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Description, Verification, and Validation

C. David Turner, Timothy D. Pointon, Keith L. Cartwright
Electromagnetics and Plasma Physics Analysis

Sandia National Laboratories
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Albuquerque, NM 87185

Abstract

EMPHASIS™/NEVADA is the SIERRA/NEVADA toolkit implementation
of portions of the EMPHASIS™ code suite. The purpose of the toolkit
implementation is to facilitate coupling to other physics drivers such as
radiation transport as well as to better manage code design, implementation,
complexity, and important verification and validation processes. This
document describes the theory and implementation of the unstructured finite-
element method solver, associated algorithms, and selected verification and
validation.
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1.0 Introduction

EMPHASIS is a suite of codes for solving Maxwell’s equations in a full-field sense, i.e.,
no approximations. The major codes in the suite include EIGER, QUICKSILVER, and
VOLMAX. EIGER is a frequency-domain code and is moving into the SIERRA
framework. QUICKSILVER is a rectilinear, structured mesh, Finite-Difference Time-
Domain (FDTD) Particle-in-Cell (PIC) code which is moving into the NEVADA
framework. VOLMAX is an unstructured, Finite-Element Method (FEM) code (with
hybrid FEM/FDTD capability) whose implementation into the NEVADA framework is
the subject of this document.

The purposes of moving a code under a framework such as NEVADA are many. At the
highest level, these include Configuration Management (CM), Verification & Validation
(V&V) tools and processes, and parallelization with domain decomposition. The
framework also provides a basic FEM backbone, access to a large, parallel linear system
solver such as AZTEC, and basic parsing and I/O. The framework also simplifies the
coupling of different types of physics.

The decision as to which framework to follow was not an easy one. Many factors [1]
were considered and soon the NEVADA framework emerged as the choice for
implementation of the time-domain portion of EMPHASIS. The primary factor was the
choice of NEVADA as the Sandia “computational physics” framework. For
electromagnetic applications, this includes normal environments (ElectroMagnetic
Interference (EMI), ElectroMagnetic Radiation (EMR), ElectroMagnetic Compatibility
(EMC)), abnormal environments (lightning), and hostile environments (System-
Generated ElectroMagnetic Pulse (SGEMP)) as defined by the Stockpile-to-Target
Sequence (STS). SIERRA is the Sandia computational mechanics framework, including
the mechanical effects of these environments.

The implementation of the FEM EMPHASIS solver into NEVADA is not simply an
effort to port Fortran77-based VOLMAX to C++, nor is it wrapped Fortran77. The code
has been completely rewritten in C++ starting from the basic equations and/or algorithms
implemented in VOLMAX. The FEM EMPHASIS solver as implemented in NEVADA
is referred to as Unstructured Time-Domain ElectroMagnetics (UTDEM).

This document describes the basic electro-magnetic theory, algorithms, and
implementation of Release 2.1.0 of UTDEM. It is not meant to be a user manual,
although examination of the input files for the Verification section, given in the
Appendix, along with the remainder of this document would provide a knowledgeable
EM code user with a significant head start toward using the code.



2.0 Fundamental Physics

2.1 Full-field Electromagnetics

The relevant Maxwell equations are

0 —

7=_,9 1
VxE Mat (1)
VxH = s%E+cE+ 7 2)
VoE: P (3)

e
VeH= 0 (4)

where E is the electric field intensity, H is the magnetic field intensity, p is the volume
charge density, J is the volume current, G is the conductivity, € is the permittivity of the
medium, and p is the permeability of the medium.

Two basic formulations of the solution of Maxwell’s equations have been implemented.
These are the unconditionally stable, second-order formulation and the coupled, first-
order formulation. The first-order formulation is conditionally stable and must abide by a
Courant-type condition for stability.

For the second-order formulation, taking the curl of equation (1) and substitution of
equation (2) into the resulting equation yields

lo 7 _ 0 _ 0 0+ T
VA LVAE) = -Gt = -uog (e E +oE 4 ®
Rearranging,
2
1o =), & 0= d+ =06 _ 0~

where ¢, is the relative permittivity, p, is the relative permeability, g, is the permittivity of
free space, L is the permeability of free space, and €= 1/\Hofo is the speed of light.

For the coupled first-order formulation, no second-order equation is formed but instead
the two curl equations (1) and (2) are solved coupled in an FDTD leap-frog sense.

3.0 Numerical Solution and Implementation

3.1 FEM Solution for the Second-order Formulation

The FEM formulation of the solution of equation (6) proceeds as follows via the method
of weighted residuals and Galerkin’s method. The residual is
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F = Vx ( L VxE) + —riE + HOGEIE + ;.LOEib + “og‘]

B, 2ol at at (7)

and the weighted residual for the i weighting function in element e is

J‘ (V_Vl o Vx(leE) +W.e Sr%— + W, e MOG%E + W, e pOE%j + W . pog Jdv (8)

where W, is the i weighting function. Invoking Green’s first theorem, write

jWi.vX(: VxE) j VXW VxEdy - j;M—(W x VxE) e idS  (9)
Qe r e s, "

e

so the residual becomes

€
R = j (1 VI, e VXE + IV; -—ﬂE+ W, ouOGgE+
Ky c at (10)
= o o 0 - 1 — =\ A
WiopoE + W, e HOEJJ dv - {>M—F(Wl. x VxE) o iidS
SL
Using the Sommerfeld radiation condition,
1, 0% _
VxE+—n><a—E 0 (11)
the last term in equation (10) becomes
| = nga_ [l . 0% . =
_fu—r(WixVxE)ondS = {)C—MrnxananidS (12)
after application of the vector identity
aO(Z)XE):EO(L_ZXE) (13)
The electric field is expanded in the element using the trial functions as follows:
m
E= Y WE (14)

where m is the number of unknowns on the element and V_V] is the ;™ trial function and £;
is an unknown coefficient. The trial functions here will turn out to be the edge basis
functions and the coefficients the edge field projections.

11



Applying Galerkin’s method by setting the trial and weighting functions equal,
substituting for ~ from equation (14), and setting the residual to zero yields the
following system

[IZISW de}ﬂ+{ Ln><W0n><WdS+J‘MOGW de}

2 c
¢ Qe at Hy Qe

OE
ot
(15)

“ —VxW; VXde+J.MO e de}E+J.p0W0§Jdv=0

where E is the coefficient vector and the entire equation has been multiplied through by
Ho. In matrix form after assembly,

7] ;E+[B]— +[SIE+F] = 0 (16)

The time advance of the above system utilizes a general three-point recurrence scheme
for second-order equations [2][3]. This advancement scheme can also be obtained by
applying Newmark-Beta approximations for the derivatives in equation (16) as follows:

En+1_2En+En—1 En+l_En—l En+l+2En+En—1
[7]— Tt Bl * [S]— T — *tF1=0 (7
At

which after some algebra, can be written as

n+1 n n-1

E -2E +F +

[B] +A[SDE"- [B]E”' "+ AF] (18)

A[T] +2A1[B] + AF[S]

4At(

or,
E" - 2E" BT+ [MT y] = 0 (19)

The last term, a sparse, symmetric, positive-definite linear system of equations,
[M]x] = y] (20)

is solved each time step and equation (19) applied to obtain £""/. If the constitutive
parameters and the mesh are not varying with time, the matrix is filled once and only the
right hand side is filled each time step. The filling of the right hand side is facilitated by
storing the appropriate matrices multiplying £” and £”*/ in y from equation (18). The new
right hand side is then obtained by matrix multiplication. Note that in the implementation,

12



the matrix [M] and rhs [y] terms in equation (20) have been multiplied through by ¢? for
convenience.

Although the second-order formulation is unconditionally stable, practical limitations
exist, primarily the fact that the matrix becomes more ill-conditioned as the time step is
increased. Solving the system of equation (20) using conjugate-gradient (CG) techniques,
therefore, requires increasingly more iterations as the time step increases.

3.2 Full SPICE Circuit Coupling

3.2.1 Implementation: Second-Order Formulation

Implementation of full SPICE-FETD circuit coupling follows that in [4]. The matrices in
equation (16) must be partitioned to separate the edge unknowns associated with SPICE
loads (subscript ¢) from all other edges (subscript ¢) as follows,

rd [rd] 2], 5.0 Bdlafe], [ Bl g
] [ = ][5 i 5.0 5. e e

C C C
After application of the Newmark-Beta time advance, equation (21) can be written as the
following two equations where for convenience the vector braces have been left off the £
terms:

C

n+l n n-1 2 n+l n-1
[T“] . 2AE: —— [T“} dd? ' [B ecJ 2 2;6 ¥ [B ec] dftc *
+1 -1
S, . 2?” PR, (S, JE.+ F,) =0 22
n+l n n-1 2 n+1 _ n-1
[T“J . 2AEz ——s [T“] ddic ' [Bce} 2 2AtEe * [B cc] dftc
n+l n n-1 (23)

Solving equation (22) for £,/ and substitution into equation (23) yields
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2
ATt[Sce] d°E
ATt

Z[S ]{ 7, 2B+ E" )= AP [Tec]d_tzf +

A—t[Bee}Ee”' LAl [Be]dEc_ A_tz[SeJ(ZEe" +E - AC[s, |E.- A7 F,) }

+
+
ddt 4

(24)

ez o) E A Je s

AP

T[SCJ QE/+E,"" h-Ar [Sa] E, - A F,]

Collecting terms and letting

{[TCJ * A?t[Bce} * ATI [Sceﬂ = M. 25)
440 = " .

[ = )] @
-1 (28)

Mo [Be] = (M.

[Mee}_l[sec} = :Msec} (29)

equation (24) becomes
o« oo - e+ o] [ 71 -
o] Sl 2 m e ks e e

S QB +E D+ F,] } { M) Mg ] + 5. }E (30)

%[Tae}(_ 2Een+Een_ 1)+L[Bcei|Een_ -

N

2At

1

)

Al— >

[s..]CE" + B, )



where, from equations (15) and (16),
FC = I V_Vl' ®
Qe

Here, the matrix terms in equation (30) and (31) have not been multiplied by p as they
were for equations (15) and (18). Extracting the lumped-edge load current from the
integral in equation (31),

0 -

Fo= [0 %7a+
c'I 1057 Ty (32)

Qe

where /. is the lumped-element edge current. Note that the first bracketed term on the

right hand side of equation (30) is proportional to the solution of the non-SPICE edges

~ n+1

without consideration of the SPICE edges, E.

(MM, 1T 1B (0, UM, 4B, 1y e ] =
(M 1B~ ([M (M ]+, VE, - (33)

1 n n—1 1 n—1 1 n n—1
— [T (2E+E; ) +—I[B,lE, —=[S. J2E] +E;
7 el )+ LBe] 25 )

Equation (33) has the form

2
dE dE -1
c) o[l Z rra = r- 1] o4
which can now be written as

2
[c}d—i“ [Gd}dEC*dic = F1- [ ;e Liav- [Ld]lgc = F1- [ £, (35)

dt dt dt o ot
Defining
dl, -1
—£=F-[L] E (36)
then
dE,
- el foe, o
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F (M B - (T )2+ B+

{ (38)
[B.IE!" —Z[ch](ZEZ +E;)

o
201

In the time advance of equations (36) and (37), the equations are assumed centered at

time » and Newmark-Beta approximations are used. For equation (36),

) . En+l+2En+En—1
AR 1+2At(F- L] ( — (39)

In equation (37), which will be solved using SPICE, the Newmark-Beta approximation is

used for 1",

Iy

n+1 1

_ L +2:Z+IZ_ = %(21’;+21f,‘ : +2Az(F- [Ld]lED (40)

after substitution from equation (39) but returning to the continuous form for ...

Equation (37) (still centered at n) now becomes

m=_(21"+ 21" 4+ 24tF) = [C s GIE +1 +2501-1E
n=—(20p+ 20"t + 20t )_[d]ﬁ-l'[d] ct c+7[ ad E.

1
4 (41)
An equivalent circuit representing equation (41) for a single SPICE-loaded edge is shown
in Figure 1 . The [Ly]! E. term is treated as a voltage-dependent current source. In
general, the matrices [C,], [G4], and [L,]! are not symmetric. Consequently, additional
dependent sources are necessary in the equivalent circuit if more than one SPICE load

exists. An example for two SPICE loads is shown in Figure 2 , shown without the [L;]!

E_ term sources for simplicity.

I
?o >
SPICE
Ee [] [ oad

Id Cd _ Gd %L_] EC

o

Figure 1. Equivalent circuit for FETD-SPICE interface with single load.
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H _ {cn Cu] Eal, !Gn Gn] H . H
Id2 C21 C22 Ecz GZl GZZ Ec

2 Ic2
I = CpEo+ =21 o+ G E. + =21, +]
dl 11 C22 c22 11™~cl G22 g22 cl
I, = CypEpp+ =20 +Gy\E +G211 +1
2 = bt =l Y UpLbp =1l i,
Ch 1
‘J:']
O——
el e Lt
Cia i2 .| A Sl EE g SPICE
Clex Iy Ly —_ cl Load 1
» a7}
h | AN Y
‘runY loy
O
IL'I
] C"“"I G’? f
C,, G, . A i P . SAICE
C_“‘rt 3 'G—lfg” I _ c2 Load 2
Y Y
[ "czzT Iy

O

Figure 2 . Equivalent circuit for FETD-SPICE interface with two loads.

~ n+l
The solution approach for each time cycle is as follows. First, Ee

1s advanced as if
e n+l
no SPICE edges exist. Using previous values of £/, E,”, and the now advanced Een

, F’is computed. Then, with 1/, and 1/, equation (41) is solved using SPICE and the
drive circuit as in Figure 1 returning the advanced SPICE-edge voltage E.”*/. Now, 1,//*

is advanced using equation (39). The final step is to correct the non-SPICE edges for the

17



existance of the SPICE-edges. This is accomplished using equation (22) and the just
advanced E."*! along with previous values E.” and E.! to solve just the E. terms and add

- n+1 )
them to the Een solution vector.

Note that when the E, results are used in equation (22), a solve is required. This solve can
be accomplished using the previously computed [M7..], [Mp..], and [Ms,.] matrices as
follows:

2
B = B g ) v ) [ B @

The Newmark-Beta approximations for the derivatives of E,. are used in equation (42),

2 n+1 n n-1
dIE, _E"-2E"+E, @3)
dr’ NG
n+l n-1
dic = Ec i} Ec (44)
dt 2At
n+l1 n n-1
o oo B AEHE,
c = 4 (45)

These correction terms can be thought of as a part of F in equation (18). Consequently,

they must be scaled by 4A#? to agree with the scaling in the original system.

Referring to equations (25)-(29), if there are n normal edges and m spice-loaded edges,
then [M_.] is m x n, [T..], [Be.], and [S..] are n x m while [M,]! is n x n, making [Mz..],
[Mp..], and [Ms,.] all n x m matrices. If there is a single SPICE-loaded edge in the space,
then the [M]‘s are n x [ vectors and equation (30) is a scalar equation for a single

unknown E..

The above implementation has been shown to be unconditionally stable for a single
SPICE-loaded edge. However, multiple SPICE-loaded edges exhibit a slow instability the
source of which has not been identified. Therefore, the code is presently limited to a
single SPICE-loaded edge.

18



3.2.2 Implementation: First-Order Formulation

The SPICE-FETD interface has not yet been implemented for the first-order formulation.

3.3 Artuzi Late-time Stability Formulation

It is well known that the wave equation (6) is subject to linearly increasing spurious
solutions [5]. This “instability” is normally only noticed for simulations lasting a very
long time with a large number of time cycles. It can often be controlled using a very
small solution tolerance for the conjugate-gradient solve in equation (20). However,
when attempting to utilize the inherent unconditional stability of the second-order
formulation to reach the quasi-static or very low-frequency regime the issue can often
been seen and not easily controlled.

3.3.1 Implementation: Second-Order Formulation

Artuzi [5] reformulates the wave equation in terms of the integral of E such that the
resulting equation does not support the spurious solution. Following [5], the formulation
differs from the previously described second-order formulation in that rather than storing
the vectors £/, E", and E" the relevant vectors are u”, E"*/?, and w"*!. Equation (16)
becomes

[]—+[B—+[S]W+F] =0 (46)
t
Therefore, _
2
= ow =0E_0w
E== u=- p (48)

Manipulating equation (46) using Newmark approximations and

e g2 g 1/2 vy W T L
At At w© AP
n+1 n n-1 n+l n-1 n+1l n n-1
w - 2w t+w w -w w +2w +w
7] — +[Bl——— * 5] 7 +F] =0 (49)
t
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n+1 n-1 n n
[ﬂ N [B]Atw -w _[B]A2w + [B]A2w +

2 AP N AN
n-1 n-1 n+l

n n-1
+[S]W +2w +w

4

[B]Ar2w" "' [BlAr2w
2 AP 2 At

2

n-1

1 n
w w
*IBl% - Bl

s [B]Atw R

AP

n+ n-1

n
w +2w +w

(5] ;

+F]=

n n-1
"y [B]At "y W w +
[7]u v tIBlE - Bl
[SIACW" " T+ 2w+ [s1a20" | [S]AC2w"

4 AP 4 AP 4 AP

n—l
I:]EI [B]At ny [B]—— [B]

2 n+l n-

[SIACW" - 2w + +[S]At 2w" +[S]At22wn
4 AP 4 AP 4 AP

+F]

2 n n-1
I:]E'un'}' [B;Atun_'_ [STAL Ut [B]%;- [B]WAt +[S]Wn+F] -

4

2
I:]E'un_i_[B]Al‘un_'_[S]él-At un+[B]En— 1/2+[S]Wn+F] =0

2

Now, the system becomes

(AT+2AtB+AFS)" = - 4F - 4BE"™ "%~ asw”

20

+F]=

+F] =

(50)

(1)

(52)

(53)

(54)

(55)

(56)



So the system matrix looks exactly as it did before in equation (18), only the rhs changes
while now solving for »” directly. Once obtained, it is used to update the others as

n+1/2 n+1 n+1/2

E = E" V2w Ard” W' = W AE (57)
Scaling factors change slightly from before and note that the edge projections (£’s) are

now one-half cycle advanced. Most boundary conditions and sources are affected as well.

Even though this scheme can improve the late-time stability performance, it often does
not completely eliminate it. Keying off a statement by Artuzi [5] that the spurious

solution is isolated in the Artuzi variable ", eliminating the term 4Sw” from equation
(56) has some interesting implications. Equation (56) without losses for simplicity is

2
(T+ ATtS)un =-F, (58)

after eliminating the 4Sw” term. This corresponds to a continuous equation of the form

2
_&_ (l 8_ = 8_E+
7 Vx quat &, J (59)

To have a valid Ampere’s law, this implies that in this scheme “H” is now

2
_ At _ OF
Hyp = __VXE

n (60)

So, a new “low-frequency” H is now defined by a derivative of the curl of £ rather than
an integral. As odd as this seems, it is mathematically sound and indeed does produce the
correct magnetic fields in the low-frequency limit. It is important to remember that this
only applies for low frequencies, where the wavelength is much, much, much larger than
the objects of interest.

3.3.2 Implementation: First-Order Formulation

The Artuzi correction has not been implemented for the first-order formulation.

3.4 FEM Solution for the First-Order Formulation

In the expansion for the electric field in equation (14), the V_V] represent edge basis
functions and m is the number of edges on the element. For the first-order formulation, a

similar expansion for magnetic field is developed using face basis functions,
n

= 5 V_Vij (61)

i=1
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where n is the number of faces on the element, the ij represent the face basis functions,
and H; is the magnetic field scalar projection through the element face. Following [6],
letting e] represent the vector of unknown edge projections on elements and b] represent
the vector of unknown face projections, a discrete analog of equation (1) can be written,

[Cle] = 2p) 62)

where [C] is a sparse matrix in which the non-zero elements are only £1 . [C] has
number-of-faces rows and number-of-edges columns and represents the circulation of
electric-field edge projections about magnetic-field face projections, i.e., Faraday’s law.

For the other Maxwell curl equation (2), Ampere’s law, a classic weak form can be
derived like the following:

TClnT ' = Zrele] +[ole] + 7 (©3)

where /[C] is the transpose of [C], [u]!, and [€] are the “mass” matrices

[e] = jsW,-o W;dv (64)

Qe

-1 _ l=f =/

[n] = _f ;Wi * W;dv (65)

Qe

and [o] is the matrix

[c] = IGV_VZ-. V_dev (66)

Qe

Equations (62) and (63) lead to the following advancement equations:

b] 1= b]n_ 1” At[Cle], (67)

+
" 3

el .. = (2[g]+At[o])‘1[(2[g]- Aoz, + 26 TCIMT 0] (-7 1)} (68)
n+z n+§

where the inverse of (2[e] + Af[c]) is required and can be obtained using techniques
suitable for sparse, symmetric, positive-definite matrices such as CG.

As noted previously, the first-order formulation is conditionally stable and must abide by
the Courant condition.
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3.5 Vector Finite Elements

3.5.1 Edge-based Vector Basis Functions for Tetrahedra

To evaluate the elemental integrals in equations (15) and (64)-(66), the arbitrary
tetrahedral element is transformed to the corresponding master element as shown in
Figure 3 . This transformation is performed through the Jacobian of the transformation.
All integrals are performed numerically using Gauss-quadrature integration over the
master element. The assumed edge and face orientations are shown in Figure 3 for edges
E1-E6 and faces F1-F4.

The Lagrangian interpolation functions for a general, linear element are

_ 1
Lj(x, »,z) = @,(a] + bjx teyt de) (69)

for j=1, 2, 3, 4, where the coefficients a;, b;, ¢;, and d; are determined by assuming a
nodal-based scheme and generating four equations based on the unknown value at each
node. V is the element volume.

For the master tetrahedral element, the interpolation functions simplify to

Gi(&m,8) =1-8-n-¢ (70)
G,(E,m,8) =& (71)
G3(&,n,0) = (72)
G4(& M, 0) = ¢ (73)
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Figure 3 . Vector tetrahedral element.
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The global to local coordinate transformation between the arbitrary and the master

tetrahedron is given by “

x = > xG(Em,0) (74)

i=1
4

Yy = Zini(é’ n9 C) (75)

i=1

2= Y 2G5, 0)
i=1 (76)

Here, nodes 1, 2, 3, and 4 correspond to the corners of the tetrahedron as appropriate for a
linear tetrahedron. Using the chain rule of partial differentiation

oG,  0G,px . 8Gia_y+ 8Gi5—z

® " ax e oy o8 oz o€ "
G, G Gy 06 8
on  ox on dy om0z onm (78)
8_Gi = ﬁ;"a_x+a_(;i6_y+%;ia_z
o  ox € dy o€ oz ocC (79)
or,

G| o oy a2]|00; oG,

9| |t o€ g |ox ox

0G,| = |ox oy oz ||0G,| = [1]9G; S%Gi = [J]VG, (80)

on| |onnon||oy dy

0G;| |ox Qv 0z]10G, 0G;

ac| BCcacad |z | e
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which relates the gradient of G between global and local coordinates through the
Jacobian matrix [J]. Here, VG, is the gradient of G in the local (master) coordinates and

VG is the gradient of G in the global (arbitrary) coordinates.

[/] can be evaluated by taking the partial derivatives of equations (74)-(76) as

4 4 4

0 0 0
i z Gi(io n, C)xi 6_§ z Gi(ao n, C)yz %Z Gi(ga n, C)Zj

i=1 i=1 i=1

4 4 4
- |0 0 0
[J] - %Z Gi(E.n na C)xi %Z Gi(aa T]: C)yz %Z Gi(&: nv C)Zi
i=1 i=1 i=1
4 4 4
0 0 0
a2 2 GlEm On 5 3 GiEm Oy 503 Gile . 0z (81)
i=1 i=1 i=1 ]
0 0 08 0 X1 &5 X101 4
5 05 05 0% -1100 Yo~ X1 2= V1 227 2
= |0G, 0G, 0G5 0G,| [*2 Y2 2| X2 V2 5| _
— -1010 X3= X1 V3=V 237 2
on on on On |[X3V3 23 X3 V3 23
-1001 X4= Xy V4~ V1 247 2
0G| 0G, 0G5 0G| (¥4 V4 Z4] X4 V4 24
Ar Ar ar Ar

The 6V term in equation (69) is given by

6V = det([J]) =

(o= XI5 -y (4= 2)) - g- y(z5- 2]+

(3= 2[4 = 1)z 21)- (- ¥)(z4- 7)1+ (52
(- xDI2- y)(z3-2) - (13- ¥z - 21)]

and the inverse transformation for the gradient is given by

oG, oG,
ox o8
%G| = 1'% = ve, = 1V, (83)
oy on
oG, oG,
0z | 0C |
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For the edge-based vector master tetrahedron, the expansion or basis functions are
derived from the Lagrangian interpolation functions as follows [6][7]:

N;=GyVG;, -GGy (84)

for i = 1-6, where i is the edge number and i1 and i2 are the nodes associated with the it
edge.

Using some vector calculus, the curls of the edge basis functions are given by
VxN; = 2VG,; x VG;, (85)

These basis functions are used to expand the electric field within an element as in
equation (14) WithV_H}e replaced’_\by . The unique features which make this type of
basis function ideal for electromagnetics simulation are 1) the fact/¥hat has a
tangential component only along the jt edge and none along all the other element edges,
thus guaranteeing the continuity of tangential electric field across all element edges, ande
2)each  isdivergence free)setisfyiie within the element.

3.5.2 Hierarchical Vector Basis Functions for Tetrahedra

The edge basis functions in equation (84) are referred to as Whitney elements with a
single degree of freedom per edge. Alternatively, they are described as 0™ order or 1%
order mixed in that they are constant along an edge and linear across the element. This
results in more constant than linear behavior and consequently only a linear spatial
convergence rate. Addition of six additional basis functions in a hierarchical sense brings
the element to full 1% order and the solution to quadratic or 2" order spatial convergence.
However, this adds an additional degree of freedom on each edge and consequently
doubles the number of unknowns in the system.

The next six hierarchical basis functions are defined by [8]

N,=G;VG,+G,VG,

l

for i = 1-6, where i is the edge number and i1 and i2 are the nodes associated with the it
edge. The curls of these six basis functions are identically zero.

3.5.3 Face-based Vector Basis Functions for Tetrahedra

For the first-order formulation, the face-based tetrahedral basis functions are required.
They are given by [6]

N = 2(G;(VGyy x VGiy) + G(VGiy x VGyy) + Giy(VGy x VGLy))  (86)

where i is the face number and i1, i2, and i3 are nodes associated with the i’th face.
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3.5.4 Edge-based Vector Basis Functions for Pyramids

Similar to the tetrahedron, the arbitrary pyramid is transformed to the master pyramid as
shown in Figure 4 . The assumed edge and face orientations are also shown in Figure 4
for edges E1-E8 and faces F1-F5.

Also like the tetrahedron, the vector basis functions for the pyramid are derived from the
nodal expansion functions [9][10]. Using the following transformation,

ud = 1-¢ (87)
u2 = y(l-u3) (88)
ul = x(1- u3) (89)
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Arbitrary Pyramid
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Master Pyramid

Figure 4. Vector pyramidal element.
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the nodel-based interpolation functions for the pyramid are
Gi(&m, Q) = ul
Gy(&, M, C) = u2

G3(&E,n,C) = 1-ul-u3

Gy(& . C) = 1- u2- u3

GS(&) na C) = u3

(90)
C2))
(92)
(93)

(94)

From these, the following edge-based vector basis functions for the master pyramid are

derived:
Nl =
1 - GS

2" 1— GS

3 - 1— GS

4 B 1— GS

I- Gy (1- G)’
6 = -

I-G; (1- Gs)’
7= -

1- G (1- Gs)
g = -

1_G5
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(95)

(96)

97)

(98)

(99)

(100)

(101)
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The curls of the edge basis functions are %iven by .
—  2Gyiy * Giiy)
VXNS =

1- Gs
VxN; = 0.5VxNg + i
VxN; = 0.5VxNg + ig
VxN; = 0.5VxN;s + i,

VxNy = 0.5VxN7 + fis

where the 7; are unit vectors in the direction of each master pyramid edge.

3.5.5 Face-based Vector Basis Functions for Pyramids

Consistent with Figure 4 , the face basis functions for pyramids are given by [9]

N1 = Gy~ Gy, - (1- Gg)ig

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)



N . G3Gshy ( G, )A)
= + - - -
N 05(G5n7 T, (27 O g (14)
N . G4Gshy G .
Vs = 0.5 Ggig + - G, - 'G3'1-c;5)"3) (115)

3.5.6 Edge-based Vector Basis Functions for Hexahedra

Like the tetrahedron and pyramid, the arbitrary hexahedral element is transformed to the
master hexahedron as shown in Figure 5 . The assumed edge and face orientations are
also shown in Figure 5 for edges E1-E12 and faces F1-F6.

The edge-based master basis functions for the hexahedron may be written in the
following form [11]:

for edges | & Np = g1+ (1 +OVE
(116)
for edges || n,
N; = %(1 +E:E) (1 +L,5)Vn (117)
for edges | ¢,
Ny = g1 +E8) (1 + Ve 118)

where (n;, §;) are the coordinate values of (1, {) on edge i and similarly for the other
edges. These vector basis functions do guarantee tangential field continuity across
element edges and faces, but are not divergence-free as are those for the tetrahedron. If,
however, the hexahedral element is not distorted but is a rectangular brick, the basis
functions are indeed divergence-free. EMPHASIS’s use of hexahedral elements will, in
fact, be only in the hybrid-mesh transition region where they will be rectangular bricks.

The curls of the edge basis functions are

for edges || &,

VN, = 2(1+ G VEx VE + (1 +C,0m Vi x Ve (119)

for edges || n,

VN, = 2(1+EE)EVEx Y+ 2(1+ LOEVEX U (120)
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Figure 5. Vector hexahedral element.
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for edges || C,

- 1 1
V; = 2(1+EE),Vn x VE+ 2(1 +nn)EVEX VE (121)
Note that the terms in these curl expressions are, in fact, the face basis functions given in
the following section and therefore can be obtained from them.

3.5.7 Face-based Vector Basis Functions for Hexahedra

Consistent with Figure 5 , the face basis functions for hexahedra are given by

N1 = 21+ nn)(VE x VE) (122)
N = 21 +£8)(Vn % VO) (123)
N = 2+ ) (VE X VE) (124)
Ny = %(1 +E,E)(VEx V) (125)
N's = 2140V x VE) (126)
N = 21+ £,0)(VE x V) (127)

where the &;, n;, ; are the coordinate values of €, 1, C for the appropriate face, i.e., face 1
is in the (&, ) plane and n); is its location in the n direction, etc.

3.6 Elemental Integral Evaluation for FEM Solution

Although for tetrahedra the elemental integrals in equations (15) and (64)-(66) can be
evaluated analytically, instead the Jacobian transformation is used to transform all
integrals to local coordinates on the master element. Integrals are then always performed
on this master element using gaussian quadrature, simplifying and generalizing the code.
This becomes very helpful when other elements are desired, such as pyramids and
hexahedra, because the integrals cannot be done analytically on these elements. There is
little or no time penalty in doing all integrations numerically because often the analytic
expressions are themselves complicated and require many floating point operations to
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complete. There is no accuracy penalty because by choosing the correct number of gauss
points, the integrals are exact for the polynomial basis functions of interest here.

For the aforementioned elemental integrals, three forms are required

E, = j VxIW; o VxW;dv (128)
Qe
Fy= [ We W (129)
Qe
L; = {;ﬁ x W;e i x WdS (130)
S

Transforming to the master element, these become, using equations (83), (84), and (85),

By = [ (T 'VGy x [T 'VGy) o (T 'VGy x U] VG pder([aav (13D

Oo

Flj =

[(GALIT 'V Gy Gl 'VGyy) o (G LIT 'V Gy GyIT 'V G der(LI)d5 (132)

Ly = I(ﬁs x (G ] I%GiZ_ Gpld I 1%Gil)) y
b (133)

(i, x (G [T 'V G - G ol 'V G )det(1J,1)dS,

where in equation (133), the surface S is made up of those element faces where the term
applies, [J;] is the Jacobian with respect to that surface, and 7 is the normal to the
surface. The remaining term in equation (15) can be evaluated similarly,

IMOVVio%Jdv = uoj(([J]'l%Gﬂ x [J]'I%Giz)ogj)det([n)dv (134)
Qe Qe
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3.7 Wires

3.7.1 Transmission-line Model

The sub-cell modeling of wires generalizes a well-known finite-difference, transmission-
line scheme [12]. The basic, 1-D transmission-line equations applied to the wire are

ol _ _ 8V_ o

a1~ G B G (135)
8V 81 =t = 1 inc
3o LWE+E -1+7(V -IR)) (136)

where / is the wire current, V' is the wire voltage defined in the transmission-line sense
(across the “line™), C,, is the capacitance per unit length of the wire, L,, is the inductance
per unit length of the wire, both defined in the transmission-line sense, ¢ and € are tthe
conductivity and permittivity, respectively, of the medium surrounding the wire, £ is the
electric field driving the wire, V" is an applied voltage source on the wire, and R,, is a
discrete resistor on the wire.

Taking the partial derivative of equation (135) with respect to / and substituting equation
(136) yields the following 2nd order form:

R,
e dl, (LC C)a[ d +C ) =
Y o / ot 072 woegl (137)
a(-t ; V’) G(—t - Vl)
9 + +C = + =
CW@tE.l 7 CWSEOI 7 f
3.7.2 Finite-Element Solution
Applying Galerkin’s method of weighted residual, Where
_ 89 d] ( c )a] oR,,
= - L L.C?2 "y
r=- 2wt (e lc Tec,=r1-f  (139)
and the weighted residual for wire element e is
= j(W,.-r)dv =
Qe N (139)
Wior ol d1 ( s, Ry ) ol , . OR,
—Cow| | +L, Ll c 2+ S —wi-w.
I((al ol W’alxl o W(ﬁ WCWS [ o W’@t o el Wil=Wi)|dv

Qe
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where the first term has been integrated by parts. Setting the trial functions equal to the
weighting functions, with

L= % Wi (140)

i=1

and setting the weighted residual to zero yields the following system

_ jWWd }Z; {(LWCWE l )IWWd}gl

(141)

R, oW oW, _
C,—= [ W, W,dv + IE = v |I- [ wiav =0
Qe

gl
L Qe Qe

where / is the coefficient vector and the second term, ngg

from the integration by parts has been discarded because it Vamshes everywhere except at
a boundary (end of wire), where there it also vanishes either because either a Dirichlet

al, _
boundary condition (/= 0) or a Neumann boundary condition ( / ar="? ) is applied there
[13].

Applying a centered-difference approximation for the time derivatives yields the
following,

3

n+=
{LWCW+LWCW 2A +R2—Al’c }[T]I ? =

n+L

(2L C,- AFCWE )[T] At [S]} 2+ (142)

1

{Azt(L c 2 I;C ) _ LWCW}[TJI 2 AR

where the elemental [77], [S], and [F] matrices are derived as follows. The linear, 1-D
expansion functions are

5-1
) = = (143)
/
l— e
Wy(l) = Ifl (144)
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where x,;¢ and x,¢ are the local element endpoints and /¢ is the element length. Using
simple two-point trapezoidal integration,
!

[ = 5 +70)) (145)

0

the elemental matrices become

x2 x2
[wowar [ ww,adi 1 (146)
[T] - x1 x1 - _e 1 O
x2 x2 2 01
[wamwdr [ wymw,dl
Lx1 x1 i
x2 x2
— = dl = = “dl
ol ol ol ol i1 -
si= A 14
— — —dl
ol ol ol ol
x1 x1 i
and
x2
[ ai z
F1 = |« = se|l (148)
[ ] x2 f2 |:1:|
[,
[x1 i

Note that the matrix to be inverted, [7], is diagonal so the solve is a direct one.

3.7.3 Implementation: Second-Order Formulation

Implementation of the sub-cell wire algorithm involves several heuristic techniques for
evaluating the wire parameters and drive terms in equation (137). These include the wire
inductance and capacitance per unit length, L,, and C,,, the permeability, permittivit}i,tand
conductivity surrounding the wire, L, €, o, and the electric-field drive for the wire, £ .

The inductance per unit length for the wire is defined in a “coaxial” sense as
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_ W
L, = 5-In (149)

QI

where 1 is an “average” permeability around the wire, d is an “average” distance between
the wire and its “driving elements”, and a is the wire radius. Similarly, the capacitance
per unit length for the wire is defined as

c, ==& (150)

In

m

QI

where € is an “average” permittivity around the wire. These quantities are defined for
each segment of the wire as the wire passes through an arbitrary mesh topology.

The “driving elements” for the wire are those elements surrounding the wire path which
are “l cell distant” from the wire. In other words, those elements which connect to nodes
which connect to wire nodes through an element edge, EXCEPT for those nodes OR
elements touching the wire. In this way, an annulus of elements is defined surrounding
but not touching the wire which supply the drive.

The “driving elements” are also used to compute the “average” distance 4 in the

following manner: Define a wire-current direction at each wire node, 71’, as the unit vector
connecting the mid-points of the two edges connected to the wire node. If the wire node
is an end node, take the direction of the end edge as the wire-current direction. Also
define a vector for each “driving element” from the wire node to the center of the driving &
element, The “nodal average” distance is then defined as

N;

4 = Nl S [1ix & (151)
k=1

where N, is the number of driving elements for node i. The average distance used in
equations (149) and (150) is from the wire segment, defined for the £ segment as

o= @+ ) (152

where d'i and d" ; are the “nodal average” distances from the nodes at the ends of the £
segment.

The “average” permeability, permittivity, and conductivity surrounding the wire, i, € and
o are computed by simply summing these parameters for each element connected to the
wire edge of interest and dividing by the number of these connected elements.

The explicit solve for advancing the wire current to /"3 in equation (142) is centered at
time n + 1/2. Therefore, the electric-field drive for the wire should be centered there as
well. This requires backstoring of the electric field for one cycle, leading to the following
expressions for the drive terms in equation (137):
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a_E,Z _ E}’l +1 _ E}’l
ot Al (153)
— En +1 + En

where E"" 1and E" are the average of the barycenter electric field over all of the
“driving elements” at time n + / (most recent) and » (next-most recent), respectively.
Since the driving elements are associated with wire nodes, the values for the end nodes of
each wire segment are spatially averaged to obtain the final electric field drives for the
wire segments used in equations (137) and (142).

The wire current is injected back into the volume field solution through the normal
Maxwell current-source term from equation (6),

0 -
oo (155)

3.7.4 Implementation: First-Order Formulation

Wires have not yet been implemented for the first-order formulation.

3.7.5 Unconditionally Stable Modifications

The wire formulation described previously is conditionally stable and will consequently
limit the size of the time step to the Courant step derived from the wire discretization.

An unconditionally stable formulation is described in [14] and it’s references. This
formulation creates a tighter and symmetric coupling between the wire and the field
drives.

This formulation alters the form of the wire-drive term f'in equations (137)-(139) and the
corresponding volumetric field drive term in equations (15)-(18). For the wire drive,
weak form,

[ wav = IW( ngfl TW% '"‘)a’w
Qe (156)

fg(r)W,.(CW—t(E o)+ ng(Ex. 7))dv

Oo
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where o(r) is a radial weighting function around the wire such that

J 2nrg(r)dr = 1

rza

where a is the wire radius and
g(r) = 0.
forr<aandr >d. Fora<r<d,

1+ cos(ng)

g(r) = >
(- d)- 2F(1 + cos@@ +ni_llsm(n9)

Expanding the electric field as before

E= YN

M =

1

7

the second term in the right-hand side of equation (156) becomes
m

6Ej _ . _ G— =
z 5 J. C,N; e lg(r)Wdv + E; I ngNj o lg(r)W;dv
j= 1 Qe Qe
For the field drive,
- d-
j HoN; o —Jdv
Qe

the current density from the wire is written as

J(7 1) = I(s, )g(r)]

Using the expansion in equation (140) for /,

2

J(r. 1) =3 WiDg(LDI(s, 1)

i=1

so equation (162) becomes

o S S0 [ W DEN ) o Tay
Qe

i=1

(157)

(158)

(159)

(160)

(161)

(162)

(163)

(164)



(165)

Note the similarities between equation (161) and equation (165). The volume integral
over the element is the same and in the first term of equation (161) the derivative operates
on edge projection E; or wire current /;, respectively. This suggests that now the wire
currents at the wire nodes should be included in the edge unknown system and solved

simultaneously. The following coupled system represents this,

7 o d2H+ 5 uo[Pw]TaH+

where

Py = | WiDg(rNi(7) o ldv
Qe

Cw&anc CwG 'nc)
= - | —=" + X
F, j W,( o 1 SV’ ds

N

3.7.6 Finite-Element Solution

From equation (166), dividing thru by C,,, the coupled wire equation is
[T,)i-[P.JE+[B,Y-Z[P,JE+[S,)[+[F,]=0
£
where

[7,]=L, [WW,av

Qe
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(168)

(169)

(170)



[B,] =(L i R“’)fWindv

W
£ L]g,

[5,]= % fww av s L Ny,
e g T Cu dl dl

a V inc o V inc
— +— dv

[P,]= [W,(Dg(r)N,(F)* ldv

Qe

[FW]=fWi

Qe

Using Newmark approximations,

w w

Af?
(1"“ +2I" + 1"-1)
+

2At 2At € 4

S

w

F,=0

(4T, +2A1B, + AFS, 1" + (8T, + 2A¢°S )I" + (4T, - 2AtB, + A*S, )" -

(2AtPW + AP SPW)E“1 202 p E" - (2AtPW _ AP SPW)E"-1
€ € €

—4AL°F,

(47, +20iB, + A%S, )1 - (ZAtPW + AP gPW)E”” -
&

(87, -24r%S,)I" + 207 T P,E" ~ (4T, -2A1B, + Ar*S, )"
&€

—(2AtPW ~Arg PW)E”-1 —4APF,
&

AT =b + (ZAtPW + A2 gPW)E”“
£

I = A;;(bw + (ZAtPW + AP gPW)E"“)
€

where b,, is the right hand side of equation (177) and
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n+l n n-1 n+l n-1 n+l n-1 n+l n n-1
T(I ~2I" +1 )_P(E -E )+Bw(1 -1 )_QPW(E +2E" + E™)

(171)

(172)

(173)

(174)

(175)

(176)

(177)

(178)

(179)



A, =4T, +2A1B, +Ar’S, (180)
Also from equation (166), the coupled field equations are
[T1E +[B]E + 1[P,] 1+ [S]E +[F,]=0 (181)

Again with Newmark approximations,

n+l n n-1 n+l n-1 n+l n-1 n+l n n-1
TE 2E2+E +BE E .“o‘fl 1 +SE +2E"+ E +F, =0
At 2At 2At 4
(182)
(4T +2AtB + APS)E"™ + 2Atu,PL 1" =
(183)

(8T -2AFS)E" - (4T - 2AB + AP*S)E"™ + 2Atu P I"" ~ 4AL°F, = b

(4T +2MB+ APS)E™" + 2Atu, P T =
2(4T +2AtB + APS)E" — AAr’SE" - 4MBE" - (4T + 2AtB + AP*S)E" + (184)
4AtBE"" + 2Atu, P 1" —4A°F, = b

Further manipulation of equation (184) produces an equation similar to equation (18),

(4T +2AtB + APS)E"* = 2(4T + 2AtB + Ar’S)E" + (4T + 2AtB + Ar*S)E"™ + 2Atu, P T"! =
~4At(B+ AtS)E" + 4AtBE"™ + 2Atu, P I — 4A’F, = b

(185)
AE™ —2E" + E"") + 2Atu,PTI" = AE + 2Atu P! 1" = (186)
(~4At(B + AtS)E" + 4AtBE"™ + 2Atu,PI "™ = 4AL°F, = b
Substituting for 7"/,
AE + 2AWOPJ(A;‘ (bw + (2Ath +arg PW)(E +2E" - E‘)) =b (187)
&
where
A=4T+2MB+AL’S (188)
and
E=E"™-2E"+E" (189)
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Expanding equation (187),

AE +2A1u,PT A7, + 4APPu,PT AT'P E + 208, PT AT P E +
€ (190)

w w

ANCu P AP, (2E" - E"')+ 2A8 u,P) A %PW(ZE" —E"")=b

AE +2A1tu,PT A7'p + 2Au,PTAZ 2P, + At P )E +
€
(191)
AU P AP, + At P)2E" - E™) = b
€

(A+H)E =b-2Atu,PT Ab, - 2Ar2u01{jA;}(2 + At %)PW(2E” -E"")=b" (192)
where
H-= 2At2u01{fA;‘(2 + At (Z)PW (193)
Equation (192) is now solved for E, followed by the normal time advance computing

E"1, which is substituted back into equation (179) to compute /**/.

The desired matrix solution method is conjugate gradient (CG), therefore, the solution to
equation (192) can be accomplished in two steps knowing that CG will multiply vectors p
by A+ H,

A4,9=Pp (194)
(A+H)p=Ap+ 2At2uonT(2 + At G)q (195)
&

In this manner, the matrix solution can be obtained without computing H directly. For
multiple wires, the field equations become

[T)E + [BIE + [P, ] I+ i [Po] I+ [S]E+[F,]=0 (196)

For two wires,
(47 + 208 + ACS)E™ 4 A (P + PLE") =

(8T -2AF7S)E" - (4T = 2A1B + AC*S)E"™" + 2Atu,(PLIY ™ + PLIY ) - 4ACF, = b(197)

Substituting for 77"/,
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AE™ +2A1u,PT AZ'b, + 2ACu,PL AP 2+ At D) E" +
&

ZAIMOPLA;Izbwz + ZAIZMOPT A P2+ At%)E“l =b

w2 w2

(A+H)E"™ =b-2A1u,P,,

wl

A;vllbwl - ZAIMOP\ZZAV_VIwaZ = b’

where now

wl wl® wl

H= 2At2u0(PTA'1P
£

(2 y 3) " RZZA;;Rﬂ(z + At 3))
&

Two solves are now required for ¢’s,

4,4, =P,p
4,26, =P,,p
then
(A+H)p=Ap+ 2At2u0(2 + At Z)Pleq] + 2At2u0(2 + At ‘z)szqz
3.8 Slots

3.8.1 Transmission-line Model

(198)

(199)

(200)

(201)

(202)

(203)

The sub-cell slot model is the dual of the above wire formulation. The 1-D transmission

line equations applied to the slot are

ol _ C ov %[ﬁdqf.?]

a1 - S
oV _ ol
a - by

where 7 is the slot “current”, V' is the slot “voltage” (“magnetic current”), Cj is the

(204)

(205)

“capacitance” per unit length of the slot, L; is the “inductance” per unit length of thd_ﬁi&,

is the two-sided magnetic-field difference driving the slot, and 7 is the unit vector
defining the slot-segment direction. These equations lead to the 2nd order form

2 2

dv dv _ Lo ,—diff
LeZ3- 05 = ol =

ar a- 46l ot



(206)

3.8.2 Finite-Element Solution
Applying Galerkin’s method, expanding the linknown slot voltage as

V=W (207)

i=1

and applying central differencing,
(LCHTIV' "% = (2L,C[T]- AC[S]I V" " - {L.CHITIV' + AF[F]  (208)

The remaining steps are identical to those for the wire, with the matrices [7], [S], and [F]
being identical to those for the wire.

3.8.3 Implementation: Second-Order Formulation

Implementation of the sub-cell slot algorithm is in most ways the dual of the wire
algorithm. However, the heuristic techniques for evaluating the parameters in equation
(206) differ in many cases. These include the slot inductance and capacitance per unit
length, L and C;, the permeability and permittivity inside and surrounding the slot, p, €,
and the magnetic-field drive for th§1d\xlf re, . For the present formulation, the slot is
assumed lossless and therefore the slot conductivity is not needed.

The inductance per unit length for the slot is defined in a “dual coaxial” sense as

_ T
Ly = —% (209)
2In=
a

where # is an “average” permeability around the slot, @ is an “average” distance between
the slot and its “driving elements”, and « is the slot effective radius, which is a function
of the slot width and depth [15]
_m-depth
_ width ~ 2 width (210)
7 ¢

Similarly, the capacitance per unit length for the slot is defined as

C, = =In= 211)
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where € is an “average” permittivity around the slot. These quantities are defined for each
segment of the slot as it passes through an arbitrary mesh topology.

Unlike the wire, the “driving elements” for the slot include all elements immediately
surrounding the slot including those which “touch” the slot. Also differing from the wire,
two separate lists of driving elements must be kept for the slot. This is due to the fact that
the “magnetic current” driving the slot is derived from the difference of the tangential
magnetic fields on either side of the slot plane, which must be defined to be a perfect
electrical conducting (PEC) plane in the FEM model. In order to facilitate the selection of
the two drive “sides” of the slot, the material type of opposite sides of the slot PEC plane
must be different.

The pseudo-PEC edges contributing the magnetic-current drive for the slot are those
edges in the PEC plane connecting to a slot node. A list is also kept of these edges so that
they may be reset in the FEM solution from their normal “set to zero” Dirichlet condition
for a PEC to the appropriate slot-drive value.

Exactly like the wire, “slot-current” directions, /i , are defined at each node. Using these,
sub-distances for each node are determined using equation (151) for each of the two
“driving-element” lists at the node. These two equation (151) results are then averaged
together to obtain the “nodal average” distance. The average distance relative to the slot
segment needed in equations (209) and (211) is then determined as for the wire, from
equation (152). Some special storage and communication is required for these operations
to succeed in a distributed parallel computing environment.

The average permeability and permittivity around the slot are computed exactly like those
for the wire.

The explicit solve for advancing the slot voltage to 2 in equation (208) is centered at
time n + /. Therefore, the magnetic-field drive for the slot should be centered there as
well. The two-sided magnetic-field difference is obtained from the curl of the latest
electric field using standard FEM interpolation. For each slot noglff? is formed by
averaging the baryc%z(er from the “driving elements” on each side of the slot plane.
The two node contributions for each slot segment from each side are then averaged to
form the total ave%é_é contribution from each side of the slot plane for each slot
segment. Finally, the difference is taken betvg?éh the ‘s from each side to form gf?d v
total for each slot segment.

As alluded to earlier, the perturbation of the slot is fed back into the volume field solution
by introducing the slot voltage into the volume solution as a Dirichlet boundary condition
on the pseudo-PEC edges which surround the slot in the slot plane. This provides a
“magnetic-current” drive, effectively providing a non-zero tangential electric field in an
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otherwise PEC plane. This drive appears in Maxwell’s equations as a fictitious magnetic-
current source term, not shown in Section 2 of this document.

3.8.4 Implementation: First-Order Formulation

Slots have not yet been implemented for the first-order formulation.

3.9 Absorbing and Impedance Boundary Conditions

Absorbing or impedance boundary conditions are encompassed in the following term

from equation (15),

1 . = . = OFE
B;vpu o Wie WS, 12)
S r

where the speed of light, ¢, has been replaced by v, the phase velocity in the material
media of interest. The speed of light originally came from application of the Sommerfeld
radiation condition, equation (11), applied to free space.

For application of a 1st order absorbing boundary condition,
e, ﬁ (213)
ST TH M,

L . i . - (K . .
For application as an impedance boundary condition, since £ = J% , the same is written

= 22 214
vP“r Z ( )

In free space, for example, a “matched” impedance condition is achieved with
Z = P (215)
€o

% = . (216)

therefore

so the absorbing condition is recovered from the impedance condition.

Absorbing and impedance boundary conditions are presently functional only for the
second-order formulation.
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3.10 Edge Loads

Edge loads are implemented in a somewhat ad-hoc manner using the expression for the
contribution to the FEM system of a post with an impedance Z; in Jin [16] whose matrix
contribution for a single edge is of the form

jkOZO
ZL

(217)

where Z, is the impedance of free space. For a single resistor R on a single element edge,
the contribution is
JjoZ,
cR

(218)

where c is the speed of light. This term consequently contributes to the first-derivative
term in equation (16) and consequently [B] in equation (18), both matrix and rhs, for that
edge only.

Similarly, for a single inductor L, the contribution is
ﬁ (219)
cL

which contributes to the constant term [S] in equations (16) and (18), both matrix and rhs.
For a single capacitor C, the contribution is

(j©)’Zo (220)
c(1/0)

contributing to the second-derivative term [7] in equations (16) and (18). Note that this
term does not appear in the rhs, only in the matrix.

4.0 Verification

Verification determines whether the numerical model being implemented has been
correctly coded. This normally consists of comparison with know analytic solutions
requiring simple problems in separable geometries.

Since the unstructured FEM implementation of EMPHASIS within NEVADA closely
follows the well-verified legacy code VOLMAX [17][18][19][20], the verification
strategy for the basic electro-magnetics implementation is to make extremely detailed
comparisons of EM simulations between the two codes. “Extremely detailed” means
comparison of vector-field values, wire currents, and slot voltages down to near machine
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precision. In this way, the argument is made that UTDEM is verified by extension of
VOLMAX verification. For the 1.0 release of UTDEM, all algorithms were re-
implementations of existing VOLMAX algorithms. Reference [21] provides a summary
of the full VOLMAX verification suite.

New algorithms implemented subsequently into UTDEM must and have been verified
separately. This includes verification directed toward fundamental application areas such
as Box- and Cavity-SGEMP. A separate document covers the Cable-SGEMP application
[22].

To this end, several problems have been compared in this manner ranging from simple
rectangular cavities to complex, arbitrary shaped cavities including wires, slots, and lossy
material. These are described in the following sections. The corresponding
EMPHASIS/NEVADA input files are provided in the Appendix. These also happen to be
included in the UTDEM regression-suite.

All of these verification problems exercise only the second-order formulation. The first-
order formulation has not been fully integrated with the necessary ancillary tools and has
not been fully exercised.

4.1 UCAVITY

This is a simple rectangular perfectly conducting cavity enclosure with free space inside,
meshed using unstructured tetrahedra. The cavity is shaped somewhat like a shoe box.
The source is a gaussian pulse applied directly to an electric-field edge projection interior
to the cavity. The observer is another edge projection elsewhere in the cavity. This
simulation tests the second-order formulation, the PEC boundary condition, the simple-
electrical material model, and the simplest possible source and observer. Being careful to
perfectly match the time steps between the two codes, the results agree with VOLMAX
to machine precision.

4.2 UCAVABC

This is the same geometry, mesh, material, drive, and observer as for the above
UCAVITY problem. The difference is the PEC boundary condition defining the cavity is
replaced with a simple 1st order absorbing boundary condition (ABC). This simulation
tests the ABC along with further testing of the second-order formulation, etc. These
results also agree with VOLMAX to machine precision.

4.3 UCAVABC 2MAT _LOSS

This is the same geometry, mesh, drive, observer, and ABC outer boundary condition as
the above UCAVABC problem except that two different materials now exist within the
cavity enclosure. The source is in one material and the observer is in the other. The
materials are no longer simply free space, but have relative permeabilities and relative
permittivities different from unity and have non-zero conductivities. This simulation
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further tests the simple-electrical material model and the implementation of material
parameters and volumetric loss into the FEM solution. Again, the results agree with
VOLMAX to machine precision.

4.4 UCAVABC_WIRE

This is the same geometry, drive, observer, and ABC as the UCAVABC problem above
but with a different tetrahedral interior mesh. A thin wire has been added along the length
of the cavity near the center of the cross section. This wire also has a wire current
observer defined on it. The material inside the cavity is reverted to all free space.

This simulation tests the thin-wire algorithm along with further testing previously
verified implementations of the second-order formulation, ABC, etc. Both the interior
field observer and the wire current agree with VOLMAX to machine precision.

This simulation has also been run replacing the field source with a wire current source,
also producing machine-precision agreement with VOLMAX.

4.5 UCAVABC_SLOTS

This problem consists of two concentric rectangular boxes, or “shoe box within a shoe
box”. The interior box is a PEC boundary with two slots defined on two different sides of
the box. This box contains the same source and observer as did the previous problems,
but with a different tetrahedral mesh. The two slots have different widths, small fractions
of a typical edge length. Both slots have zero depth. The outer box has an ABC on its
surface, and an additional field observer is added between the two boxes. Slot voltage
observers are located on each slot, and the material everywhere is free space.

With both slots activated, both field observers and both slot observers agree perfectly
with VOLMAX. If the slots are deactivated, as expected only the observer inside the
inner cavity is nonzero, the observer between the boxes is identically zero, again in
agreement with VOLMAX.

4.6 UCOAX_BELT

This geometry consists of two concentric cylinders with end caps, representing a section
of coaxial transmission line. The interior is meshed with unstructured tetrahedra, all with
a relative permittivity of 2.2, relative permeability of unity, and zero conductivity. PEC
boundary conditions exist on the cylinders and ABC’s exist on the two end caps. The
source is a short, “delta-gap” type source on the surface of the inner cylinder near one of
the end caps. This source launches a wave down the coaxial line in a relatively clean
manner except very near the source. Observers are two line-integral voltage observers
defined radially between the two cylinders, at two different points along the line length.

This problem tests implementations of the “belt” source on a surface and the line-integral
voltage observers.
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The simulation launches a short gaussian-shaped pulse down the line. This wave is
detected by the two observer line integrals and agrees perfectly with VOLMAX. The
ABC at the end of the line section does a good job of absorbing the pulse, preventing
reflections. The simulation was also run with the ABC’s replaced by PEC’s. As expected,
the pulse now reflects back and forth along the line “forever” since there is no loss.

Additional simulations were performed with the end-cap ABC’s replaced by impedance
boundary conditions (IBC’s). Various values were tested including a “matched”
condition, which reproduces the absorbing result exactly.

5.0 Validation

Validation determines whether the model being implemented correctly reproduces real
physical phenomena for a specific application. This normally consists of comparison with
carefully designed experiments to examine specific aspects of the code or with other
trusted experimental results.

The legacy code VOLMAX, the origin of all of the algorithms described in this
document, is also well validated against published experiments, analytical, and numerical
results [17][18][19][20]. These include scattering from a perfectly conducting sphere,
resonances of a cylindrical cavity, scattering from a thin wire, input admittance of a loop
antenna modeled by a thin wire [17], excitation of loaded thin wires in cavities with thin
slots [18], gas-discharge excitation of conical transmission-line antennas [19], and more
loaded wires in cavities with slots [20]. Therefore, similar to verification, an argument
can be made that UTDEM is validated by implication from VOLMAX validation.
Reference [21] provides a summary of the full VOLMAX validation suite. New
applications for UTDEM must be validated separately, such as SGEMP [23][24][25].

6.0 Code Documentation

UTDEM documentation of design and implementation is contained in special code
comments recognized by the code documentation software Doxygen, which converts
them to a set of Hyper-Text Markup-Language (HTML) files. This includes Unified-
Modeling Language (UML) like graphical design descriptions as well as detailed
descriptions of class data and methods. In this way, documentation stays with the source
code and therefore has a better chance of remaining up to date as changes are
implemented.

This documentation can be built from a code checkout or release distribution. Intended
primarily for the code developer, these pages should help navigate and understand the
UTDEM implementation.
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7.0 Conclusions

The NEVADA-framework implementation of the unstructured FEM solver has
demonstrated results which are identical to those of the legacy code VOLMAX with
performance degradation of a factor of 2-3, and most of that can be traced to the CG FEM
system solve itself. In return, great scalability has been achieved on distributed parallel
computing platforms over the limited SMP scalability of VOLMAX, along with
improved code design, configuration management, and V&V processes.
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8.0 Appendix A: Input Files for Verification Problems

The following are the input files for the verification problems described in the
Verification section. They should provide the user with insight into usage and syntax for
the UTDEM portion of EMPHASIS/NEVADA. As given, these will produce results very
close to those of VOLMAX. To get machine precision agreement, the time steps must be
synchronized exactly between the two codes. The input file for UCAVABC SLOTS in
Section 9.5 contains the keyword “CONSTANT TIME STEP” which is used to force the
VOLMAX time step on UTDEM.

8.1 UCAVITY Input

TITLE
Unstructured 3D cavity with edge source and observer

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
pec b, sideset 1
observer, nodeset 16
source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

BLOCK 111
MATERIAL 1
END

GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec

solver, cg
precond, jacobi
output, none

tol =1l.e-9
polynomial order, 1
end
units, si
$
$
$ PLOTTING
g
$

EMIT SCREEN, CYCLE INTERVAL =1
EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END
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MATERIALS

R R RS A ]

MATERIAL 1
model 1
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

EXIT

8.2 UCAVABC Input

TITLE
Unstructured 3D cavity (ABC, not PEC) with edge source and observer

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
abc bc, sideset 61
observer, nodeset 16
source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

BLOCK 111
MATERIAL 1
END

GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec

solver, cg
precond, jacobi
output, none

tol =1.e9
polynomial order, 1
end

units, si

PLOTTING

$
$
$
$
$
EMIT SCREEN, CYCLE INTERVAL = 1
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EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END

MATERIALS

R R RS A ]

MATERIAL 1
model 1
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

EXIT

8.3 UCAVABC 2MAT_LOSS Input

TITLE
Unstructured 3D cavity (ABC, not PEC) with 2 lossy materials, edge source, and observer

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
abc bc, sideset 2
observer, nodeset 16
source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

BLOCK 1
MATERIAL 1
END

BLOCK 22
MATERIAL 2
END

GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec

solver, cg
precond, jacobi
output, none

tol =1.e9
polynomial order, 1
end
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units, si

PLOTTING

(SRRl

isel

EMIT SCREEN, CYCLE INTERVAL =1
EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END

MATERIALS

R R RS A ]

MATERIAL 1
model 1
END

MATERIAL 2
model 2
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.2
MU 1.3
SIGMA 0.0001

END

MODEL 2 SIMPLE ELECTRICAL
EPS 1.5
MU 1.6
SIGMA 0.0003

END

EXIT

8.4 UCAVABC_WIRE Input

TITLE
Unstructured 3D cavity with wire, wire observer, edge source, and observer

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
abc bc, sideset 2
observer, nodeset 28
source, nodeset 31, gaussian, scale 1. width 2.e-9 peaktime 10.0e-9 direction, x 0. y 0. z -1. length
0.5
wire, edgeset 115, radius 0.00001, resistance 0.0
wire observer, nodeset 11
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BLOCK 1
MATERIAL 1
END

GRADUAL STARTUP FACTOR 1.0
END

EXODUS EDGE SETS 115
TERMINATION TIME 9.0e-9
aztec

solver, cg

precond, jacobi
output, none

tol =1l.e-12
polynomial order, 1
end
units, si
$
$
$ PLOTTING
$
$

EMIT SCREEN, CYCLE INTERVAL =1
EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END

MATERIALS

R R RS A ]

MATERIAL 1
model 1
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

EXIT

8.5 UCAVABC_SLOTS Input

TITLE
Unstructured 3D cavity with slots, slot observers, edge source, observer,

59



and outer ABC boundary

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
abc bc, sideset 4
pec b, sideset 2
observer, nodeset 28
observer, nodeset 29
source, nodeset 31, gaussian, scale 1. width 2.e-9 peaktime 10.0e-9
slot observer, nodeset 19
slot, edgeset 123, width 0.00001, depth 0.0, int mat 1, ext mat 2
slot observer, nodeset 20
slot, edgeset 124, width 0.00005, depth 0.0, int mat 1, ext mat 2

CONSTANT TIME STEP 1.01197539e-09
GRADUAL STARTUP FACTOR 1.0

BLOCK 1
MATERIAL 1
END
BLOCK 22
MATERIAL 2
END
END

EXODUS EDGE SETS (123 124 153)
TERMINATION TIME 9.0e-9

aztec

solver, cg
precond, jacobi
output, none

tol =1l.e-12
polynomial order, 1
end
units, si
$
$
$ PLOTTING
$
$

EMIT SCREEN, CYCLE INTERVAL =1
EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END

MATERIALS

R R RS A ]
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MATERIAL 1
model 1
END

MATERIAL 2
model 2
END

MODEL 1 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

MODEL 2 SIMPLE ELECTRICAL
EPS 1.
MU 1.
SIGMA 0.

END

EXIT

8.6 UCOAX_BELT Input

TITLE
Unstructured 3D coax with distributed belt source, e-line integral observers,
and ABC boundaries on end caps

UNSTRUCTURED TD ELECTROMAGNETICS
formulation, second order
$ pec specifications must come first if they will touch abc, ibc, etc.
pec b, sideset 8
pec b, sideset 9
abc bc, sideset 11
abc bc, sideset 12
observer, edgeset 151, direction, x -1. y 0. z 0.
observer, edgeset 152, direction, x 0. y 0. z 1.
source, sideset 14, gaussian, scale 1. width 1.e-11 peaktime 5.0e-11 direction, x 0.y 1. z 0. length
0.0005

BLOCK 1
MATERIAL 1
END

GRADUAL STARTUP FACTOR 1.0
END

EXODUS EDGE SETS (151 152)
TERMINATION TIME 1.0e-11

aztec

solver, cg
precond, jacobi
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output, none

tol =1l.e-12
polynomial order, 1
end
units, si

EMIT SCREEN, CYCLE INTERVAL =1
EMIT PLOT, CYCLE INTERVAL =2
PLOT VARIABLE

ELECTRIC FIELD
END

MATERIAL 1
model 1
END

MODEL 1 SIMPLE ELECTRICAL
EPS 2.2
MU 1.
SIGMA 0.

END

EXIT
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9.0 Appendix B: Field Solver Options for PIC Simulations

An important issue for PIC simulations is the very high frequency, short wavelength
noise (® ~ 1/At, k ~ 1/Ax) generated by particle fluctuations, driven for the most part by
particles making cell transitions. The most direct way to reduce the fluctuation level is to
reduce the cell size and timestep, and use more particles per cell. Clearly, this is often
impractical. An alternative approach is to use a field solver that provides frequency-
dependent damping: very low (ideally zero) at physical frequencies of interest, and
increasing as f— 1/At. Emphasis now has two field solver options with damping, based
on well-known algorithms for PIC on structured grids: the Godfrey “time-biased”
algorithm [26][27], and the Friedman algorithm [28].

9.1 The Godfrey Field Solver

Godfrey generalized the Newmark time integration that is shown in Equation 17 to
include time weighting on the [S] term,

Ent1_2E21+En;1 Eni—l_Enzl . .
[T] > + [Bl——; +[S)(ayE" E 1+ apE + agE" ) + F] =0
At t (B1)

This results in an equation that corresponds to Equation 18 in the main text,

E"tl_o2E" 4+ E" 14

=0.

4At([B] + (2ay + ay)At[S])E" + (- [B] + (1 - (2ay + ay))At[S])E"~ L4 AtF))
4[T] + 2At[B] + 4a,At*[S]

(B2)

It should be noted that this same weighting could also be include in F] to completely time
weight the source terms for this second order update, but this would involve a implicit
update for all the particle to get the future time, n+1, for the currents. This step is not
done at this time. To maintain second order accuracy, ® T %+ @ = 1. to be energy

: s A = A, i ai=4daa :
conserving (symplectic), “1 ~ “3; and to be unconditional stable, “2 193, This leads to

_1 _1 _1
the Newmark condition of 1~ [p0="/pandas="/ 4. For the filtering, the symplectic
condition (%17 @3) is relaxed and Equation B2 can be simplified to

E"tlo2E" 4+ E" 14

s (IB] + 2,Ja; AL[S])E™ + (- [B] + (1 - 2,Jar1) At[S])E™ ™! + AtF])
t
4[T] + 2At[B] + 4a,At*[S]

=0.

(B3)
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Figure B1 shows the real and imaginary part of the dispersion for various values of %1,
From this figure one can conclude that the practical range of *1varies of V4 to a value of 1.
For a value of 1 = 1/2, this field solve update corresponds to the Friedman filter (Section

a1=0.25, Courant factor=1.
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9.2) with at value of 6=2.

Figure 6 . Godfrey numerical dispersion for various values of %1,

9.2 The Friedman Field Solver

The Friedman solver is based on a digital filtering scheme developed for an implicit
particle advance scheme (i.e. where the electric field used to advance the particles
depends on the final position of the particle). To adapt this to an implicit field solver, we
first consider the simple 1-D wave equation in vacuum,

(B4)
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This equation is finite differenced for £ = E(jAx,nAt)using

n+l n n-1 I
ET 2B BT agel g O [1 ) | (B5)
At D) 2 2

where the j subscript on £ has been dropped for simplicity,

vop o = 2F +F
J T sz

(B6)

is the spatial differencing operator, 0 < <1 is an adjustable parameter controlling the
magnitude of the damping, and

E" = (1 —EJE”‘I 25 (B7)
2 2

is a recursive lag-average of E over all previous timesteps. For a plane wave solution of
the form Egexp[i(kx-wt)], this differencing scheme has the dispersion relation

1-a)’(2-9
( 052) ( 4)2—41/2 sinz(kﬂ):—[\, (BS)
a +1-6 2

where a = exp/-iwAt], and v = cAt/Ax is the Courant number. Eq. (B6) is a cubic
equation for a(k), and analysis shows that the scheme is unconditionally stable for all
values of v, and is highly dispersive and strongly damped when A >> 1. For long
wavelengths, as 4 — 0, one of the roots, w(k) = w,+iy, is a weakly damped physical
solution,

o, /@, =1- o} AP[1/(4—-20)—1/24] + ... (B9)
ylw, =—0/22—-0) 10} AL +... (B10)

where @y = ck. is the exact frequency. Eq. (B8) shows that y ~ k%, meaning that damping
of long wavelength modes drops off very rapidly.

To apply this algorithm to Emphasis, we replace the Newmark-Beta term in Eq. (17) with
a form corresponding to the RHS of Eq. (B3),

[S]%{E"” +§E” +(1-§)E”‘2} . (B11)
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This changes Eq. (18) into the form
EMtl o2y El 4

(1B1+ (1 + 9/4)At[S])E" - (18] + At[S]/Z) +ae((S1C /- 2/ D2 + aeF))
4At = 0.
4[T] + 2At[B] + 2At*[S]

(B12)

The algorithm requires the extra fields E , which are updated after the matrix solve, just
before E" is advanced to the new time level.
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10.0 Appendix C: Port Source Implementation

The port source contribution is based on an adaptation of a waveguide boundary
condition due to Jin [29]. The total field in a waveguide is expressed as a superposition of
incident and reflected TE, waves and manipulated into a form mimicking the boundary
condition of the third kind,

1. - ,\ n - -
—nx (VXE)+ jknx (nXx E)y=10U

r

The U generated by this exercise takes the form

In accordance with the variational formulation functional term (e.g. Jin Eq. 8.82)

f_E- Uds

Sp ort

and converting to the time domain, this leads to the following term being added to the rhs
of equation (15):

-2 W€, _ aEinc -2 & aFinc
f w,;- ds = f — =W, ds
cu, ot s c |u, ot

Sp ort port
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