
SANDIA REPORT
SAND2019-8197
Printed July 2019

EMPHASISTM/Nevada
Unstructured FEM Implementation
Version 2.1.3 

C. David Turner, Timothy D. Pointon, Keith L. Cartwright

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 
and Livermore, California 94550



Issued by Sandia National Laboratories, operated for the United States Department of Energy by 
National Technology & Engineering Solutions of Sandia, LLC.

NOTICE:  This report was prepared as an account of work sponsored by an agency of the United States 
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, 
nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, 
or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represent that its use would not infringe 
privately owned rights. Reference herein to any specific commercial product, process, or service by 
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its 
endorsement, recommendation, or favoring by the United States Government, any agency thereof, or 
any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily 
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available 
copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov
Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.gov
Online order: https://classic.ntis.gov/help/order-methods/

2

mailto://reports@osti.gov
http://www.osti.gov/scitech
mailto://orders@ntis.gov
https://classic.ntis.gov/help/order-methods/


SAND2019-8197
Unlimited Release
Printed July 2019

EMPHASISTM/Nevada
Unstructured FEM Implementation

Version 2.1.3

Description, Verification, and Validation

C. David Turner, Timothy D. Pointon, Keith L. Cartwright

Electromagnetics and Plasma Physics Analysis

Sandia National Laboratories
P. O. Box 5800

Albuquerque, NM 87185

Abstract

EMPHASISTM/NEVADA is the SIERRA/NEVADA toolkit implementation 
of portions of the EMPHASISTM code suite. The purpose of the toolkit 
implementation is to facilitate coupling to other physics drivers such as 
radiation transport as well as to better manage code design, implementation, 
complexity, and important verification and validation processes. This 
document describes the theory and implementation of the unstructured finite-
element method solver, associated algorithms, and selected verification and 
validation.
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1.0 Introduction

EMPHASIS is a suite of codes for solving Maxwell’s equations in a full-field sense, i.e., 
no approximations. The major codes in the suite include EIGER, QUICKSILVER, and 
VOLMAX. EIGER is a frequency-domain code and is moving into the SIERRA 
framework. QUICKSILVER is a rectilinear, structured mesh, Finite-Difference Time-
Domain (FDTD) Particle-in-Cell (PIC) code which is moving into the NEVADA 
framework. VOLMAX is an unstructured, Finite-Element Method (FEM) code (with 
hybrid FEM/FDTD capability) whose implementation into the NEVADA framework is 
the subject of this document.

The purposes of moving a code under a framework such as NEVADA are many. At the 
highest level, these include Configuration Management (CM), Verification & Validation 
(V&V) tools and processes, and parallelization with domain decomposition. The 
framework also provides a basic FEM backbone, access to a large, parallel linear system 
solver such as AZTEC, and basic parsing and I/O. The framework also simplifies the 
coupling of different types of physics.

The decision as to which framework to follow was not an easy one. Many factors [1] 
were considered and soon the NEVADA framework emerged as the choice for 
implementation of the time-domain portion of EMPHASIS. The primary factor was the 
choice of NEVADA as the Sandia “computational physics” framework. For 
electromagnetic applications, this includes normal environments (ElectroMagnetic 
Interference (EMI), ElectroMagnetic Radiation (EMR), ElectroMagnetic Compatibility 
(EMC)), abnormal environments (lightning), and hostile environments (System-
Generated ElectroMagnetic Pulse (SGEMP)) as defined by the Stockpile-to-Target 
Sequence (STS). SIERRA is the Sandia computational mechanics framework, including 
the mechanical effects of these environments.

The implementation of the FEM EMPHASIS solver into NEVADA is not simply an 
effort to port Fortran77-based VOLMAX to C++, nor is it wrapped Fortran77. The code 
has been completely rewritten in C++ starting from the basic equations and/or algorithms 
implemented in VOLMAX. The FEM EMPHASIS solver as implemented in NEVADA 
is referred to as Unstructured Time-Domain ElectroMagnetics (UTDEM).

This document describes the basic electro-magnetic theory, algorithms, and 
implementation of Release 2.1.0 of UTDEM. It is not meant to be a user manual, 
although examination of the input files for the Verification section, given in the 
Appendix, along with the remainder of this document would provide a knowledgeable 
EM code user with a significant head start toward using the code.
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2.0 Fundamental Physics

2.1  Full-field Electromagnetics

The relevant Maxwell equations are

(1)

(2)

(3)

(4)

where      is the electric field intensity,      is the magnetic field intensity,  is the volume 
charge density,      is the volume current,  is the conductivity,  is the permittivity of the 
medium, and  is the permeability of the medium.

Two basic formulations of the solution of Maxwell’s equations have been implemented. 
These are the unconditionally stable, second-order formulation and the coupled, first-
order formulation. The first-order formulation is conditionally stable and must abide by a 
Courant-type condition for stability.

For the second-order formulation, taking the curl of equation (1) and substitution of 
equation (2) into the resulting equation yields

(5)

Rearranging,

(6)

where r is the relative permittivity, r is the relative permeability, 0 is the permittivity of 
free space, 0 is the permeability of free space, and   is the speed of light.𝑐 = 1/ 𝜇0𝜀0

For the coupled first-order formulation, no second-order equation is formed but instead 
the two curl equations (1) and (2) are solved coupled in an FDTD leap-frog sense.

3.0 Numerical Solution and Implementation

3.1  FEM Solution for the Second-order Formulation

The FEM formulation of the solution of equation (6) proceeds as follows via the method 
of weighted residuals and Galerkin’s method. The residual is
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(7)

and the weighted residual for the ith weighting function in element e is

(8)

where       is the ith weighting function. Invoking Green’s first theorem, write

(9)

so the residual becomes

(10)

Using the Sommerfeld radiation condition,

(11)

the last term in equation (10) becomes

(12)

after application of the vector identity

(13)

The electric field is expanded in the element using the trial functions as follows:

(14)

where m is the number of unknowns on the element and        is the jth trial function and        
is an unknown coefficient. The trial functions here will turn out to be the edge basis 
functions and the coefficients the edge field projections.
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Applying Galerkin’s method by setting the trial and weighting functions equal, 
substituting for       from equation (14), and setting the residual to zero yields the 
following system

(15)

where E is the coefficient vector and the entire equation has been multiplied through by 
0. In matrix form after assembly,

(16)

The time advance of the above system utilizes a general three-point recurrence scheme 
for second-order equations [2][3]. This advancement scheme can also be obtained by 
applying Newmark-Beta approximations for the derivatives in equation (16) as follows:

(17)

which after some algebra, can be written as

(18)

or,

(19)

The last term, a sparse, symmetric, positive-definite linear system of equations,

(20)

is solved each time step and equation (19) applied to obtain En+1. If the constitutive 
parameters and the mesh are not varying with time, the matrix is filled once and only the 
right hand side is filled each time step. The filling of the right hand side is facilitated by 
storing the appropriate matrices multiplying En and En+1 in y from equation (18). The new 
right hand side is then obtained by matrix multiplication. Note that in the implementation, 
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the matrix [M] and rhs [y] terms in equation (20) have been multiplied through by c2 for 
convenience.

Although the second-order formulation is unconditionally stable, practical limitations 
exist, primarily the fact that the matrix becomes more ill-conditioned as the time step is 
increased. Solving the system of equation (20) using conjugate-gradient (CG) techniques, 
therefore, requires increasingly more iterations as the time step increases.

3.2  Full SPICE Circuit Coupling

3.2.1  Implementation: Second-Order Formulation

Implementation of full SPICE-FETD circuit coupling follows that in [4]. The matrices in 
equation (16) must be partitioned to separate the edge unknowns associated with SPICE 
loads (subscript c) from all other edges (subscript e) as follows,

(21)

After application of the Newmark-Beta time advance, equation (21) can be written as the 
following two equations where for convenience the vector braces have been left off the E 
terms:

(22)

(23)

Solving equation (22) for Ee
n+1 and substitution into equation (23) yields
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(24)

Collecting terms and letting

(25)

(26)

(27)

(28)

(29)

equation (24) becomes

(30)
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where, from equations (15) and (16),

(31)

Here, the matrix terms in equation (30) and (31) have not been multiplied by 0 as they 
were for equations (15) and (18). Extracting the lumped-edge load current from the 
integral in equation (31),

(32)

where Ic is the lumped-element edge current. Note that the first bracketed term on the 

right hand side of equation (30) is proportional to the solution of the non-SPICE edges 

without consideration of the SPICE edges,             :

                               (33)
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Equation (33) has the form

(34)

which can now be written as

(35)

Defining

(36)

then

(37)
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In the time advance of equations (36) and (37), the equations are assumed centered at 

time n and Newmark-Beta approximations are used. For equation (36),

(39)

In equation (37), which will be solved using SPICE, the Newmark-Beta approximation is 

used for In
d,

(40)

after substitution from equation (39) but returning to the continuous form for Ec. 

Equation (37) (still centered at n) now becomes

(41)
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2
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An equivalent circuit representing equation (41) for a single SPICE-loaded edge is shown 

in Figure 1 . The [Ld]-1 Ec term is treated as a voltage-dependent current source. In 

general, the matrices [Cd], [Gd], and [Ld]-1 are not symmetric. Consequently, additional 

dependent sources are necessary in the equivalent circuit if more than one SPICE load 

exists. An example for two SPICE loads is shown in Figure 2 , shown without the [Ld]-1 

Ec term sources for simplicity.

Figure 1 . Equivalent circuit for FETD-SPICE interface with single load.
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n 2Id

n 1– 2t F' Ld
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 + + 
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Figure 2 . Equivalent circuit for FETD-SPICE interface with two loads.

The solution approach for each time cycle is as follows. First,              is advanced as if 

no SPICE edges exist. Using previous values of Ee
n-1, Ee

n, and the now advanced              

,  F’ is computed. Then, with Id
n, and Id

n-1, equation (41) is solved using SPICE and the 

drive circuit as in Figure 1  returning the advanced SPICE-edge voltage Ec
n+1. Now, Id

n+1 

is advanced using equation (39). The final step is to correct the non-SPICE edges for the 
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Id1

Id2

C11 C12

C21 C22

E· c1

E· c2

G11 G12

G21 G22

Ec1

Ec2

Ic1

Ic2

+ +=

Id1 C11E· c1
C12
C22
--------Ic22 G11Ec1

G12
G22
---------Ig22 Ic1+ + + +=

Id2 C22E· c2
C21
C11
--------Ic11 G22Ec2

G21
G11
---------Ig11 Ic2+ + + +=

Ẽe
n 1+

Ẽe
n 1+



existance of the SPICE-edges. This is accomplished using equation (22) and the just 

advanced Ec
n+1 along with previous values Ec

n and Ec
n-1 to solve just the Ec terms and add 

them to the               solution vector.

Note that when the Ec results are used in equation (22), a solve is required. This solve can 

be accomplished using the previously computed [MTec], [MBec], and [MSec] matrices as 

follows:

(42)

The Newmark-Beta approximations for the derivatives of Ec are used in equation (42),

(43)

(44)

(45)

These correction terms can be thought of as a part of F in equation (18). Consequently, 

they must be scaled by 4t2 to agree with the scaling in the original system.

Referring to equations (25)-(29), if there are n normal edges and m spice-loaded edges, 

then [Mce] is m  n, [Tec], [Bec], and [Sec] are n  m while [Mee]-1 is n  n, making [MTec], 

[MBec], and [MSec] all n  m matrices. If there is a single SPICE-loaded edge in the space, 

then the [M]‘s are n  1 vectors and equation (30) is a scalar equation for a single 

unknown Ec.

The above implementation has been shown to be unconditionally stable for a single 
SPICE-loaded edge. However, multiple SPICE-loaded edges exhibit a slow instability the 
source of which has not been identified. Therefore, the code is presently limited to a 
single SPICE-loaded edge.
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n 1+
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d2Ec

dt2----------- MBec
dEc
dt

--------- MSec Ec+ + +=

d2Ec

dt2-----------
Ec

n 1+ 2Ec
n– Ec

n 1–+

t2------------------------------------------------------=

dEc
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---------
Ec

n 1+ Ec
n 1––

2t
------------------------------------=

Ec
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n 1+ 2Ec
n Ec
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-------------------------------------------------------=
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3.2.2  Implementation: First-Order Formulation

The SPICE-FETD interface has not yet been implemented for the first-order formulation.

3.3  Artuzi Late-time Stability Formulation

It is well known that the wave equation (6) is subject to linearly increasing spurious 
solutions [5]. This “instability” is normally only noticed for simulations lasting a very 
long time with a large number of time cycles. It can often be controlled using a very 
small solution tolerance for the conjugate-gradient solve in equation (20). However, 
when attempting to utilize the inherent unconditional stability of the second-order 
formulation to reach the quasi-static or very low-frequency regime the issue can often 
been seen and not easily controlled.

3.3.1  Implementation: Second-Order Formulation

Artuzi [5] reformulates the wave equation in terms of the integral of E such that the 
resulting equation does not support the spurious solution. Following [5], the formulation 
differs from the previously described second-order formulation in that rather than storing 
the vectors En+1, En, and En-1 the relevant vectors are un, En+1/2, and wn+1. Equation (16) 
becomes

(46)

(47)

Therefore,

(48)

Manipulating equation (46) using Newmark approximations and

un En 1 2+ En 1 2––
t------------------------------------------=

, 
En 1 2+ wn 1+ wn–

t--------------------------=
, so 

un wn 1+ 2wn– wn 1–+

t2------------------------------------------------=
,

(49)
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T
t2

2

d
d w B  t

w S w F + + + 0=

w E td
–

t

=

u t
E

t2

2



 w= =E t
w=

T
wn 1+ 2wn wn 1–+–

t2------------------------------------------------ B w
n 1+ wn 1––

2t
-------------------------------- S w

n 1+ 2wn wn 1–+ +
4

------------------------------------------------- F + + + 0=



(50)

(51)

(52)

(53)

(54)

(55)

Now, the system becomes

(56)
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T un B t
2--------------wn 1+ wn 1––
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2--------------2wn

t2--------- B t
2--------------2wn

t2---------
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2

--------------2wn 1–
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2

--------------2wn 1–
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4
------------------------------------------------- F 

+

+ + 0=
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2--------------wn 1+ 2wn wn 1–+–
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4
------------------------------------------------- F 
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+ 0=
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2--------------un B w

n
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t-------------–
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----------------wn 1+ 2wn wn 1–+ +

t2------------------------------------------------- S t2
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----------------2wn
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4
----------------2wn

t2---------+– F 

+ + +

+ 0=

T un B t
2--------------un B w

n
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n 1–
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S t2
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t2------------------------------------------------ S t2

4
----------------2wn

t2--------- S t2

4
----------------2wn

t2---------+ + F 

+ + +

+ 0=

T un B t
2

--------------un S t2

4
----------------un B w

n

t
------ B w

n 1–

t
-------------– S wn F + + + + + 0=

T un B t
2

--------------un S t2

4
----------------un B En 1 2– S wn F + + + + + 0=

4T 2tB t2S+ + un 4Fn– 4BEn 1 2– 4Swn––=



So the system matrix looks exactly as it did before in equation (18), only the rhs changes 
while now solving for un directly. Once obtained, it is used to update the others as

(57)

Scaling factors change slightly from before and note that the edge projections (E’s) are 
now one-half cycle advanced. Most boundary conditions and sources are affected as well.

Even though this scheme can improve the late-time stability performance, it often does 
not completely eliminate it. Keying off a statement by Artuzi [5] that the spurious 
solution is isolated in the Artuzi variable w , eliminating the term 4Swn from equation 
(56) has some interesting implications. Equation (56) without losses for simplicity is

(58)

after eliminating the 4Swn term. This corresponds to a continuous equation of the form

(59)

To have a valid Ampere’s law, this implies that in this scheme “H” is now

(60)

So, a new “low-frequency” H is now defined by a derivative of the curl of E rather than 
an integral. As odd as this seems, it is mathematically sound and indeed does produce the 
correct magnetic fields in the low-frequency limit. It is important to remember that this 
only applies for low frequencies, where the wavelength is much, much, much larger than 
the objects of interest.

3.3.2  Implementation: First-Order Formulation

The Artuzi correction has not been implemented for the first-order formulation.

3.4  FEM Solution for the First-Order Formulation

In the expansion for the electric field in equation (14), the         represent edge basis 
functions and m is the number of edges on the element. For the first-order formulation, a 
similar expansion for magnetic field is developed using face basis functions,

(61)
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En 1 2+ En 1 2– tun+= wn 1+ wn tEn 1 2++=

T t2

4
--------S+ 

  un Fn–=

t2

4
-------- 1


---

t
E 

 – 
t
E J+=

HELF
t2

4
--------

t
E–=

H Wj
fHj

j 1=

n

=

Wj



where n is the number of faces on the element, the         represent the face basis functions, 
and Hj is the magnetic field scalar projection through the element face. Following [6], 
letting e] represent the vector of unknown edge projections on elements and b] represent 
the vector of unknown face projections, a discrete analog of equation (1) can be written,

(62)

where [C] is a sparse matrix in which the non-zero elements are only        . [C] has 
number-of-faces rows and number-of-edges columns and represents the circulation of 
electric-field edge projections about magnetic-field face projections, i.e., Faraday’s law.

For the other Maxwell curl equation (2), Ampere’s law, a classic weak form can be 
derived like the following:

(63)

where t[C] is the transpose of [C], []-1, and [] are the “mass” matrices

(64)

(65)

and [] is the matrix

(66)

Equations (62) and (63) lead to the following advancement equations:

(67)

(68)

where the inverse of (2[] + t[]) is required and can be obtained using techniques 
suitable for sparse, symmetric, positive-definite matrices such as CG.

As noted previously, the first-order formulation is conditionally stable and must abide by 
the Courant condition.
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3.5  Vector Finite Elements

3.5.1  Edge-based Vector Basis Functions for Tetrahedra

To evaluate the elemental integrals in equations (15) and (64)-(66), the arbitrary 
tetrahedral element is transformed to the corresponding master element as shown in 
Figure 3 . This transformation is performed through the Jacobian of the transformation. 
All integrals are performed numerically using Gauss-quadrature integration over the 
master element. The assumed edge and face orientations are shown in Figure 3 for edges 
E1-E6 and faces F1-F4.

The Lagrangian interpolation functions for a general, linear element are

(69)

for j=1, 2, 3, 4, where the coefficients aj, bj, cj, and dj are determined by assuming a 
nodal-based scheme and generating four equations based on the unknown value at each 
node. V is the element volume.

For the master tetrahedral element, the interpolation functions simplify to

(70)

(71)

(72)

(73)
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Lj x y z   1
6V
------- aj bjx cjy djz+ + + =

G1      1 – – –=

G2      =

G3      =

G4      =









Figure 3 . Vector tetrahedral element.
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The global to local coordinate transformation between the arbitrary and the master 
tetrahedron is given by

(74)

(75)

(76)

Here, nodes 1, 2, 3, and 4 correspond to the corners of the tetrahedron as appropriate for a 
linear tetrahedron. Using the chain rule of partial differentiation

(77)

(78)

(79)

or,

(80)
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which relates the gradient of G between global and local coordinates through the 
Jacobian matrix [J]. Here,  is the gradient of G in the local (master) coordinates and ∇̃𝐺𝑖

Gi is the gradient of G in the global (arbitrary) coordinates.

[J] can be evaluated by taking the partial derivatives of equations (74)-(76) as

(81)

The 6V term in equation (69) is given by

(82)

and the inverse transformation for the gradient is given by

(83)
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For the edge-based vector master tetrahedron, the expansion or basis functions are 
derived from the Lagrangian interpolation functions as follows [6][7]:

(84)𝑁̅𝑖 = 𝐺𝑖1∇𝐺𝑖2 ‒ 𝐺𝑖2∇𝐺𝑖1

for i = 1-6, where i is the edge number and i1 and i2 are the nodes associated with the ith 
edge.

Using some vector calculus, the curls of the edge basis functions are given by

(85)

These basis functions are used to expand the electric field within an element as in 
equation (14) with the       replaced by      . The unique features which make this type of 
basis function ideal for electromagnetics simulation are 1) the fact that        has a 
tangential component only along the jth edge and none along all the other element edges, 
thus guaranteeing the continuity of tangential electric field across all element edges, and 
2) each       is divergence free, satisfying                   within the element.

3.5.2  Hierarchical Vector Basis Functions for Tetrahedra

The edge basis functions in equation (84) are referred to as Whitney elements with a 
single degree of freedom per edge. Alternatively, they are described as 0th order or 1st 
order mixed in that they are constant along an edge and linear across the element. This 
results in more constant than linear behavior and consequently only a linear spatial 
convergence rate. Addition of six additional basis functions in a hierarchical sense brings 
the element to full 1st order and the solution to quadratic or 2nd order spatial convergence. 
However, this adds an additional degree of freedom on each edge and consequently 
doubles the number of unknowns in the system.

The next six hierarchical basis functions are defined by [8]

𝑁̅𝑖 = 𝐺𝑖1∇𝐺𝑖2 + 𝐺𝑖2∇𝐺𝑖1

for i = 1-6, where i is the edge number and i1 and i2 are the nodes associated with the ith 
edge. The curls of these six basis functions are identically zero.

3.5.3 Face-based Vector Basis Functions for Tetrahedra

For the first-order formulation, the face-based tetrahedral basis functions are required. 
They are given by [6]

(86)

where i is the face number and i1, i2, and i3 are nodes associated with the i’th face.
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3.5.4 Edge-based Vector Basis Functions for Pyramids

Similar to the tetrahedron, the arbitrary pyramid is transformed to the master pyramid as 
shown in Figure 4 . The assumed edge and face orientations are also shown in Figure 4  
for edges E1-E8 and faces F1-F5.

Also like the tetrahedron, the vector basis functions for the pyramid are derived from the 
nodal expansion functions [9][10]. Using the following transformation,

(87)

(88)

(89)
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u3 1 –=

u2 y 1 u3– =
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





Figure 4 . Vector pyramidal element.
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the nodel-based interpolation functions for the pyramid are

(90)

(91)

(92)

(93)

(94)

From these, the following edge-based vector basis functions for the master pyramid are 
derived:

(95)

(96)

(97)

(98)

(99)

(100)

(101)

(102)
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The curls of the edge basis functions are given by

(103)

(104)

(105)

(106)

(107)

(108)

(109)

(110)

where the      are unit vectors in the direction of each master pyramid edge.

3.5.5 Face-based Vector Basis Functions for Pyramids

Consistent with Figure 4 , the face basis functions for pyramids are given by [9]

(111)

(112)

(113)
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Nf
2 0.5 G5n̂5

G1G5n̂3
1 G5–

------------------- 2 G4
G4

1 G5–
---------------–– 

  n̂2–+ 
 =

Nf
3 0.5 G5n̂6

G2G5n̂2
1 G5–

------------------- 2 G1
G1

1 G5–
---------------–– 

  n̂4–+ 
 =

n̂i



(114)

(115)

3.5.6 Edge-based Vector Basis Functions for Hexahedra

Like the tetrahedron and pyramid, the arbitrary hexahedral element is transformed to the 
master hexahedron as shown in Figure 5 . The assumed edge and face orientations are 
also shown in Figure 5  for edges E1-E12 and faces F1-F6.

The edge-based master basis functions for the hexahedron may be written in the 
following form [11]:

for edges || ,

(116)

for edges || ,

(117)

for edges || ,

(118)

where (i, i) are the coordinate values of (, )  on edge i and similarly for the other 
edges. These vector basis functions do guarantee tangential field continuity across 
element edges and faces, but are not divergence-free as are those for the tetrahedron. If, 
however, the hexahedral element is not distorted but is a rectangular brick, the basis 
functions are indeed divergence-free. EMPHASIS’s use of hexahedral elements will, in 
fact, be only in the hybrid-mesh transition region where they will be rectangular bricks.

The curls of the edge basis functions are

for edges || ,

(119)

for edges || ,

(120)
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





Figure 5 . Vector hexahedral element.
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for edges || ,

(121)

Note that the terms in these curl expressions are, in fact, the face basis functions given in 
the following section and therefore can be obtained from them.

3.5.7 Face-based Vector Basis Functions for Hexahedra

Consistent with Figure 5 , the face basis functions for hexahedra are given by

(122)

(123)

(124)

(125)

(126)

(127)

where the i, i, i are the coordinate values of , ,   for the appropriate face, i.e., face 1 
is in the (, ) plane and i is its location in the  direction, etc.

3.6  Elemental Integral Evaluation for FEM Solution

Although for tetrahedra the elemental integrals in equations (15) and (64)-(66) can be 
evaluated analytically, instead the Jacobian transformation is used to transform all 
integrals to local coordinates on the master element. Integrals are then always performed 
on this master element using gaussian quadrature, simplifying and generalizing the code. 
This becomes very helpful when other elements are desired, such as pyramids and 
hexahedra, because the integrals cannot be done analytically on these elements. There is 
little or no time penalty in doing all integrations numerically because often the analytic 
expressions are themselves complicated and require many floating point operations to 
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complete. There is no accuracy penalty because by choosing the correct number of gauss 
points, the integrals are exact for the polynomial basis functions of interest here.

For the aforementioned elemental integrals, three forms are required

(128)

(129)

(130)

Transforming to the master element, these become, using equations (83), (84), and (85),

(131)

(132)

(133)

where in equation (133), the surface S is made up of those element faces where the term 
applies, [Js] is the Jacobian with respect to that surface, and      is the normal to the 
surface. The remaining term in equation (15) can be evaluated similarly,

(134)
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3.7  Wires

3.7.1  Transmission-line Model

The sub-cell modeling of wires generalizes a well-known finite-difference, transmission-
line scheme [12]. The basic, 1-D transmission-line equations applied to the wire are

(135)

(136)

where I is the wire current, V is the wire voltage defined in the transmission-line sense 
(across the “line”), Cw is the capacitance per unit length of the wire, Lw is the inductance 
per unit length of the wire, both defined in the transmission-line sense,  and  are the 
conductivity and permittivity, respectively, of the medium surrounding the wire,      is the 
electric field driving the wire, Vinc is an applied voltage source on the wire, and Rw is a 
discrete resistor on the wire.

Taking the partial derivative of equation (135) with respect to l and substituting equation 
(136) yields the following 2nd order form:

(137)

3.7.2  Finite-Element Solution

Applying Galerkin’s method of weighted residual, where

(138)

and the weighted residual for wire element e is

(139)
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where the first term has been integrated by parts. Setting the trial functions equal to the 
weighting functions, with

(140)

and setting the weighted residual to zero yields the following system

(141)

where I is the coefficient vector and the second term,               ,

from the integration by parts has been discarded because it vanishes everywhere except at 
a boundary (end of wire), where there it also vanishes either because either a Dirichlet 

boundary condition  (I = 0) or a Neumann boundary condition (  ) is applied there 
∂𝐼

∂𝑙 = 0

[13].

Applying a centered-difference approximation for the time derivatives yields the 
following,

(142)

where the elemental [T], [S], and [F] matrices are derived as follows. The linear, 1-D 
expansion functions are

(143)

(144)
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where x1
e and x2

e are the local element endpoints and le is the element length. Using 
simple two-point trapezoidal integration,

(145)

the elemental matrices become

(146)

(147)

and

(148)

Note that the matrix to be inverted, [T], is diagonal so the solve is a direct one.

3.7.3  Implementation: Second-Order Formulation

Implementation of the sub-cell wire algorithm involves several heuristic techniques for 
evaluating the wire parameters and drive terms in equation (137). These include the wire 
inductance and capacitance per unit length, Lw and Cw, the permeability, permittivity, and 
conductivity surrounding the wire, , , , and the electric-field drive for the wire,       .

The inductance per unit length for the wire is defined in a “coaxial” sense as
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(149)

where  is an “average” permeability around the wire,  is an “average” distance between 𝑑̅
the wire and its “driving elements”, and a is the wire radius. Similarly, the capacitance 
per unit length for the wire is defined as

(150)

where  is an “average” permittivity around the wire. These quantities are defined for 𝜀̅
each segment of the wire as the wire passes through an arbitrary mesh topology.

The “driving elements” for the wire are those elements surrounding the wire path which 
are “1 cell distant” from the wire. In other words, those elements which connect to nodes 
which connect to wire nodes through an element edge, EXCEPT for those nodes OR 
elements touching the wire. In this way, an annulus of elements is defined surrounding 
but not touching the wire which supply the drive.

The “driving elements” are also used to compute the “average” distance  in the 𝑑̅

following manner: Define a wire-current direction at each wire node, , as the unit vector 𝑙̂𝑖

connecting the mid-points of the two edges connected to the wire node. If the wire node 
is an end node, take the direction of the end edge as the wire-current direction. Also 
define a vector for each “driving element” from the wire node to the center of the driving 
element,     The “nodal average” distance is then defined as

(151)

where Ni is the number of driving elements for node i. The average distance used in 
equations (149) and (150) is from the wire segment, defined for the kth segment as

(152)

where        and       are the “nodal average” distances from the nodes at the ends of the kth   
segment.

The “average” permeability, permittivity, and conductivity surrounding the wire, , , and 𝜇̅ 𝜀̅
 are computed by simply summing these parameters for each element connected to the 𝜎̅

wire edge of interest and dividing by the number of these connected elements.

The explicit solve for advancing the wire current to In+3/2 in equation (142) is centered at 
time n + 1/2. Therefore, the electric-field drive for the wire should be centered there as 
well. This requires backstoring of the electric field for one cycle, leading to the following 
expressions for the drive terms in equation (137):
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(153)

(154)

where           and         are the average of the barycenter electric field over all of the 
“driving elements” at time n + 1 (most recent) and n (next-most recent), respectively. 
Since the driving elements are associated with wire nodes, the values for the end nodes of 
each wire segment are spatially averaged to obtain the final electric field drives for the 
wire segments used in equations (137) and (142).

The wire current is injected back into the volume field solution through the normal 
Maxwell current-source term from equation (6),

(155)

3.7.4  Implementation: First-Order Formulation

Wires have not yet been implemented for the first-order formulation.

3.7.5  Unconditionally Stable Modifications

The wire formulation described previously is conditionally stable and will consequently 
limit the size of the time step to the Courant step derived from the wire discretization.

An unconditionally stable formulation is described in [14] and it’s references. This 
formulation creates a tighter and symmetric coupling between the wire and the field 
drives. 

This formulation alters the form of the wire-drive term f in equations (137)-(139) and the 
corresponding volumetric field drive term in equations (15)-(18). For the wire drive, 
weak form,

(156)
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where         is a radial weighting function around the wire such that

(157)

where a is the wire radius and

(158)

for r < a and r > d. For a < r < d,

(159)

Expanding the electric field as before

(160)

the second term in the right-hand side of equation (156) becomes

(161)

For the field drive,

(162)

the current density from the wire is written as

(163)

Using the expansion in equation (140) for I,

(164)

so equation (162) becomes
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(165)

Note the similarities between equation (161) and equation (165). The volume integral 
over the element is the same and in the first term of equation (161) the derivative operates 
on edge projection Ej or wire current Ij, respectively. This suggests that now the wire 
currents at the wire nodes should be included in the edge unknown system and solved 
simultaneously. The following coupled system represents this,

(166)

where

(167)

(168)

3.7.6 Finite-Element Solution

From equation (166), dividing thru by Cw, the coupled wire equation is

(169)
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(170)
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(171)

(172)

(173)

(174)

Using Newmark approximations,

(175)

(176)

(177)

(178)

(179)

where bw is the right hand side of equation (177) and
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(180)Aw  4Tw  2tBw t2Sw

Also from equation (166), the coupled field equations are

(181)

 

T  ˙ ̇ E  B  ˙ E  0 Pw T ˙ I  S E  Fe  0

Again with Newmark approximations,

(182)

(183)

(184)

Further manipulation of equation (184) produces an equation similar to equation (18),

(185)

(186)

Substituting for In+1,

(187)

where

(188)A  4T  2tBt2S

and

(189)Ê  E n1  2E n En1
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Expanding equation (187),

(190)

(191)

(192)

where

(193)

Equation (192) is now solved for , followed by the normal time advance computing 𝐸̂
En+1, which is substituted back into equation (179) to compute In+1.

The desired matrix solution method is conjugate gradient (CG), therefore, the solution to 
equation (192) can be accomplished in two steps knowing that CG will multiply vectors p 
by A + H,

(194)

 

Awq  Pw p

(195)

In this manner, the matrix solution can be obtained without computing H directly. For 
multiple wires, the field equations become

(196)

 

T  ˙ ̇ E  B  ˙ E  0 Pw1 T ˙ I 1  0 Pw2 T ˙ I 2  ... S E  Fe  0

For two wires,

(197)

Substituting for In+1,
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(198)

(199)

where now

(200)

Two solves are now required for q’s,

(201)

 

Aw1q1  Pw1p

(202)

 

Aw2q2  Pw2 p

then

(203)

3.8  Slots

3.8.1  Transmission-line Model

The sub-cell slot model is the dual of the above wire formulation. The 1-D transmission 
line equations applied to the slot are

(204)

(205)

where I is the slot “current”, V is the slot “voltage” (“magnetic current”), Cs is the 
“capacitance” per unit length of the slot, Ls is the “inductance” per unit length of the slot,           
is the two-sided magnetic-field difference driving the slot, and  is the unit vector 𝑙̂
defining the slot-segment direction. These equations lead to the 2nd order form
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(206)

3.8.2  Finite-Element Solution

Applying Galerkin’s method, expanding the unknown slot voltage as

(207)

and applying central differencing,

(208)

The remaining steps are identical to those for the wire, with the matrices [T], [S], and [F] 
being identical to those for the wire.

3.8.3  Implementation: Second-Order Formulation

Implementation of the sub-cell slot algorithm is in most ways the dual of the wire 
algorithm. However, the heuristic techniques for evaluating the parameters in equation 
(206) differ in many cases. These include the slot inductance and capacitance per unit 
length, Ls and Cs, the permeability and permittivity inside and surrounding the slot, , , 
and the magnetic-field drive for the wire,          . For the present formulation, the slot is 
assumed lossless and therefore the slot conductivity is not needed.

The inductance per unit length for the slot is defined in a “dual coaxial” sense as

(209)

where  is an “average” permeability around the slot,  is an “average” distance between 𝜇̅ 𝑑̅
the slot and its “driving elements”, and a is the slot effective radius, which is a function 
of the slot width and depth [15]

(210)

Similarly, the capacitance per unit length for the slot is defined as

(211)
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where  is an “average” permittivity around the slot. These quantities are defined for each 𝜀̅
segment of the slot as it passes through an arbitrary mesh topology.

Unlike the wire, the “driving elements” for the slot include all elements immediately 
surrounding the slot including those which “touch” the slot. Also differing from the wire, 
two separate lists of driving elements must be kept for the slot. This is due to the fact that 
the “magnetic current” driving the slot is derived from the difference of the tangential 
magnetic fields on either side of the slot plane, which must be defined to be a perfect 
electrical conducting (PEC) plane in the FEM model. In order to facilitate the selection of 
the two drive “sides” of the slot, the material type of opposite sides of the slot PEC plane 
must be different.

The pseudo-PEC edges contributing the magnetic-current drive for the slot are those 
edges in the PEC plane connecting to a slot node. A list is also kept of these edges so that 
they may be reset in the FEM solution from their normal “set to zero” Dirichlet condition 
for a PEC to the appropriate slot-drive value.

Exactly like the wire, “slot-current” directions,      , are defined at each node. Using these, 
sub-distances for each node are determined using equation (151) for each of the two 
“driving-element” lists at the node. These two equation (151) results are then averaged 
together to obtain the “nodal average” distance. The average distance relative to the slot 
segment needed in equations (209) and (211) is then determined as for the wire, from 
equation (152). Some special storage and communication is required for these operations 
to succeed in a distributed parallel computing environment.

The average permeability and permittivity around the slot are computed exactly like those 
for the wire.

The explicit solve for advancing the slot voltage to Vn+2 in equation (208) is centered at 

time n + 1. Therefore, the magnetic-field drive for the slot should be centered there as 

well. The two-sided magnetic-field difference is obtained from the curl of the latest 

electric field using standard FEM interpolation. For each slot node,         is formed by 

averaging the barycenter          from the “driving elements” on each side of the slot plane. 

The two node contributions for each slot segment from each side are then averaged to 

form the total average          contribution from each side of the slot plane for each slot 

segment. Finally, the difference is taken between the         ‘s from each side to form the 

total          for each slot segment.

As alluded to earlier, the perturbation of the slot is fed back into the volume field solution 
by introducing the slot voltage into the volume solution as a Dirichlet boundary condition 
on the pseudo-PEC edges which surround the slot in the slot plane. This provides a 
“magnetic-current” drive, effectively providing a non-zero tangential electric field in an 
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otherwise PEC plane. This drive appears in Maxwell’s equations as a fictitious magnetic-
current source term, not shown in Section 2 of this document.

3.8.4  Implementation: First-Order Formulation

Slots have not yet been implemented for the first-order formulation.

3.9  Absorbing and Impedance Boundary Conditions

Absorbing or impedance boundary conditions are encompassed in the following term 
from equation (15),

(212)

where the speed of light, c, has been replaced by vp, the phase velocity in the material 
media of interest. The speed of light originally came from application of the Sommerfeld 
radiation condition, equation (11), applied to free space.

For application of a 1st order absorbing boundary condition,

(213)

For application as an impedance boundary condition, since                 , the same is written

(214)

In free space, for example, a “matched” impedance condition is achieved with

(215)

therefore

(216)

so the absorbing condition is recovered from the impedance condition.

Absorbing and impedance boundary conditions are presently functional only for the 
second-order formulation.
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3.10  Edge Loads

Edge loads are implemented in a somewhat ad-hoc manner using the expression for the 
contribution to the FEM system of a post with an impedance ZL in Jin [16] whose matrix 
contribution for a single edge is of the form

(217)

where Z0 is the impedance of free space. For a single resistor R on a single element edge, 
the contribution is

(218)

where c is the speed of light. This term consequently contributes to the first-derivative 
term in equation (16) and consequently [B] in equation (18), both matrix and rhs, for that 
edge only.

Similarly, for a single inductor L, the contribution is

(219)

which contributes to the constant term [S] in equations (16) and (18), both matrix and rhs. 
For a single capacitor C, the contribution is

(220)

contributing to the second-derivative term [T] in equations (16) and (18). Note that this 
term does not appear in the rhs, only in the matrix.

4.0 Verification

Verification determines whether the numerical model being implemented has been 
correctly coded. This normally consists of comparison with know analytic solutions 
requiring simple problems in separable geometries.

Since the unstructured FEM implementation of EMPHASIS within NEVADA closely 
follows the well-verified legacy code VOLMAX [17][18][19][20], the verification 
strategy for the basic electro-magnetics implementation is to make extremely detailed 
comparisons of EM simulations between the two codes. “Extremely detailed” means 
comparison of vector-field values, wire currents, and slot voltages down to near machine 
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precision. In this way, the argument is made that UTDEM is verified by extension of 
VOLMAX verification. For the 1.0 release of UTDEM, all algorithms were re-
implementations of existing VOLMAX algorithms. Reference [21] provides a summary 
of the full VOLMAX verification suite.

New algorithms implemented subsequently into UTDEM must and have been verified 
separately. This includes verification directed toward fundamental application areas such 
as Box- and Cavity-SGEMP. A separate document covers the Cable-SGEMP application 
[22].

To this end, several problems have been compared in this manner ranging from simple 
rectangular cavities to complex, arbitrary shaped cavities including wires, slots, and lossy 
material. These are described in the following sections. The corresponding 
EMPHASIS/NEVADA input files are provided in the Appendix. These also happen to be 
included in the UTDEM regression-suite.

All of these verification problems exercise only the second-order formulation. The first-
order formulation has not been fully integrated with the necessary ancillary tools and has 
not been fully exercised.

4.1  UCAVITY

This is a simple rectangular perfectly conducting cavity enclosure with free space inside, 
meshed using unstructured tetrahedra. The cavity is shaped somewhat like a shoe box. 
The source is a gaussian pulse applied directly to an electric-field edge projection interior 
to the cavity. The observer is another edge projection elsewhere in the cavity. This 
simulation tests the second-order formulation, the PEC boundary condition, the simple-
electrical material model, and the simplest possible source and observer. Being careful to 
perfectly match the time steps between the two codes, the results agree with VOLMAX 
to machine precision.

4.2  UCAVABC

This is the same geometry, mesh, material, drive, and observer as for the above 
UCAVITY problem. The difference is the PEC boundary condition defining the cavity is 
replaced with a simple 1st order absorbing boundary condition (ABC). This simulation 
tests the ABC along with further testing of the second-order formulation, etc. These 
results also agree with VOLMAX to machine precision.

4.3  UCAVABC_2MAT_LOSS

This is the same geometry, mesh, drive, observer, and ABC outer boundary condition as 
the above UCAVABC problem except that two different materials now exist within the 
cavity enclosure. The source is in one material and the observer is in the other. The 
materials are no longer simply free space, but have relative permeabilities and relative 
permittivities different from unity and have non-zero conductivities. This simulation 
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further tests the simple-electrical material model and the implementation of material 
parameters and volumetric loss into the FEM solution. Again, the results agree with 
VOLMAX to machine precision.

4.4  UCAVABC_WIRE

This is the same geometry, drive, observer, and ABC as the UCAVABC problem above 
but with a different tetrahedral interior mesh. A thin wire has been added along the length 
of the cavity near the center of the cross section. This wire also has a wire current 
observer defined on it. The material inside the cavity is reverted to all free space.

This simulation tests the thin-wire algorithm along with further testing previously 
verified implementations of the second-order formulation, ABC, etc. Both the interior 
field observer and the wire current agree with VOLMAX to machine precision.

This simulation has also been run replacing the field source with a wire current source, 
also producing machine-precision agreement with VOLMAX.

4.5  UCAVABC_SLOTS

This problem consists of two concentric rectangular boxes, or “shoe box within a shoe 
box”. The interior box is a PEC boundary with two slots defined on two different sides of 
the box. This box contains the same source and observer as did the previous problems, 
but with a different tetrahedral mesh. The two slots have different widths, small fractions 
of a typical edge length. Both slots have zero depth. The outer box has an ABC on its 
surface, and an additional field observer is added between the two boxes. Slot voltage 
observers are located on each slot, and the material everywhere is free space.

With both slots activated, both field observers and both slot observers agree perfectly 
with VOLMAX. If the slots are deactivated, as expected only the observer inside the 
inner cavity is nonzero, the observer between the boxes is identically zero, again in 
agreement with VOLMAX.

4.6  UCOAX_BELT

This geometry consists of two concentric cylinders with end caps, representing a section 
of coaxial transmission line. The interior is meshed with unstructured tetrahedra, all with 
a relative permittivity of 2.2, relative permeability of unity, and zero conductivity. PEC 
boundary conditions exist on the cylinders and ABC’s exist on the two end caps. The 
source is a short, “delta-gap” type source on the surface of the inner cylinder near one of 
the end caps. This source launches a wave down the coaxial line in a relatively clean 
manner except very near the source. Observers are two line-integral voltage observers 
defined radially between the two cylinders, at two different points along the line length.

This problem tests implementations of the “belt” source on a surface and the line-integral 
voltage observers.
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The simulation launches a short gaussian-shaped pulse down the line. This wave is 
detected by the two observer line integrals and agrees perfectly with VOLMAX. The 
ABC at the end of the line section does a good job of absorbing the pulse, preventing 
reflections. The simulation was also run with the ABC’s replaced by PEC’s. As expected, 
the pulse now reflects back and forth along the line “forever” since there is no loss.

Additional simulations were performed with the end-cap ABC’s replaced by impedance 
boundary conditions (IBC’s). Various values were tested including a “matched” 
condition, which reproduces the absorbing result exactly.

5.0 Validation

Validation determines whether the model being implemented correctly reproduces real 
physical phenomena for a specific application. This normally consists of comparison with 
carefully designed experiments to examine specific aspects of the code or with other 
trusted experimental results.

The legacy code VOLMAX, the origin of all of the algorithms described in this 
document, is also well validated against published experiments, analytical, and numerical 
results [17][18][19][20]. These include scattering from a perfectly conducting sphere, 
resonances of a cylindrical cavity, scattering from a thin wire, input admittance of a loop 
antenna modeled by a thin wire [17], excitation of loaded thin wires in cavities with thin 
slots [18], gas-discharge excitation of conical transmission-line antennas [19], and more 
loaded wires in cavities with slots [20]. Therefore, similar to verification, an argument 
can be made that UTDEM is validated by implication from VOLMAX validation. 
Reference [21] provides a summary of the full VOLMAX validation suite. New 
applications for UTDEM must be validated separately, such as SGEMP [23][24][25].

6.0 Code Documentation

UTDEM documentation of design and implementation is contained in special code 
comments recognized by the code documentation software Doxygen, which converts 
them to a set of Hyper-Text Markup-Language (HTML) files. This includes Unified-
Modeling Language (UML) like graphical design descriptions as well as detailed 
descriptions of class data and methods. In this way, documentation stays with the source 
code and therefore has a better chance of remaining up to date as changes are 
implemented.

This documentation can be built from a code checkout or release distribution. Intended 
primarily for the code developer, these pages should help navigate and understand the 
UTDEM implementation.
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7.0 Conclusions

The NEVADA-framework implementation of the unstructured FEM solver has 
demonstrated results which are identical to those of the legacy code VOLMAX with 
performance degradation of a factor of 2-3, and most of that can be traced to the CG FEM 
system solve itself. In return, great scalability has been achieved on distributed parallel 
computing platforms over the limited SMP scalability of VOLMAX, along with 
improved code design, configuration management, and V&V processes.
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8.0 Appendix A: Input Files for Verification Problems

The following are the input files for the verification problems described in the 
Verification section. They should provide the user with insight into usage and syntax for 
the UTDEM portion of EMPHASIS/NEVADA. As given, these will produce results very 
close to those of VOLMAX. To get machine precision agreement, the time steps must be 
synchronized exactly between the two codes. The input file for UCAVABC_SLOTS in 
Section 9.5 contains the keyword “CONSTANT TIME STEP” which is used to force the 
VOLMAX time step on UTDEM.

8.1 UCAVITY Input

TITLE
  Unstructured 3D cavity with edge source and observer

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
  pec bc, sideset 1
  observer, nodeset 16
  source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

  BLOCK 111
    MATERIAL 1
  END

  GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec
  solver,    cg
  precond,   jacobi
  output,    none
  tol        = 1.e-9
  polynomial order, 1
end

units, si

$
$------------------------------------------------------------------------
$                           P L O T T I N G
$------------------------------------------------------------------------
$ 
EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END

55



$
$------------------------------------------------------------------------
$                            M A T E R I A L S
$------------------------------------------------------------------------
$
MATERIAL 1
  model 1
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 1.
  MU 1.
  SIGMA 0.
END

EXIT

8.2 UCAVABC Input

TITLE
  Unstructured 3D cavity (ABC, not PEC) with edge source and observer

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
  abc bc, sideset 61
  observer, nodeset 16
  source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

  BLOCK 111
    MATERIAL 1
  END

  GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec
  solver,    cg
  precond,   jacobi
  output,    none
  tol        = 1.e-9
  polynomial order, 1
end

units, si

$
$------------------------------------------------------------------------
$                           P L O T T I N G
$------------------------------------------------------------------------
$ 
EMIT SCREEN, CYCLE INTERVAL = 1
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EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END
$
$------------------------------------------------------------------------
$                            M A T E R I A L S
$------------------------------------------------------------------------
$
MATERIAL 1
  model 1
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 1.
  MU 1.
  SIGMA 0.
END

EXIT

8.3 UCAVABC_2MAT_LOSS Input

TITLE
  Unstructured 3D cavity (ABC, not PEC) with 2 lossy materials, edge source, and observer

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
  abc bc, sideset 2
  observer, nodeset 16
  source, nodeset 17, gaussian, scale 1. width 2.e-9 peaktime 4.0e-9

  BLOCK 1
    MATERIAL 1
  END

  BLOCK 22
    MATERIAL 2
  END

  GRADUAL STARTUP FACTOR 1.0
END

TERMINATION TIME 9.0e-9

aztec
  solver,    cg
  precond,   jacobi
  output,    none
  tol        = 1.e-9
  polynomial order, 1
end

57



units, si

$
$------------------------------------------------------------------------
$                           P L O T T I N G
$------------------------------------------------------------------------
$ 
EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END
$
$------------------------------------------------------------------------
$                            M A T E R I A L S
$------------------------------------------------------------------------
$
MATERIAL 1
  model 1
END

MATERIAL 2
  model 2
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 1.2
  MU 1.3
  SIGMA 0.0001
END

MODEL 2 SIMPLE ELECTRICAL
  EPS 1.5
  MU 1.6
  SIGMA 0.0003
END

EXIT

8.4 UCAVABC_WIRE Input

TITLE
  Unstructured 3D cavity with wire, wire observer, edge source, and observer

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
  abc bc, sideset 2
  observer, nodeset 28
  source, nodeset 31, gaussian, scale 1. width 2.e-9 peaktime 10.0e-9 direction, x 0. y 0. z -1. length 

0.5
  wire, edgeset 115, radius 0.00001, resistance 0.0
  wire observer, nodeset 11
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  BLOCK 1
    MATERIAL 1
  END

  GRADUAL STARTUP FACTOR 1.0
END

EXODUS EDGE SETS 115

TERMINATION TIME 9.0e-9

aztec
  solver,    cg
  precond,   jacobi
  output,    none
  tol        = 1.e-12
  polynomial order,  1
end

units, si

$
$------------------------------------------------------------------------
$                           P L O T T I N G
$------------------------------------------------------------------------
$ 
EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END
$
$------------------------------------------------------------------------
$                            M A T E R I A L S
$------------------------------------------------------------------------
$

MATERIAL 1
  model 1
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 1.
  MU 1.
  SIGMA 0.
END

EXIT

8.5 UCAVABC_SLOTS Input

TITLE
  Unstructured 3D cavity with slots, slot observers, edge source, observer,
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and outer ABC boundary

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
  abc bc, sideset 4
  pec bc, sideset 2
  observer, nodeset 28
  observer, nodeset 29
  source, nodeset 31, gaussian, scale 1. width 2.e-9 peaktime 10.0e-9
  slot observer, nodeset 19
  slot, edgeset 123, width 0.00001, depth 0.0, int_mat 1, ext_mat 2
  slot observer, nodeset 20
  slot, edgeset 124, width 0.00005, depth 0.0, int_mat 1, ext_mat 2

  CONSTANT TIME STEP 1.01197539e-09
  GRADUAL STARTUP FACTOR 1.0

BLOCK 1
    MATERIAL 1
  END
  BLOCK 22
    MATERIAL 2
  END
END

EXODUS EDGE SETS (123 124 153)
TERMINATION TIME 9.0e-9

aztec
  solver,    cg
  precond,   jacobi
  output,    none
  tol        = 1.e-12
  polynomial order,  1
end

units, si

$
$------------------------------------------------------------------------
$                           P L O T T I N G
$------------------------------------------------------------------------
$ 
EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END
$
$------------------------------------------------------------------------
$                            M A T E R I A L S
$------------------------------------------------------------------------
$
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MATERIAL 1
  model 1
END

MATERIAL 2
  model 2
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 1.
  MU 1.
  SIGMA 0.
END

MODEL 2 SIMPLE ELECTRICAL
  EPS 1.
  MU 1.
  SIGMA 0.
END

EXIT

8.6 UCOAX_BELT Input

TITLE
  Unstructured 3D coax with distributed belt source, e-line integral observers,
and ABC boundaries on end caps

UNSTRUCTURED TD ELECTROMAGNETICS
  formulation, second order
$ pec specifications must come first if they will touch abc, ibc, etc.
  pec bc, sideset 8
  pec bc, sideset 9
  abc bc, sideset 11
  abc bc, sideset 12
  observer, edgeset 151, direction, x -1. y 0. z 0.
  observer, edgeset 152, direction, x 0. y 0. z 1.
  source, sideset 14, gaussian, scale 1. width 1.e-11 peaktime 5.0e-11 direction, x 0. y 1. z 0. length 

0.0005

  BLOCK 1
    MATERIAL 1
  END

  GRADUAL STARTUP FACTOR 1.0
END

EXODUS EDGE SETS (151 152)
TERMINATION TIME 1.0e-11

aztec
  solver,    cg
  precond,   jacobi
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  output,    none
  tol        = 1.e-12
  polynomial order,  1
end

units, si

EMIT SCREEN, CYCLE INTERVAL = 1
EMIT PLOT, CYCLE INTERVAL = 2
PLOT VARIABLE
  ELECTRIC_FIELD
END

MATERIAL 1
  model 1
END

MODEL 1 SIMPLE ELECTRICAL
  EPS 2.2
  MU 1.
  SIGMA 0.
END

EXIT
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9.0 Appendix B: Field Solver Options for PIC Simulations

An important issue for PIC simulations is the very high frequency, short wavelength 
noise ( ~ /t, k ~ /x) generated by particle fluctuations, driven for the most part by 
particles making cell transitions. The most direct way to reduce the fluctuation level is to 
reduce the cell size and timestep, and use more particles per cell. Clearly, this is often 
impractical. An alternative approach is to use a field solver that provides frequency-
dependent damping: very low (ideally zero) at physical frequencies of interest, and 
increasing as f 1/t. Emphasis now has two field solver options with damping, based 
on well-known algorithms for PIC on structured grids: the Godfrey “time-biased” 
algorithm [26][27], and the Friedman algorithm [28].

9.1 The Godfrey Field Solver

Godfrey generalized the Newmark time integration that is shown in Equation 17 to 
include time weighting on the [S] term,

(B1)
[𝑇]

𝐸𝑛 + 1
𝑐 ‒ 2𝐸𝑛

𝑐 + 𝐸𝑛 ‒ 1
𝑐

Δ𝑡2
+ [𝐵]

𝐸𝑛 + 1
𝑐 ‒ 𝐸𝑛 ‒ 1

𝑐

2Δ𝑡
+ [𝑆](𝛼1𝐸𝑛 + 1

𝑐 + 𝛼2𝐸𝑛
𝑐 + 𝛼3𝐸𝑛 ‒ 1

𝑐 ) + �𝐹] = 0

This results in an equation that corresponds to Equation 18 in the main text,

𝐸𝑛 + 1 ‒ 2𝐸𝑛 +  𝐸𝑛 ‒ 1 +

4Δ𝑡
([𝐵] + (2𝛼1 + 𝛼2)Δ𝑡[𝑆])𝐸𝑛 + ( ‒ [𝐵] + (1 ‒ (2𝛼1 + 𝛼2))Δ𝑡[𝑆])𝐸𝑛 ‒ 1 + Δ𝑡𝐹])

4[𝑇] + 2Δ𝑡[𝐵] + 4𝛼1Δ𝑡2[𝑆]
= 0.

(B2)

It should be noted that this same weighting could also be include in  to completely time �𝐹]
weight the source terms for this second order update, but this would involve a implicit 
update for all the particle to get the future time, n+1, for the currents.  This step is not 
done at this time.  To maintain second order accuracy, ; to be energy 𝛼1 + 𝛼2 + 𝛼3 = 1

conserving (symplectic), ; and to be unconditional stable, .  This leads to 𝛼1 = 𝛼3 𝛼2
2 = 4𝛼1𝛼3

the Newmark condition of .  For the filtering, the symplectic 𝛼1 = 1
4,𝛼2 = 1

2, 𝑎𝑛𝑑 𝛼3 = 1
4

condition (  is relaxed and Equation B2 can be simplified to𝛼1 = 𝛼3)

𝐸𝑛 + 1 ‒ 2𝐸𝑛 +  𝐸𝑛 ‒ 1 +

4Δ𝑡
([𝐵] + 2 𝛼1Δ𝑡[𝑆])𝐸𝑛 + ( ‒ [𝐵] + (1 ‒ 2 𝛼1)Δ𝑡[𝑆])𝐸𝑛 ‒ 1 + Δ𝑡𝐹])

4[𝑇] + 2Δ𝑡[𝐵] + 4𝛼1Δ𝑡2[𝑆]
= 0.

(B3)
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Figure B1 shows the real and imaginary part of the dispersion for various values of .  𝛼1

From this figure one can conclude that the practical range of varies of ¼ to a value of 1.   𝛼1

For a value of 1/2, this field solve update corresponds to the Friedman filter (Section 𝛼1 =

9.2) with at value of 

Figure 6 . Godfrey numerical dispersion for various values of .𝛼1

9.2 The Friedman Field Solver

The Friedman solver is based on a digital filtering scheme developed for an implicit 
particle advance scheme (i.e. where the electric field used to advance the particles 
depends on the final position of the particle). To adapt this to an implicit field solver, we 
first consider the simple 1-D wave equation in vacuum,

. (B4)2
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x
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
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
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This equation is finite differenced for using ),( tnxjEE n
j 
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where the j subscript on E has been dropped for simplicity,

(B6)2
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is the spatial differencing operator, 0 ≤  ≤ 1 is an adjustable parameter controlling the 
magnitude of the damping, and

, (B7)
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is a recursive lag-average of E over all previous timesteps. For a plane wave solution of 
the form E0exp[i(kx-t)], this differencing scheme has the dispersion relation

, (B8)






)

2
(sin4

1

)2()1(
22

2

2
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



where  = exp[-it], and  = ct/x is the Courant number. Eq. (B6) is a cubic 
equation for (k), and analysis shows that the scheme is unconditionally stable for all 
values of , and is highly dispersive and strongly damped when  >> 1. For long 
wavelengths, as  → 0, one of the roots, (k) = r+i, is a weakly damped physical 
solution,

(B9)...]24/1)24/(1[1/ 22
00   tr

(B10)...])2(2/[/ 33
0

2
0  t

where 0 = ck. is the exact frequency. Eq. (B8) shows that  ~ k4, meaning that damping 
of long wavelength modes drops off very rapidly.

To apply this algorithm to Emphasis, we replace the Newmark-Beta term in Eq. (17) with 
a form corresponding to the RHS of Eq. (B3),
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This changes Eq. (18) into the form

𝐸𝑛 + 1 ‒ 2𝐸𝑛 +  𝐸𝑛 ‒ 1 +

4Δ𝑡
([𝐵] + (1 + 𝜃

4)Δ𝑡[𝑆])𝐸𝑛 ‒ 𝐸𝑛 ‒ 1([𝐵] + Δ𝑡[𝑆]
2) + Δ𝑡([𝑆](1

2 ‒ 𝜃
4)𝐸̅𝑛 ‒ 2 + Δ𝑡𝐹])

4[𝑇] + 2Δ𝑡[𝐵] + 2Δ𝑡2[𝑆]
= 0.

(B12)

The algorithm requires the extra fields , which are updated after the matrix solve, just E
before En is advanced to the new time level.
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10.0 Appendix C: Port Source Implementation

The port source contribution is based on an adaptation of a waveguide boundary 
condition due to Jin [29]. The total field in a waveguide is expressed as a superposition of 
incident and reflected TE10 waves and manipulated into a form mimicking the boundary 
condition of the third kind,

1
𝜇𝑟

 𝑛̂ ×  (∇ ×  𝐸̅) +  𝑗𝑘 𝑛̂ ×  (𝑛̂ ×  𝐸̅) =  𝑈̅

The  generated by this exercise takes the form𝑈̅

𝑈̅ =  
‒ 2𝑗𝑘

𝜇𝑟
𝐸̅𝑖𝑛𝑐

In accordance with the variational formulation functional term (e.g. Jin Eq. 8.82)

∫
𝑆𝑝𝑜𝑟𝑡

𝐸̅ ⋅  𝑈̅ 𝑑𝑠

and converting to the time domain, this leads to the following term being added to the rhs 
of equation (15):

∫
𝑆𝑝𝑜𝑟𝑡

‒ 2 𝜇𝑟𝜖𝑟

𝑐𝜇𝑟
 𝑊̅𝑖 ∙  

∂𝐸̅𝑖𝑛𝑐

∂𝑡
 𝑑𝑠 =  ∫

𝑆𝑝𝑜𝑟𝑡

‒ 2
𝑐

 
𝜖𝑟

𝜇𝑟
 𝑊̅𝑖 ∙  

∂𝐸̅𝑖𝑛𝑐

∂𝑡
 𝑑𝑠
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