using the first equation above with a safety factor of 0.9 assuming non-spatially varying cells which is
typical for hybrid simulations.

1. KEYWORDS

The physics keyword HYBRID TD ELECTROMAGNETICS specifies that hybrid time-domain
electromagnetics (HTDEM) physics is to be used to couple structured and unstructured meshes. This
goes in place of the UNSTRUCTURED TD ELECTROMAGNETICS physics keyword (see Section).

HEX MASS LUMP, bool | string
Specifies whether mass lumped integration is activated for hex elements.

Mass-lumped integration is required for successful hybrid simulations. The possible options are
true (or yes) and false (or no). The default is presently false.

79

WRAPPER, SIDESET int
Specifies the sideset identifying the boundary of the unstructured mesh.

The WRAPPER keyword is only processed if the edgesets identifying the fields to exchange
between the structured and unstructured meshes are not detected in the mesh description. For
I-DEAS generated meshes the preprocessor can automatically generate these edgesets and the
elements required to interface the unstructured mesh to the structured mesh for models without
material variations in the interface region. However, in cases where material variations are present
in this interface region, the user needs to manually generate the interface elements and use the
wrapper keyword to identify the boundary of the unstructured mesh. The specified sideset and
the first element block found containing hexahedral elements are used to generate the edgesets
needed to connect the meshes.

FIELD SOLVER, PML, PROFILE=X, FUNCTION= int, Y, FUNCTION= int, Z, FUNCTION=
int, BLOCK=1,2,3,4,5,6
Specifies the use of the STDEM PML solver.

The FIELD SOLVER keyword requires HTDEM physics. The required sub-keyword PML,
PROFILE provides the functional description of the PML in each of the three coordinate
dimensions. Often these are the same function so a single function number can be referenced
three times. The required sub-keyword BLOCKS specifies the user block numbers of the PML
blocks. These are always 1-6 as shown if using the provided structured mesh/PML generation
template discussed in section 2]

FAR FIELD, SEGMENT = real real real real real real [, PHASECENTER = real
real real, LOOKANGLES real real real real ...]
Specifies that far-field signals are to be computed.

The FAR FIELD keyword requires HTDEM physics. The required sub-keyword SEGMENT
provides the coordinates of two points on the structured grid describing the virtual surface which
surrounds the scatterer which resides in the unstructured mesh. This SEGMENT should reside just
outside the hybrid interface region and inside the PML absorbing boundary condition which will
typically terminate the structured grid for scattering simulations. The optional PHASECENTER
keyword provides the 3D Cartesian coordinates (x, y, z) of the desired phase reference for the far
fields. If not provided, the Cartesian coordinate origin is used as the phase reference. The other
optional keyword LOOKANGLES provides (¢, ¢), pairs of look angles (in degrees) where the
transient far-field waveforms Etheta and Ephi are desired.

If desired, the frequency content of the excitation waveform can be deconvolved from the
transient field waveforms as a post-processing step. A PFIDL script is available for accomplishing
this deconvolution.

The transient fields are written to the ascii file problem_name.EtEp.asc. They are also available in
the problem_name.exo file but only the time cycles corresponding to the EMIT PLOT keyword
will be available there. The excitation waveform can be obtained from the problem_name.his file.
All time cycles will be available if “EMIT HISPLT, CYCLE INTERVAL = 1”isused.

8o

FAR FIELD PATTERN, PHISTART = real, [PHIEND = real, NUMPHI = int,]
THETASTART = real, [THETAEND = real, NUMTHETA = int,] FREQUENCIES real
real real ...

Specifies that far-field patterns are to be computed.

The FAR FIELD PATTERN requires the FAR FIELD keyword specify at a minimum the location
of the virtual-surface SEGMENT. The start and end keywords of each angle specify the starting and
ending angles (in degrees) of each for the particular pattern. If only a single phi cut is desired,
only PHISTART need be specified and similarly only THETASTART for a single theta cut. At least
one frequency must be provided at which to compute the patterns.

Unlike the transient far-field results, the frequency content of the excitation waveform time
history has been removed from the resulting patterns. An inherent assumption is that a single
source is used. Possible sources include those described by the SOURCE keyword, the PORT
SOURCE keyword, and the PLANE WAVE SOURCE keyword.

The patterns are written to the ascii file problem_name.Pat.asc. A script is available to read these
patterns using PFIDL.

Since the patterns involve Fourier transforms of transient results, the user must verify that the
simulation is run long enough that all relevant far-field transients have damped to zero. This is to
avoid problems with aliasing which would render the pattern results invalid. Restart can be used
to extend the simulation in the case that steady state has not yet been reached.

2. MESH GENERATION

Creation of a suitable unstructured mesh boundary to couple to the structured mesh requires a few
specialized steps.

Two specialized templates (see Appendix[F) are required to generate the unstructured mesh using Cubit
and the structured mesh using the legacy preprocessor for Quicksilver, Mercury. The first is a Cubit
journal file creating for this example a simple spherical scatterer and containing the appropriate
commands to create the wrapper for connecting to the structured mesh. The second is a Mercury input
file to generate a structured mesh to couple with the unstructured mesh.

Significant changes may be required in the journal template depending on the user’s desired scattering

model. This example generates the mesh shown in Fig.

The dark blue surface represents the (very coarse in this case) scattering sphere and the magenta surface
the total/scattered field boundary. This boundary is where a plane-wave source would launch from.
The volume between the blue and magenta surface is filled with tetrahedrons making up the total-field
region. The volume between the magenta and the green surface contains tetrahedrons in the
scattered-field region. The orange is the transition between tetrahedrons and hexahedrons which
includes some pyramids to mate with the outer hexahedrons in light blue.

In addition to a plane-wave source, the total-field region may contain other source types such as the
volume current source (J Source). A useful exercise is to modify the mesh such that the scatterer is

81

Figure 9-1. Example hybrid mesh.

removed and replaced with it’s internal mesh. A plane-wave source can now be launched and observed
to propagate across the total-field region. The fields in the scattered-field region will be zero for all time
since there is no scatterer.

The FDTD mesh generated by the Mercury template overlaps with the blue hexahedrons in Fig.[o-1/to
form the hybrid communication. A few changes are required in this template including 1) the mesh
deltas in each direction (template lines 10-12), 2) the overall mesh dimensions (template lines 14-16), and
the depth of the PML boundary (line 27). The minimum overall mesh dimensions should extend two
FDTD cells outside the journal file mesh in each dimension, ie, journalSize+4 each dimension. The
PML boundaries are added outside of this dimension. If more space is desired between the hybrid
interface and the start of the PML, the overall mesh dimensions can be made larger than the minimum
values.

Presently the Mercury preprocessor is available on the PPIC LAN and tlcc2 cluster (chama, uno, etc.)
linux machines. On the PPIC LAN, define:

82

export QSRO0T=/remote/tdpoint/qsroot
export QS_SYS_TYPE=linux_x86_64_intel

On the tlec2 cluster machines, define:

export QSRO0T=/projects/emphasis/qgsroot
export QS_SYS_TYPE=tlcc2

Then on any machine, define:

export MERKmaster=$QSRO0T/qgs/master.merk
alias merk="$QSRO0T/bin/$QS_SYS_TYPE/merk_ng.exe -e20 -q -E"

At this point the file is processed as follows, where the number of parallel processors desired must be
specified. Whatever that number is, the file will also function in serial.

merk -Dnproc=int hybrid.mrk outfile [> merk.out]

In this example "hybrid.mrk" is the name chosen for the Mercury input file. This command directs
Mercury to write two files for EMPHASIS, "outfile.pft" and "outfile.inp”. The pff file contains the
structured mesh and is ready to go for serial and the specified number of parallel processors. The np file
is a skeletal version which contains primarily the PML description which the user must transfer into his
own EMPHASIS input file, or use this one as a starting point. Mercury outputs information about the
Courant limit and block decomposition across processors to stdont. Redirecting this to a file provides a
useful archive for the block decomposition.

The outfile.inp file created by the example hybrid.mrk file is also shown in Appendix The PML
functions of interest are FUNCTIONS 3, 4, and 5. In most cases the functions are identical since
normally the PML thickness is the same in all three dimensions. Therefore, only one function need be
copied and placed into the EMPHASIS input for the scattering problem. This function is then
referenced in the FIELD SOLVER keyword.

A full working EMPHASIS input file using the PML description from the oxtfile.inp file is shown at
the end of Appendix

If errors exist in the hybrid connection, EMPHASIS will generate errors such as

*%% ERROR: STDEM_Point_History::Initialize
Unable to locate point

PO: **x ERROR: Interface_Direction(): Illegal PML block configuration
detected PML GID= 9 non-PML GID=4

In this case the user should verify that the mesh deltas and dimensions are correct in the Mercury
template.

83

10. INLET-PORT POISSON SOLUTIONS

The simulation of inlet ports where the port field distribution is derived from the static field
distribution over the port is accomplished using the following process:

1. Create the full 3D mesh for the simulation, including an inlet port. The inlet must be planar, but
can reside at an arbitrary spatial location. If meshing with I-DEAS, export this mesh to a genesis
database using PREP [3]. PREP will initialize number-of-nodes-per-side distribution factors per
side to zero. Other mesh generators producing generic must do the same. A suggested name for
this mesh file is problem_name . gen.

2. Generate a 2D mesh description of the inlet for the Poisson solver by invoking UTDEM SIDESET
EXTRACTOR physics in Emphasis (3D). The input file for this step contains the sideset id of the
inlet port to be extracted as well as the ids of any sidesets intersecting the extracted sideset. These
intersecting sidesets are those required to set boundary conditions for the 2D Poisson solve. The
sideset extractor will extract the inlet sideset, convert it to a 2D mesh description, and write a 2D
gen file for Emphasis. The extractor will also record in this gen file the appropriate
transformation matrix to be applied to the Poisson results to properly position the Poisson
solution into the 3D gen file. An example input file is shown in Appendix[C| The extractor will
create the 2D mesh file using the name problem_name . 2D . gen.

3. Solve the Poisson problem by invoking CABANA POISSON physics with the POISSON SOLUTION
keyword in Emphasis (2D). After the solution is obtained, Emphasis will write the solution and
the transformation matrix into the 3D gen file for UTDEM. For this step, a new copy of the full
3D gen file created in step 1 must be available in the directory so that the Poisson results can be
written into it. If the 3D gen file has already been modified in this manner, the Poisson solution
will note this and ask the user to provide a new copy. Since this is a generated file, a suggested
name for this copy is problem_name . inlet . gen.

An example input file is shown in Appendix@ Here, the POISSON SOLUTION keyword
specifies that Cabana obtain a single Poisson solution on the mesh with the given boundary
conditions and exit. In addition, a constant CHARGE DENSITY can be supplied for the mesh
volume. An ascii file will also be written containing the results with filename results_file.
Dirichlet boundary conditions are supplied with the CONDUCTOR keyword. The EXPORT
RESULTS keyword controls the writing of results to the UTDEM 3D genesis file and SIDESET
specified. Further information can be found in [13].

4. Invoke UTDEM physics in Emphasis (3D) to complete the full 3D solution, specifying FIELD
DIST in the port source keyword descriptor.

84

11. RUNNING UTDEM PIC WITH ITS
SOURCE DATA

UTDEM PIC can be used to simulate EMP (electromagnetic pulse) effects resulting from X-ray or
gamma ray sources. The ITS (Integrated Tiger Series) codes [6] are used to simulate coupled
electron/photon transport in complex geometries with multiple materials. However, for electron
transport in vacuum or gas, I'TS cannot self-consistently model the non-linear electromagnetic response
when the space-charge and current of the electrons has a significant effect on the EM fields. On the
other hand, UTDEM PIC is specifically designed to self-consistently handle electron motion and EM
fields.

For many EMP problems, a reasonable approximation is a "weak coupling” approach in which ITS does
the radiation transport and computes electron source data for use in an Emphasis simulation for the
self-consistent EM response. This weak coupling is usually applicable when the ITS simulation does
not have high-current electron flow in the vacuum and/or gas-filled regions where the EMP response is
needed. ITS and Emphasis currently support three types of coupling:

1. Electron emission from surfaces: emitting Emphasis sidesets are matched to corresponding ITS
emission subsurfaces.

2. Electron emission from volumes: emitting Emphasis element blocks are matched to
corresponding I'TS emission subzones.

3. ITS energy deposition in subzones is used as a direct source for updating the electrical
conductivity in elements using the HP Gas Electrical model.

The data files built by I'TS for Emphasis use the binary "portable file format” (PFF). PFF was developed
in the late 1980’s to provide a compact format for transferring data between very different platforms
(Cray and VAX) at a time when disk space was very limited. It has been continuously improved over
time, and supports a wide array of applications. PFF is now open-source software, part of the "Hermes
Utilities” package [ro]. A PFF file is a collection of randomly accessible datasets. A dataset is an
aggregation of all the data needed to define a high-level object, ¢.g. scalar or field data on a grid, or a list
of particle ordinates and attributes (momenta, charge, ezc.) The two dataset types used here are NGD
(m-dimensional vectors on an n-dimensional non-uniform grid), and IFL (a generic dataset with one
integer and one float array). All real data in PFF is single-precision, but PFF provides utilities to encode
a double into a short int array, and decode the int array back.

85

1. ITS ELECTRON EMISSION TALLIES

An ITS electron emission tally is a discrete ("histogram") distribution on a 3-D energy-angle grid: energy
E in MeV, polar angle 6, and azimuthal angle ¢. The two angles are application-specific, and will be
described later. The tally is a set of counts on a 3-D array of sampling bins with:

Ngenergybins: {F; < F < E;1;1 <1 < Ng},ofsize AE; = FE;yy — E,
Ny Obins: {0; <0 < 0;11;1 < j < Ny}, of size Apj = cos; — cosbjiq,and
N¢ qbbins: {gbk < QZ5 < Qbk—f—l; 1< k < N¢}, of size A@k = ¢k+1 — qbk

The tally data is the density of counts in each bin:

T :A
TR AE N Ay

ITS simulations track a large number of source particles, and normalizes each count to a single source
particle. The sum of the counts over all bins is an important quantity for normalizing Emphasis
emission amplitudes, and is denoted Cj.

Historically, a single emission tally has been written to a single NGD dataset. To store all the
bin-boundary values, the size of the 3-D NGD datasetis (Ng + 1) x (Np+ 1) x (N, + 1). The upper
planes and edges of the data array in each direction are filled with 2-D and 1-D distributions respectively
(integrating over one or two directions), while Cy is put in the uppermost corner,

(Ng+1,Ng+1, Ny +1). AnITS simulation uses the same energy-angle grid for all emission tallies of
the same type (surface or volume). Furthermore, Emphasis only needs the Ny NyN, 3D tally data, and
the reduced distributions are easy to compute if needed. For a small number of tallies, the wasted file
space is not much of a concern. However, time-dependent I'TS simulations with many emission
subsurfaces and/or subzones can now generate huge number of tallies, >10°. Not only is file space
wasted, but it cumbersome to have so many datasets in a PFF file.

To handle large numbers of tallies efficiently, a new "multi-tally” format has been developed, using the
float array of two IFL datasets. For a set of Ny tallies, the energy-angle grid data is written only once to
one dataset, and the tally data is written to the float array of a second IFL dataset. The first N1 data
values are () for each tally, followed by No Ng Ny N, values for the 3D data. These datasets are
currently implemented only for volume emission.

2. SURFACE EMISSION

ITS combinatorial geometry builds a domain using "bodies” of primitive shapes: box, sphere, cylinder,
etc. For surface emission, I'TS also defines a numbering scheme for the surfaces on each body type. For
example, there are three surfaces on a cylinder: #1 and #2 are the disk endfaces, and #3 is the r = const
surface between the two disks. A local 2-D coordinate system (U, V) is defined for each surface on each
body type. Each surface can then be divided up into Ny X Ny subsurfaces. An I'TS simulation can
request surface emission tallies from one or more surfaces from one or more bodies, each with its own

86

(Ny, Ny) subsurfacing parameters. An emission tally is generated for each subsurface. For a
time-dependent simulation, there is a tally for each subsurface and time bin.

In a surface emission tally, The angles 6 and ¢ are computed from the momentum components of each
electron in a local right-handed Cartesian coordinate system, (72, (bo, <;590) where 71 is the normal to the
surface, gzﬁo defines the ¢ = 0 axis, and ¢90 =n X qbo defines the ¢ = 90° axis. I'TS systematically
defines gbo for each surface type. For curved surfaces, the local basis varies with position, but the global
variation over a single subsurface decreases with increasing number of subdivisions. The range of ¢ is 0°
(normal to the surface) to 90° (tangential).

In UTDEM PIC, a BEAM EMISSION sideset is mapped to the tallies of one or more I'TS subsurfaces.
Three problems must be addressed:

1. Spatially locating which subsurface(s) to use.
2. Building momentum components in a local basis matching the I'TS basis (72, ggo, Qggo).
3. Correctly normalizing the beam current emission amplitude.

Item #3 will be discussed in section 11.4. Surface emission has undergone several iterations since its
inception in ¢. 2006, embedding more geometry information in the PFF file to automate the simulation
setup. UTDEM supports the following versions of a surface emission PFF file:

1. The "original-version o" files require a 1-1 mapping between a sideset and a single ITS subsurface
tally in a PFF dataset, and have no embedded geometry information. The file is just a collection of
NGD datasets with tally data. The user is responsible for explicitly providing a dataset number in
the BEAM EMISSION command using the keyword/value pair "ITS ds_num". Furthermore, for
most curved surfaces, ngﬁo needs to be explicitly defined with the PHIO keyword. Newer versions of
ITS no longer generate these files, but they are still supported.

2. "Version o" files still require a 1-1 mapping between a sideset and a single ITS subsurface, but
include some embedded geometry information. As above, the file is just a collection of NGD
tally datasets. However, each dataset also includes (1) the smallest bounding box in the global ITS
coordinate system that enclosed the subsurface, and (2) the qgo vector, if needed. With these files,
the PHIO keyword is no longer required, and (in most cases) the dataset number for the ITS
keyword. The required dataset is the one with the smallest bounding box enclosing the sideset.
For complicated geometry, this auto-fitting algorithm can still fail; in this case, the user must still
explicitly provide the dataset number.

3. "Version 1" files adds structure and more detailed geometry information by organizing the file into
sets of tallies for each ITS emission surface, in the order requested in the ITS input file’s
ELECTRON-EMISSION command. For each surface, there is a new "surface header” IFL dataset,
describing the body geometry, the surface on the body, and subsurfacing parameters. This is
followed by the Ny x Ny NGD datasets for the tallies on each subsurface. Emphasis loads the
data in the file, building ITS_Body and ITS_Surface objects. A sideset is no longer restricted to
having a 1-1 mapping with a subsurface. Instead, Emphasis can fit each face to the appropriate
subsurface. Furthermore the sideset can overlap multiple I'TS surfaces.

87

Using version-1 files removes the restriction that the Emphasis mesh be conformal to I'TS subsurface
boundaries—a major improvement. However, there are limitations on accuracy that should be noted.
First, consider the face fitting algorithm. A face is on a surface if all three nodes are on it (to with a given
tolerance). The subsurface assigned to the face is determined by the face centroid. With a
non-conforming mesh, a face can overlap other subsurfaces. Second, the actual emitting area of an ITS
subsurface may be smaller than its geometric area because it is obscured by another ITS body. For this
reason, Emphasis computes the total emission area of the I'TS subsurface, Agg, as the sum of the area of
the fitted faces. It then assigns a fraction of the total ITS emission count to each face,

Crace = CoAface/Ass. For a fully emitting surface with many subzones and a coarse Emphasis mesh,
there may be large fluctuations in each Agg, and thus the local face emission density. Thus, there is still
some incentive to coerce the Emphasis mesh to conform to subsurface boundaries, but it does not
require creating sidesets exactly matching subsurfaces. Finally, note that a sideset must completely cover
the emitting area of a subsurface, otherwise the emission density will be artificially enhanced.

3. VOLUME EMISSION AND ENERGY DEPOSITION

In ITS combinatorial geometry, boolean operations on the bodies previously discussed for surface
emission are used to create "zones". Zones can be subdivided into "subzones", analagous to the (UV)
subsurfacing of emission surfaces. ITS has conventions for automatically subzoning a wide variety of
single and two body zones with three subzoning parameters.

ITS has the option to save volumetric electron emission tallies in subzones. These are tallies of electrons
created in space, either with a photon or primary electron source. All such tallies use the global ITS
Cartesian coordinate system for defining the angles § and ¢. Here 6 is in the range [0, 180] degrees, with
¢ = 0° along the +z axis and 6 = 180° along the -z axis.

A "version-1" volumetric emission PFF file is structured in the same way as version-1 surface files. For
each emitting zone, there is a "zone header” IFL dataset describing the zone geometry and the three
subzoning parameters, followed by Ngz NGD datasets with emission tallies for each subzone, in ITS
order. A "version-2" volumetric emission file is structured similarly, but with the Ng; NGD tally
datasets replaced by one or more multi-tally IFL datasets with the tally data (ITS has the option to split
output for very large numbers of tallies into several IFL datasets to limit the dataset size). A single copy
of the common energy-angle grid is written to the float array of the zone beader dataset.

In Empbhasis, elements in a specified block are auto-fitted to a subzone by requiring that the centroid be
within the subzone to a specified tolerance. There are considerations for accuracy similar to surface
emission. The volume of each subzone, Vs, is the sum of the volume of all the elements fitted to it.
The ITS emission count assigned to each element is C; = CV;/ V7. To reduce fluctuations in the
local emission density, it is worth the effort to build an Emphasis mesh that conforms to subzone
boundaries as much as possible.

With volume emission, it is easy to generate very large numbers of emission tallies, and other
approximations are needed to make some simulations feasible. An important case is doing large-scale
EMP simulations in air with pressure in the range ~ 1 — 10 < P < 760 T'orr. Here, the HP Gas
Electrical model is applicable for the air breakdown plasma. However, it is only necessary to create

88

kinetic electrons if their collisional range is larger than an element size. If not, the electron will lose all its
energy in the element it was created in. We therefore approximate the system with two sources from
ITS. Volume emission is used for creating kinetic electrons above some cutoff energy E.,;, and energy
deposition ITS electrons created below £, is deposited locally in each element. This deposited energy
is used as an extra source term for creating electron-ion pairs in the air breakdown plasma.

ITS energy deposition is stored in the PFF file using IFL datasets, one per zone. The integer array
contains the same data to define the zone geometry and subzoning parameters as the zone header for
volume emission. The float array contains the Ng values (in MeV). Emphasis automatically loads both
types of data, and creates ITS_Zone objects that have either energy deposition or volume emission, or

both.

4. SETTING UP TIME-DEPENDENT EMISSION

Traditionally, ITS simulations have been time-independent. To drive a UTDEM PIC simulation of an
experiment with I'TS data from a a time-independent simulation, the following additional data is
required:

1. A source pulse waveform, f(t), typically from one or more PCD signals.
2. The total number of source particles, N, to absolutely normalize the emission amplitude.

The BEAM EMISSION command uses the function f(t) for the TEMPORAL option and the scale factor

for the AMPLITUDE keyword is
eNS'I"C

Fy

Iy = f(b),

where,

Fy = /0 " Fdt.

Note that /) has units of current. This approach assumes that the transit time between all emission
surfaces is short compared to the time scale of the driving pulse. For SGEMP simulations of small
cavities, this is a very reasonable assumption.

In fact, ITS can do time-dependent simulations. This capability was initially added to diagnose the
output of standard ITS sources with time-dependent spectra. ITS can now also be driven with
time-dependent sources built from Quicksilver PIC simulations. Emphasis can read time-dependent
ITS PFF files and use them as a source with no need for an external f(¢) function.

For a time-dependent I'TS simulation, a set of "time bin" boundaries defines tally output,

{t,;1 <n < N; + 1}, which can be non-uniformly spaced if requested. The first dataset of all output
PFF files is an IFL dataset with the time bin boundaries. When Emphasis first opens a source ITS PFF
file, it checks to see if the first dataset is a time bin IFL dataset. If it is, it handles the time-dependence
automatically, with no additional user input required. However, one important difference with
time-independent simulations must be addressed. To correctly handle non-uniform time bin spacing,
all ITS tally data is divided by the time bin width, 7.e. counts are now count rates. The AMPLITUDE scale
factor for these simulations is thus (g = €N, in units of charge.

89

REFERENCES

[1] R.S.Coats, M. F. Pasik, and D. B. Seidel. EMPHASIS™/Nevada STDEM user’s guide version
1.o. Technical Report SAND200s5-1024, Sandia National Laboratories, April 2005s.

[2] A.C.Robinson et al. ALEGRA-MHD user manual. Technical Report SAND2014-16032, Sandia
National Laboratories, 2014.

[3] A.C.Robinson etal. ALEGRA user manual. Technical Report SAND2014-16031, Sandia

National Laboratories, 2014.

[4] E.R.Keiter et al. Xyce™ parallel electronic simulator reference guide, version 6.2. Technical
Report SAND2014-18057, Sandia National Laboratories, September 2014.

[s] M.F. Pasik etal. Volmax user’s guide. Technical report, Sandia National Laboratories,
unpublished.

[6] B.C. Franke, R. P. Kensek, T. W. Laub, and M. J. Crawford. ITS Version 6: The integrated
TIGER series of coupled electron/photon monte carlo transport codes, revision 4. Technical
Report SAND2008-3331, Sandia National Laboratories, July 2009.

[7] A.Friedman. A second-order implicit particle mover with adjustable damping. Journal of
Computational Physics, 90:292—312, 1990.

[8] A.D. Greenwood, K. L. Cartwright, J. W. Luginsland, and E. A. Baca. On the elimination of
numerical Cerenkov radiation in PIC simulations. Journal of Computational Physics, 201:665—684,
2004.

[9] L. A.Schoofand V. R. Yarberry. EXODUS II: A Finite Element Data Model. Technical report
SAND92-2137, Sandia National Laboratories, Albuquerque, NM, November 199s.

[to] D.B. Seidel, M. F. Pasik, and T. D. Pointon. Hermes utilities.
https://www.sourceforge.net/projects/hermes-util.

[z] T. A.Stringer and N. S. Dumcum. Comprehensive report on gas/foam RIC test and analyses.
Technical report, ITT Industries, September 2002.

[12] R.S.Tuminaro et al. Official Aztec Users’s Guide - Version 2.1. Technical report SAND99-8801],
Sandia National Laboratories, Albuquerque, NM 87185, November 1999.

[13] C.D. Turner, W. J. Bohnhoff, and J. L. Powell. EMPHASIS™ /Nevada CABANA user guide
version 2.1.1. Technical Report SAND2014-16736, Sandia National Laboratories, August 2014.

90

[14] C.D. Turner, T. D. Pointon, and K. L. Cartwright. Emphasis/NEVADA unstructured FEM
implementation version 2.r.1. Technical Report SAND2014-16737, Sandia National Laboratories,
August 2014.

91

APPENDICES

A. USE OF THE PREP MESH PREPROCESSOR

The mesh preprocessor PREP is a holdover from legacy code that has been refactored to provide
conversion from I-DEAS Universal format to ExoduslI format for EMPHASIS/Nevada UTDEM. It is
also used to provide encoded sidesets for subsequent conversion to edgesets by Nevada. Use of PREP is
not required if 1) the chosen mesh-generation software creates ExodusII format directly including all
required nodesets, sideset-coded edgesets, and sidesets, or 2) the simulation requires no edgesets (or only
virtual edgesets) but otherwise the mesh-generation software can provide the required ExodusII
description including nodesets and sidesets.

Reference [] provides general guidance on the use of PREP but a few additional comments are
warranted. A typical PREP input file for a pure unstructured UTDEM simulation is shown below.

\$INPUT

flagwrap = °’N’

flagblocks = ’N’

flagchaco = Y’

flagalegra = Y’

nodeblu = ’HLinInt1’
nodegryblu = ’ELinIntl HLinInt1’
nodeltblu = ’ELinInt2 HLinInt1’
nodemag = ’ELinInt1’

nodepnk = ELinInt2’

nodecyn = ’Loadl’

nodegrn = ’Load2’

nodeorg = ’Sourcel’
nodeltmag = ’0bs’

\$END

The “flagwrap”, “flagblocks”, “flagchaco”, and “flagalegra” keywords must be set as shown for pure
unstructured. If this were a hybrid FDTD/FETD simulation, “flagwrap” and “flagblocks” would be set
to ‘Y.

The “node*” node color attribute keywords are required to assist PREP in making connections between
our I-DEAS meshing convention of using node color to represent attributes requiring nodesets or
edgesets, including non-port sources, observers including slot and wire observers, loads, slots, and wires.

92

Attributes requiring mesh-related edgesets, such as ElinInt (E Line Integral) and wire, also require beam
elements along the path to further assist PREP in correctly defining the edgeset. Attributes utilizing
sidesets and virtual edgesets do not appear in the PREP input file. Sidesets are generated within I-DEAS
by utilizing “pressure” or “force” boundary conditions.

Node color keywords containing more than one attribute, such as “nodegryblu” above, indicate that
those paths intersect in the mesh. In this case, an E Line Integral path intersects an H Line Integral path.
Therefore, both attributes must be assigned to that node color so PREP can correctly include that node
in both paths.

93

B. COMPLETE UTDEM INPUT FILE

- BEGIN_QA---------mmmm e -
$ ID: ucavabc_slots

$ Title: Cavity w/slots surrounded by ABC

$ Category: Regression

$ Physics: electromagnetics

$ Dimension: 3D

$ Owner: C. David Turner

$

$ Description:

$

$ Conducting cavity with internal source and slots in walls.

$ Energy leaks out through slots to observer outside cavity.

$ ABC surrounds entire object.

$

- END_QA----------mmmm - -
TITLE

Unstructured 3D cavity with edge source and observer

$

$ The following line will have nevada print out the sequence of calls
$ it makes during execution.

$

$DEBUG MODE, LOCATION

$ The following line dumps out node/edge/face/element connectivity info.
$DUMP FACES

UNSTRUCTURED TD ELECTROMAGNETICS

formulation, second order
aztec set, O

abc bc, sideset 4
pec bc, sideset 2

observer, nodeset 28
observer, nodeset 29

source, nodeset 31, function 1

slot observer, nodeset 19

94

slot, edgeset 123, aztec_set 1, width 0.00001, depth 0.0, int_mat 1, ext_mat 2

slot observer, nodeset 20
slot, edgeset 124, aztec_set 2, width 0.00005, depth 0.0, int_mat 1, ext_mat 2

CONSTANT TIME STEP 1.01197539e-09
GRADUAL STARTUP FACTOR 1.0
BLOCK 1
MATERIAL 1
END
BLOCK 22
MATERIAL 2
END
END
FUNCTION 1 GAUSSIAN, SCALE=1.0 WIDTH=2.0e-9 SHIFT=10.0e-9
EX0ODUS EDGE SETS (123 124 153)
PSSP 5E558358$$ execution control $EFSEFSEESSEFSE$SESS

TERMINATION TIME 9.0e-9

$EE3$$SEEE333$88$$ solver control BREEERBRRRRERRRR

aztec
solver, cg
precond, jacobi
output, none
tol =1.e-12
polynomial order, 1
end
aztec 1
solver, cg
precond, jacobi
output, none
tol = 1.e-12
polynomial order, 1
end

95

units, si
$$35353553538$3838$$ output control $S3E3ES3E3E$8385883

EMIT SCREEN, CYCLE INTERVAL
EMIT PLOT, CYCLE INTERVAL =

1

N

PLOT VARIABLE
ELECTRIC_FIELD
END

$$3$$$35558$$$55888$ material models $$$$$$$$$$SSEE$$$$S$

MATERIAL 1
model 1
END

MATERIAL 2
model 2
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA O.

END

MODEL 2 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA O.

END

EXIT

96

C. SIDESET EXTRACTOR INPUT FILE

o e BEGIN_ QA - - - o m o mmommmommem
$

$ Sideset extract example

$

e END_QA-- === m—mmmmmmmmmmm e

$debug mode, LOCATION

title
SIDESET extract: extract a side set and turn it into a 2D mesh file

$535555585883883$88$ physics options $FEEFEESSESSES$E85$S
UTDEM Sideset Extractor

extract, sideset 10

intersect, sideset 9, sideset 14, sideset 15, sideset 16, end

block 1

material 1

end
end
$333353353353333$$$$ execution control $$3$$53$53$538553$%$
termination cycle = 1
emit plot, cycle interval =1

$$3355555553555$$$$$ material models EFSEEISSEEFSSESSS

material 1
end

exit

97

D. POISSON SOLUTION INPUT FILE

- BEGIN_QA---------mmmm e -
$

$ Poisson solution example

$

- END_QA---------cmmmmm e -

$debug mode, LOCATION
$debug mode, CABANA

title
CABANA: Poisson solution

$$SEEEEE33333333%% physics options $$FFFIIFSSSSSSSEEEES
CABANA POISSON
Poisson solution, charge density 0., results file "inlet.out"

conductor, sideset 9, potential O.
conductor, sideset 14, potential O.
conductor, sideset 15, potential 1.
conductor, sideset 16, potential 1.

export results, genesis file "z_vert.inlet.gen", sideset 10
block 10
material 1
end
end
double precision exodus
aztec
solver, cg

precond, none
scaling, sym_diag

output, none

tol = 1.e-6

polynomial order, 1
end

98

units, si
$33533535335$53$3$$$ execution control $$$$3$$3$3$$$53$5$%$

$ Nevada requires termination time to be specified:
termination time = 1.e-8

$$$$555555855558$$$$ material models $$$$SSEISSEE$SSESSSS

emit screen, cycle interval 1

emit plot, cycle interval =1

plot variable
potential
electric_field
charge_density
end

$$3355555553558$$$$$ material models $$$FSEEIFSEEFSSESSS

Material 1
Model 1
end

Model 1 Simple Electrical
eps 1.
mu 1.
sigma O.

end

crt: off

exit

99

E. RUNTIME COMPILER FUNCTIONALITY

The runtime compiler allows inclusion of double quoted (“ ”) ‘C’ language style functions within
unformatted input files. The functions are evaluated during program setup or execution to calculate
independent solution variables.

This provides the user with an endlessly flexible method for describing boundary conditions, initial
conditions, source terms, material properties, or any other independent variable.

The specific variable names expected within runtime compiled functions depends on the host code and
the context of the function use. In general it should be remembered that the runtime functions return
quantities by modifying variables that are passed in by reference.

E.1. The RTC language

The RTC language can be thought of as a small subset of the C language with a few minor
modifications.

Operators
The RTC language has the following operators that work exactly as they do in C and have the same
precedence as they do in C:
* + Addition
* — Subtraction
* — Negation
* * Multiplication
* / Division
¢ == Equality
* > Greater than
* < Less than
* >= Greater than or equal to
* <= Less than or equal to
* = Assignment
* || Logical or
* && Logical and
* | = Inequality

I00

* % Modulo
¢ !'Logical not

The following operators do not occur in the C language, but were added to the RTC language for
convenience:

* " Exponentiation

Control flow

The RTC language has the following control flow statements:
* for(expr;expr;expr){...}
* while(expr){... }
e if (expr) {...}
* else if (expr) {...}
* else{..}

These control flow statements work exactly as they do in C except that the code blocks following a
control flow statement MUST be enclosed within braces even if the block only consists of one line.

Line Structure

The line structure in the RTC language is the same as that of C. Expressions end with a semicolon
unless they are inside a control flow statement.

Variable Types and Default Variables

Declaring scalar variables in RTC is done exactly as it is done in C except that only the following types
are supported:

* int
¢ float
¢ double

e char

For scalars, variables can be declared and assigned all at once. Both of the following approaches will
work:

I01

int myVar = 9;

OR
int myVar;
myVar = 9;

Arrays work a little differently in RTC than they do in C. There are no new or malloc operators, instead
the user may declare dynamically sized arrays in the same manner as statically sized arrays. Also, in C all
the values of an array may be initialized at once by putting the values within braces. This is not
supported in the RTC language. Users will have to loop through the array and assign the values one by
one. For example:

LEGAL:

int ial[xx*y]; //Note: in C this would not be legal for non-const x,y
int ia2[3];

NOT LEGAL:
int ial3] = {1, 2, 3};

Indexing arrays can be done using the index operator: array[expr] = ...;

Bounds checking is done at run time. If the bounds of an array are exceeded, it will dump an error to
stdout.

For all user-defined initial conditions the following default variables are available:

* coord - An array of coordinates. Use an index of zero to get the x coordinate, an index of one to
get the y coordinate, and an index of two to get the z coordinate (z is available in 3D only).

e field - This is the means by which the function returns its results. The variable (ex: density,
velocity) specified above the function is set according to the values of the field array. If a scalar
variable is being set, then the value should be assigned to field[o].

Math

The following math.h functions are available in RTC:

* asin(arg) : returns the arc sine of arg

* acos(arg) : returns the arc cosine of arg

e atan(arg) : returns the arc tangent of arg
* atan2(y, x): returns the arc tangent of y/x

102

* sin(arg) : returns the sine of arg

* cos(arg) : returns the cosine of arg

* tan(arg) : returns the tangent of arg

* sqrt(arg) : returns the square root of arg

* exp(arg) : returns the natural logarithm base e raised to the arg power

* sinh(arg) : returns the hyperbolic sine of arg

* cosh(arg) : returns the hyperbolic cosine of arg

e tanh(arg) : returns the hyperbolic tangent of arg

* log(arg) : returns the natural logarithm for arg

* logro(arg) : returns the base 10 logarithm for arg

* rand() : returns a system-generated random integer between o and RAND_MAX
¢ drand() : returns a system-generated random double between 0.0 and .o

e fabs(arg) : returns the absolute value of arg

* pow(b, e) : returns b to the e power (Note: the Exponentiation operator is available)
* jo(arg) : Bessel function of order zero

* ji(arg) : Bessel function of order one

* io(arg) : Modified Bessel function of order zero

e ir(arg) : Modified Bessel function of order one

¢ erf(arg) : Error function

¢ erfc(arg) : Complementary error function (1.0 - erf(x))

* gamma(arg) : returns I'(arg)

Strings

The user may pass quoted strings as arguments to functions. Note: it may be necessary to escape-out
the double quotes so that they do not confuse the input-file parser. See printf section below for an
example.

103

Printf

The RTC printf method is called just like its C counterpart. The first argument is a quoted character
string. This string will contain the % symbol which will tell RT'C to output the corresponding
argument. The only difference between RTC’s printf and C’s printf is that in RTC’s version, a type
character after the % is unnecessary. For example, inside an RT'C method the following is appropriate:

printf (\"One:% Two:% Three:% \", 5-4, 2.0e0, ’c’);

Which would generate this output: One:1 Two:2 Three:c

Comments

The traditional C-comment mechanism may be used inside RTC functions. Use /* to begin a comment
and */ to end the comment.

Unsupported Features

Implementing the entire C-language was well beyond the intent of RT'C. Features that were too
difficult or did not add enough value have been left out. The following is a list of common C features

that are unsupported in RTC:

There are no ++ or —— operators. Use i = ¢ + 1 instead of + + ¢
Structs

Pointers

Instant array initialization: int array[s] = 1,2,3,4,5;

Case statements

Casting

Labels and gotos

Function definition/declaration

stdio

Keywords: break, continue, const, enum, register, return, sizeof, typedef, union, volatile, static.

Examples

The following series of examples illustrate the use of the RT'C language within the context of some
simple USER DEFINED INITIAL CONDITIONS.

104

Example 1

USER DEFINED INITIAL CONDITION, DENSITY
"field[0] = 5000.0 + (1.0 / (coord[0] + atan2(2,3)));"
END

In this example the density of every element is set equal to s000 plus one over the x coordinate of the
element plus the arc tangent of 2 and 3.

Example 2

USER DEFINED INITIAL CONDITION, DENSITY, BLOCK 5

double sum = coord[0] + coord[1] + coord[2];
field[0] = sum / 0.0001;

END

In this example, the initial density of elements in block s is set to to the sum of the x, y, and z coordinates
divided by o.0001;

Example 3

USER DEFINED INITIAL CONDITION, DENSITY, BLOCK 5

double newarray[10];

field[0] = O;

for (int i =0; i < 10; i =1 + 1) {
newarray[i] = -sin(-i*2) + 2;

}

for (int 1 =0; 1 < 10; 1 =1+ 1) {
field[0] field[0] + newarrayl[i % 10];
}

END

This example shows how to use for-loops and arrays in the RT'C language. The density of the elements
in block s is being set to > y_ (— sin(—2i) 4 2)

105

Example 4

USER DEFINED INITIAL CONDITION, VELOCITY, BLOCK 5 10

if (fabs(coord[0]) < 1.10) {

field[0] = 0.;
field[1] = 0.;
field[2] = 0.;

}

else {
field[0] = 100.;
field[1] = 200.;
field[2] = 300.;

}

END

This example uses the absolute value of the x-coordinate of the element. If this value is less that 1.10, the
velocity is set to zero in each direction, otherwise the velocity is set to 100,200,300.

Since velocty is not a scalar value, assignments must be made to several indices of the field array.

E.2. Using RTC and APREPRO

Frequently ALEGRA users will place aprepro constructs into their input decks and then preprocess the
input deck with aprepro by issuing the command:

Alegra -a runid.inp

A problem may exist with curly braces, { and }, in the runtime compiler coding as in the above
examples. When the input deck is sent through aprepro, the preprocessor will evaluate expressions in
curly braces, and the braces will not appear in the processed input deck read by ALEGRA. This will cause
an error when the runtime compiler processes the coding.

There are three solutions:

1. Place the following lines before and after the runtime compiler coding so that aprepro will copy
the input lines to the output exactly as they are written:

${VERBATIM(ON)}
. runtime compiler coding ...
${VERBATIM(OFF)}

2. Omit the verbatim commands, but put the curly braces into string expressions that will be
processed by aprepro. Make the following substitutions:

106

nyn

{ > {"{
} -> {n}n}

The outer pair of opening and closing braces will be processed by aprepro, but the inner brace
in quotes will be sent as a string to the output deck.

3. A backslash can also be placed in front of curly braces. This will tell APREPRO to ignore the
curly brace. The RTC parser knows to ignore the backslash but not the curly brace. This method
will work regardless of whether aprepro is run on the input deck or not.

For instance,

${VERBATIM(ON) }

user defined initial condition, density, block 5
n

field[0] = 100.0;

if (coord[0] > 0.0){
double distance = sqrt ((coord[0]~2) + (coord[1]~2) + (coord[2]"2));
field[0] = field[0] + distance;

}

${VERBATIM(OFF)}
or it could be written as,

user defined initial condition, density, block b5
field[0] = 100.0;
if (coord[0] > 0.0) {"{"}
double distance = sqrt ((coord[0]~2) + (coord[1]"2) + (coord[2]"2));
field[0] = field[0] + distance;
{n}u}

or it could be written as,

user defined initial condition, density, block b5

field[0] = 100.0;

if (coord[0] > 0.0) \{
double distance = sqrt ((coord[0]~2) + (coord[1]~2) + (coord[2]~2));
field[0] = field[0] + distance;

\}

107

E.3. Using RTC and ALEGRA Functions

Another useful feature is the ability to call ALEGRA functions from within the RTC (see Section[z]on
page[s3)). All user-defined ALEGRA functions are registered with the RTC and any tabular data can be
read and interpolated. The ALEGRA function is accessed through the RT'C function interface
Function_Evaluate(real,int,int). The first real argument is the abscissa value at which to
evaluate the function. The second int argument is the function-id number. The third int argument is
the function evaluation type. The value o will return the function ordinate value, and the value 1 will
return the function derivative value.

The following example illustrates the use of the ALEGRA functions within the RTC language in the
context of a user defined initial condition.

user defined initial condition, density, block 1,
" double scale = 2.49692e-06 / 2.5126e-06;
double dens = Function_Evaluate(coord[0],11,0);
field[0] = dens * scale ; "
end

108

F. TEMPLATES FOR HYBRID MESHES

The following is a starting template for generating an unstructured mesh wrapped with structured hex
which can couple with STDEM, using Cubit 15.2 or later. This example creates a simple spherical
scatterer.

reset
$ Scattering sphere
create sphere radius 0.005

$ PW launcher and total/scattered field boundary sphere (could be any shape)
create sphere radius 0.015

$ Size of wrapper box
${wsize=0.04}

$ Wrapper box
brick x {wsize} y {wsize} z {wsize}

$ Mesh delta
${dx=.005}

$ 2-cell thick hex wrapper
brick x {wsize+4.*dx} y {wsize+4.*dx} z {wsize+4.*dx}

${zshift = 0.}
move vol all z {zshift}

chop vol 4 with vol 3
chop vol 5 with vol 2
chop vol 7 with vol 1

webcut vol 6 with sheet extended from surf 3
webcut vol 11 with sheet extended from surf 4

imprint vol all
merge all

vol 6 11 12 size {dx}

surf 24 26 scheme map

mesh surf 24 26

vol 6 scheme sweep source surf 24 target surf 26
mesh vol 6

109

surf 38 40 scheme map

mesh surf 38 40

vol 12 scheme sweep source surf 38 target surf 40
mesh vol 12

vol 11 scheme sweep source surf 27 target surf 32
mesh vol 11

vol 8 9 10 scheme tetmesh
surf 3 to 8 scheme map
mesh surf 3 to 8

vol 8 9 10 size {dx}

mesh vol 8 9 10
merge all

block 1 vol 9 10
block 2 vol 8
block 3 vol 6 11 12

sideset 1 surf 1 wrt vol 10
sideset 2 surf 2 wrt vol 10
sideset 3 surf 3 to 8

export mesh "meshHybrid.gen" overwrite

The following is a starting template for generating the structured mesh using the Quicksilver
preprocessor Mercury.

~“char comment #

~ifndef nproc then
~def nproc 1
“endif
~if $nproc gt 1 then
PROCESSORS $nproc no-edge-connect
“endif

~“define dx 5.0e-3

~“define dy 5.0e-3
~“define dz 5.0e-3

110

nx 16
ny 16
nz 16

~define
~define
~define
~“define ztrans O.
~define
~define
~define
~“define

~define
~define

Xmax

ymax

Zmax

~define 12
~define
~define

~define

npml

npmlz

~define
~define
~define
~define
~define
~define

xminp
Xmaxp
yminp
ymaxp
zminp
Zmaxp

SYSTEM CARTESIAN

$(xmin -
$ (xmax +
$(ymin -
$(ymax +
$(zmin -
$(zmax +

$ (nx*dx/2)
xmin -$xmax
$ (ny*dy/2)
ymin -$ymax
$(nz*dz/2)
zmin -$zmax

npmlx $npml
npmly $npml
$npml

BLOCK $xmin $ymin $zmin

GRID 1 I $xmin
GRID 1 J $ymin
GRID 1 K $zmin

BLOCK pml_blockl
BLOCK pml_block2
BLOCK pml_block3
BLOCK pml_block4
BLOCK pml_blockb
BLOCK pml_block6

GRID
GRID
GRID
GRID
GRID
GRID

pml_blockl
pml_block2
pml_block3
pml_block4
pml_blockb
pml_block6

NN GO o H H

$xminp
$xmax
$xmin
$xmin
$xmin
$xmin

$xminp
$xmax
$yminp
$ymax
$zminp
$zmax

npmlx*dx)
npmlx*dx)
npmly*dy)
npmly*dy)
npmlz*dz)
npmlz*dz)

$xmax $ymax $zmax
$nx $dx 0.0
$ny $dy 0.0
$nz $dz 0.0

$yminp $zminp
$yminp $zminp
$yminp $zminp
$ymax $zminp
$ymin $zminp
$ymin $zmax

$dx
$dx
$dy
$dy
$dz
$dz

$npmlx
$npmlx
$npmly
$npmly
$npmlz
$npmlz

III

O O O O O O
SO O O O O O

$xmin $ymaxp $zmaxp
$xmaxp $ymaxp $zmaxp
$xmax
$xmax
$xmax
$xmax

$ymin $zmaxp
$ymaxp $zmaxp
$ymax $zmin
$ymax $zmaxp

H OH H H H R

xmin:full y & z
xmax:full y & z
ymin:full z
ymax:full z
zmin

zmax

~# define sigma(x) function

~define delta $dx

~define smax $(1.0/(150.0 * 3.14159 * delta))
~define sfact $(smax/8.854e-12)

~define funpar [$(4*npmlx+4)]

“# xmin section

~“define ifun O
~define funpar[$ifun] $ (xminp-dx)
~define funpar[$(ifun+1)] $sfact
~define ifun $(ifun+2)
~define x1 $(xmin-dx)
~for i 0 $(npmlx-2)
~define x $(xminp + i*dx)
~define u $((x1-x)/(dx+x1-xminp))
~define funpar[$ifun] $x
~define funpar[$(ifun+1)] $(sfact*u~2)
~define ifun $(ifun+2)
~“endfor

“# center section

~define funpar[$ifun] $x1
~define funpar[$ifun+l] 0.0
~define funpar[$ifun+2] $(xmax+dx)
~define funpar[$ifun+3] 0.0
~define ifun $(ifunt+4)

xmax section
~define x0 $(xmax+dx)
~for i 1 $(npmlx-1)
~define x $(x0 + ix*dx)
~define u $((x-x0)/(dx+xmaxp-x0))
~define funpar[$ifun] $x
~define funpar[$ifun+l] $(sfact*u~2)
~define ifun $(ifun+2)
~“endfor
~define funpar[$ifun] $ (xmaxp+dx)
~“define funpar[$(ifun+1)] $sfact

FUNCTION O $(xminp - delta) $(xmaxp + delta) bowl $funpar

~# define sigma(y) function

112

~define delta $dy

~define smax $(1.0/(150.0 * 3.14159 * delta))
~define sfact $(smax/8.854e-12)

~define funpar [$(4*npmly+4)]

~“# ymin section

“define ifun O
~define funpar[$ifun] $ (yminp-dy)
~define funpar[$(ifun+1)] $sfact
~“define ifun $(ifun+2)
~define yl1 $(ymin-dy)
~for i 0 $(npmly-2)
~define y $(yminp + ixdy)
~“define u $((yl-y)/(dy+yl-yminp))
~define funpar[$ifun] Sy
~define funpar[$(ifun+1)] $(sfact*u~2)
~define ifun $(ifun+2)
“endfor

~# center section

~define funpar[$ifun] $y1
~define funpar[$ifun+1] 0.0
~define funpar[$ifun+2] $(ymax+dy)
~define funpar[$ifun+3] 0.0
~define ifun $(ifun+4)

ymax section
~define y0 $(ymax+dy)
~for i 1 $(npmly-1)
~define y $(y0 + ixdy)
~define u $((y-y0)/(dy+ymaxp-y0))
~define funpar[$ifun] Sy
~define funpar[$ifun+l] $(sfact*u~2)
~define ifun $(ifun+2)
~“endfor
~define funpar[$ifun] $ (ymaxp+dy)
~define funpar[$(ifun+1)] $sfact

FUNCTION O $(yminp - delta) $(ymaxp + delta) bowly $funpar
~# define sigma(z) function

~define delta $dz
~define smax $(1.0/(150.0 * 3.14159 * delta))

113

~define sfact $(smax/8.854e-12)
~define funpar [$(4*npmlz+4)]

“# zmin section

~“define ifun O
~define funpar[$ifun] $(zminp-dz)
~define funpar[$(ifun+1)] $sfact
~define ifun $(ifun+2)
~define zl1 $(zmin-dz)
~for i 0 $(npmlz-2)
~define z $(zminp + ix*dz)
~define u $((z1-z)/(dz+zl-zminp))
~define funpar[$ifun] $z
~define funpar[$(ifun+1)] $(sfact*u~2)
~define ifun $(ifun+2)
~“endfor

“# center section

~define funpar[$ifun] $z1
~define funpar[$ifun+l] 0.0
~define funpar[$ifun+2] $(zmax+dz)
~define funpar[$ifun+3] 0.0
~define ifun $(ifun+4)

zmax section
~define z0 $(zmax+dz)
~for i 1 $(npmlz-1)
~define z $(z0 + ixdz)
~define u $((z-z0)/(dz+zmaxp-z0))
~define funpar[$ifun] $z
~define funpar[$ifun+l] $(sfact*u~2)
~define ifun $(ifun+2)
~endfor
~define funpar[$ifun] $ (zmaxp+dz)
~define funpar[$(ifun+1)] $sfact

FUNCTION O $(zminp - delta) $(zmaxp + delta) bowlz $funpar
~define dtcour $(1.0/sqrt(1/dx~2 + 1/dy~2 + 1/dz"2) / 3.0e8)
~define dt $(0.9*dtcour)

TIMESTEP $dt

material numbers (1-dummy, 2-ground, 3-vacuum)

114

CONDUCTOR CONFORMAL 0.0 0.0 0.0 $dx $dy $dz dummy

PEC
PEC
PEC
PEC
PEC
PEC

$xminp
$xmaxp
$xminp
$xminp
$xminp
$xminp

$zminp
$zminp
$zminp
$zminp
$zminp
$zmaxp

$xminp
$xmaxp
$xmaxp
$xmaxp
$xmaxp
$xmaxp

$zmaxp
$zmaxp
$zmaxp
$zmaxp
$zminp
$zmaxp

$ymaxp
$ymaxp
$yminp
$ymaxp
$ymaxp
$ymaxp

$yminp
$yminp
$yminp
$ymaxp
$yminp
$yminp

ground
ground
ground
ground
ground
ground

The following is the resulting emphasis.inp file created using the above template with Mercury.

TITLE
emphasis
TERMINATION CYCLE= 0
EMIT HISPLT, CYCLE INTERVAL=
STRUCTURED TD ELECTROMAGNETICS
MESH, PFF
FILE="emphasis.pff"
END
FIELD SOLVER, EXPLICIT
CONSTANT TIME STEP= 8.66025E-12
FUNCTION 1
0.00000E+00 0.00000E+00

1 FROM TIME 8.6603E-12 TO 8.6603E-04

1.00000E+30 0.00000E+00
END
FUNCTION 2
0.00000E+00 1.00000E+00
1.00000E+30 1.00000E+00
END
FUNCTION 3
-1.05000E-01 4.79347E+10
-1.00000E-01 4.02785E+10
-9.50000E-02 3.32880E+10
-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
-5.00000E-02 3.32880E+08
-4 .50000E-02 0.00000E+00
4.50000E-02 0.00000E+00

115

R = O O 0 0 ~NNO O Oru,

END

.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-01
.05000E-01

FUNCTION

-1.
-1.

= = O O 0 00 N NO O OO

END

05000E-01
00000E-01

.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-01
.05000E-01

FUNCTION

-1.
-1.
-9.

05000E-01
00000E-01
50000E-02

4

5

B OD WONNNEFE, P, 00NN~ W

P WONDNNERE P, 00N WOOWRFENOOF NN WD

NS

w

.32880E+08
.33152E+09
.99592E+09
.32607E+09
.32201E+09
.19837E+10
.63111E+10
.13043E+10
.69633E+10
.32880E+10
.02785E+10
.79347E+10

.7T9347E+10
.02785E+10
.32880E+10
.69633E+10
.13043E+10
.63111E+10
.19837E+10
.32201E+09
.32607E+09
.99592E+09
.33152E+09
.32880E+08
.00000E+00
.00000E+00
.32880E+08
.33152E+09
.99592E+09
.32607E+09
.32201E+09
.19837E+10
.63111E+10
.13043E+10
.69633E+10
.32880E+10
.02785E+10
.79347E+10

.79347E+10
.02785E+10
.32880E+10

116

-9.00000E-02 2.69633E+10
-8.50000E-02 2.13043E+10
-8.00000E-02 1.63111E+10
-7.50000E-02 1.19837E+10
-7.00000E-02 8.32201E+09
-6.50000E-02 5.32607E+09
-6.00000E-02 2.99592E+09
-5.50000E-02 1.33152E+09
-5.00000E-02 3.32880E+08
-4 .50000E-02 0.00000E+00
4.50000E-02 0.00000E+00
5.00000E-02 3.32880E+08
5.50000E-02 1.33152E+09
6.00000E-02 2.99592E+09
6.50000E-02 5.32607E+09
7.00000E-02 8.32201E+09
7.50000E-02 1.19837E+10
8.00000E-02 1.63111E+10
8.50000E-02 2.13043E+10
9.00000E-02 2.69633E+10
9.50000E-02 3.32880E+10
1.00000E-01 4.02785E+10
1.05000E-01 4.79347E+10
END
ELECTRICAL CONDUCTIVITY THRESHOLD= 1.0e6
END
MATERIAL 1 dummy
MODEL= 1
END
MATERIAL 2 ground
MODEL= 1
END
MATERIAL 3 vacuum
MODEL= 3
END
MODEL 1 SIMPLE ELECTRICAL
EPS= 1.0000E+00
MU= 1.0000E+00
SIGMA= 1.0000E+07
END
MODEL 3 SIMPLE ELECTRICAL
EPS= 0.0000E+00

MU= 1.0000E+00

SIGMA=

0.0000E+00

117

END

EXIT
The following is a complete EMPHASIS input file for this sphere scattering problem.

TITLE
Planewave scattering from a PEC sphere w/far-field

DEBUG MODE, CONNECTIVITY=1

HYBRID TD ELECTROMAGNETICS

MESH, GENESIS
FILE = "hpwscatterHybrid.gen"
END

FORMULATION, SECOND ORDER
HEX MASS LUMP = yes
WRAPPER, SIDESET 3

BLOCK 1 $ total
MATERIAL 1

END

BLOCK 2 $ scattered/wrapper
MATERIAL 1

END

BLOCK 100002 $ pyramid
MATERIAL 1

END

BLOCK 3 $ hex
MATERIAL 1

END

PEC BC, SIDESET 1
SURFACE CURRENT, SIDESET 1

PLANE WAVE SOURCE, SIDESET 2, BLOCK 1 FUNCTION 101
POLARIZATION, X=1.0 Y=0.0 Z=0.0, PROPDIR, X=0.0 Y=0.0 Z=1.0

TRACER POINTS

118

EULERIAN TRACER 1
EULERIAN TRACER 2
END

X Y=0.0 Z=-10.0e-3
X Y=0.0 Z=-17.5e-3

0.0
0.0

FUNCTION 101 GAUSSIAN, SCALE=1.0 WIDTH=0.23263e-9 SHIFT=0.73048e-9

GRADUAL STARTUP FACTOR 1.0

———————————————————————————————— STDEM —————m oo e e
MESH, PFF

FILE="emphasis.pff"
END

DIELECTRIC ALGORITHM, CONSTANT=1.0
ELECTRICAL CONDUCTIVITY THRESHOLD=1e6

SURFACE FIELD CHECK, FIELDS=EB
FIELD SOLVER, PML, PROFILE=X, FUNCTION=201 Y, FUNCTION=201 Z, FUNCTION=201
BLOCK=1,2,3,4,5,6

FUNCTION 201

-1.
-1.

©O© 0 0 NN O O O 01

05000E-01
00000E-01

.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02
.50000E-02
.00000E-02

NN, P, 00O NFE, WOOWEKENOOFFENNWPD D

.79347E+10
.02785E+10
.32880E+10
.69633E+10
.13043E+10
.63111E+10
.19837E+10
.32201E+09
.32607E+09
.99592E+09
.33152E+09
.32880E+08
.00000E+00
.00000E+00
.32880E+08
.33152E+09
.99592E+09
.32607E+09
.32201E+09
.19837E+10
.63111E+10
.13043E+10
.69633E+10

119

9.50000E-02 3.32880E+10

1.00000E-01 4.02785E+10

1.05000E-01 4.79347E+10
END

HISTORY FIELD, LABEL="EI_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_I,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="EJ_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_J,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="EK_1" TYPE=POINT, FIELD=ELECTRIC_FIELD_K,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BI_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_I,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BJ_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_J,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

HISTORY FIELD, LABEL="BK_1" TYPE=POINT, FIELD=MAGNETIC_FLUX_DENSITY_K,
SEGMENT=0.0 0.0 -0.035 0.0 0.0 -0.035

FAR FIELD, SEGMENT=-0.035 -0.035 -0.035 0.035 0.035 0.035, PHASECENTER=0.0 0.0 -0.015,
FAR FIELD PATTERN, PHISTART=0., THETASTART=-180., THETAEND=180., NUMTHETA=361, FREQUEN
FAR FIELD PATTERN, PHISTART=90., THETASTART=-180., THETAEND=180., NUMTHETA=361, FREQUE

e
CONSTANT TIME STEP 4.0e-12

END

UNITS = si

TERMINATION TIME 2000e-12

AZTEC
SOLVER = cg
PRECOND = jacobi
OUTPUT = none

TOL = 1.0e-8
POLYNOMIAL ORDER = 1
END
$
P oo
$ PLOTTING

$
EMIT SCREEN, CYCLE INTERVAL

I
-

I
[

EMIT HISPLT, CYCLE INTERVAL
HISTORY PLOT VARIABLES
ELECTRIC FIELD
MAGNETIC FIELD
END

EMIT PLOT, TIME INTERVAL = 8e-12, FROM TIME 160e-12 TO 2000e-12
PLOT VARIABLES

NO DEFAULT QUTPUT

ALL REGION VARIABLES

ELECTRIC FIELD

MAGNETIC FIELD

SURFACE CURRENT DEN, AS "JS"
END

MATERIAL 1 vacuum
MODEL = 1
END

MATERIAL 2 cond
MODEL = 2
END

MATERIAL 3 vacuum
MODEL = 1
END

MODEL 1 SIMPLE ELECTRICAL

EPS = 1.0

MU =1.0

SIGMA = 0.0
END

MODEL 2 SIMPLE ELECTRICAL
EPS = 1.0
MU =1.0

121

SIGMA = 1e7
END

EXIT

122

G. IBC AS A RESISTIVE LOAD

The following describes how to use the IBC as a lumped resistive load on a surface between conductors.
The key aspect is that the IBC as implemented is a surface resistance with an infinitesimal depth 9. The
effective R;(0ohms) to be applied to the IBC depends on the cross section carrying the current. For a
rectangular parallelepiped with cross-sectional area A(cm?), length [(e¢m), and resistivity

p(ohm — cm), the bulk resistance R(0hms) between the two ends with cross section A is

[

For a rectangular plate terminating a parallel-plate transmission line with plate separation [and plate
width w,

! l !
R=pz=r5 =Ry
Solving for R,
R, = RY.

l

To similarly terminate a cylindrical coaxial transmission line, the cross section varies with radius so
integration is required. Here, [is in the r direction so starting again with

[

R:pZJ

dr dr

AR = p-2 _ _p Y
Prdo s rdb

All dR"s are in series so with inner radius @ and outer radius b

b b
R, [*dr R, b
— ,: i :_S —_
dR—/adR W] -

All dR’s are in parallel, therefore

where « is the wedge angle allowing for symmetry, eg, 7/2 for 9o degrees, etc.

123

Solving for R,

12.4

DISTRIBUTION

Hardcopy—Internal

1 K. L. Cartwright 1351 1152
1 J. D. Kotulski 1351 1152
1 T. D. Pointon 1351 1152
1 G. A. Radtke 1351 1152
1 C. D. Turner 1351 1152
1 Technical Library (electronic copy) 9536 0899

125

127

Sandia
National
Laboratories

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

	Introduction
	UTDEM Simulation Process
	Units

	UTDEM Input File and Keywords
	Solver formulation keyword
	FEM basis order keyword
	Solver option keywords for PIC
	Boundary condition keywords
	Virtual edgeset keyword
	Observer keywords
	Source keywords
	Load keywords
	Slot keyword
	Wire keywords

	Running UTDEM Simulations
	UTDEM Input Options
	Control Options
	Box IEMP Options

	UTDEM PIC Input File and Keywords
	PIC-Specific Keywords
	UTDEM PIC-Specific Keywords

	Framework keywords for UTDEM
	Block Options
	Function Specification
	Time Step Controls
	Initial Refinement
	Initial Conditions
	Periodic Boundary Conditions

	Simulation Control Keywords
	Edgeset Keyword
	Simulation Termination Keywords
	Restart Keywords
	Output Keywords
	Plot Variables
	Linear Solver Keywords
	Debug Mode Keyword

	Material Models
	Material Block
	Material Model Block
	Material Models for UTDEM
	Simple Electrical
	Breakdown Electrical
	HP Gas Electrical
	Foam Electrical
	HP Foam Electrical
	Kinetic Gas Electrical
	RIC Electrical
	Lorentz Polarization
	Face PML
	Edge PML
	Node PML

	Hybrid FETD/FDTD
	Keywords
	Mesh Generation

	Inlet-port Poisson Solutions
	Running UTDEM PIC With ITS Source Data
	ITS Electron Emission Tallies
	Surface Emission
	Volume Emission and Energy Deposition
	Setting Up Time-Dependent Emission

	References
	Appendices
	Use of the PREP Mesh Preprocessor
	Complete UTDEM input file
	Sideset Extractor input file
	Poisson Solution input file
	Runtime Compiler Functionality
	The RTC language
	Using RTC and APREPRO
	Using RTC and ALEGRA Functions

	Templates for Hybrid Meshes
	IBC as a Resistive Load

