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ABSTRACT

This report details the background, design, and initial results for wave energy converter design optimiza-
tion tool. This tool is intended to provide researchers and developers with a means of optimizing existing
wave energy converter designs by including realistic dynamics and control algorithms early in the design

cycle.
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1. INTRODUCTION

This report provides a summary of the planned development of a tool for performing design optimization
of wave energy converters (WECs). The concept for this project was conceived based an initial study that
examined the potential to develop standard design class WECs based on distinct regional trends in US
wave climates [45, 47]. In this previous effort, a single scaling factor for the Reference Model 3 point
absorber [46] was considered in order to investigate the degree to which a finite set of standard design
classes for a specific WEC archetype could be achieved to facilitate WEC product line development in the
US and device-type certification; resulting in significant savings in design and manufacturing costs. This
analysis on WEC scaling was in turn used to infer on the question of classification systems for WECs.

The current effort, which is the focus of this report, extends upon this initial study with the goal of pro-
viding a generalized open-source tool for performing WEC design optimization studies by incorporating
realistic control dynamics in the process. This report summarizes the general structure of this tool, pro-
vides a theoretical basis for the work, discusses the development stages, and shows some initial results.

1.1. A PRIMER ON OPTIMIZATION

Computational optimization is the use of automation to systematically improve a design. With founda-
tions in numerical methods, optimization requires the definition of mathematical elements relevant to
the problem at hand. Primarily, the optimization approach will select potential new designs; these de-
signs consist of design variables, or the parameters that define a design. For example, in the optimization
of a cardboard box to fit around a product of a set size while minimizing the amount of cardboard, the
design variables are likely the length, width, and height of cardboard used. An optimization algorithm
systematically develops potential solutions by changing the values of these design variables and selecting
the best values for these design variables to meet design objectives.

In order for an optimization algorithm to be able to improve potential solutions, an objective function is
required. The objective function (or functions) in an optimization formulation is used to quantitatively
establish the relative “goodness,” and is generally minimized or maximized. The objective function must
be simple enough to enable efficient evaluation, but complex enough to provide accurate results. In our
cardboard box example, the objective function is to minimize the total amount of cardboard used; this
can be represented in a myriad of ways including by weight, volume, surface area, etc. In the optimization
of energy generating technologies, objective functions have typically included minimizing the Levelized
Cost of Energy (LCOE), maximizing electricity generation, or maximizing profit. Sometimes it is pru-
dent to explore multiple objective functions concurrently, which is called mulitobjective optimization.

Objective functions usually require the intermediate evaluation of models, which represent potentially
complex system behavior. While the modeling needed in our cardboard box example is likely simple, for



WEC systems, these models can range from computational fluid dynamics simulations to understand-
ing how momentum is captured from incoming waves, to complex cost analyses that accurately predict
capital, operation and maintenance, and decommissioning costs.

Within objective functions themselves as well as the contributing models, constraints must be obeyed
to ensure realism in the optimized product or system. Typically related to the environment in which
the product or system will be manufactured and used, constraints limit the potential values that design
variables can take, and subsequently limit the breadth of potential evaluation of the objective function
(the feasible space). In our cardboard box example, a constraint may be the stock size of cardboard sheet
available to our manufacturers. For WEC systems, the potential constraints are numerous, and include
individual constraints on the geometry of components that are represented as design variables, stability,
hull footprint and weight, and the capacity of powered components.

An optimization algorithm systematically chooses new values for the design variables and tests these so-
lutions using the objective function or functions, while ensuring that constraints are met. Solutions that
evaluate well are propagated, either through the retention of good solutions or using elements of good
solutions to generate new solutions. An optimization algorithm should be tuned to find globally optimal
solutions (the solution with the best objective function evaluation in the feasible space). An optimization
algorithm stops when new solutions do not evaluate as well as the best solution previously found. For
some algorithms, this is called convergence, where all potential solutions are identical and evaluate better
than any solutions previously identified.

In reviewing the existing body of research, we have identified that WEC optimization work spans two
primary areas of optimization science: gradient search methods and heuristic methods. Gradient search
methods are traditional optimization approaches that use derivatives to find improved solutions. If for-
mulated such that the objective function is to be minimized (called “negative null form” or “standard
form"), then a gradient-based search method will choose new design variables informed by the gradi-
ent of the objective function, i.e. where a negative gradient is suggesting improvement in the objective
function. Gradient-based approaches stop and return a final solution when the gradient is zero, locating
an inflection point in the objective function that suggests a minimum value. Most gradient-based ap-
proaches can find globally-optimal solutions (the best values for the design variables given the objective
function and constraints), but can find only local optima in highly multimodal solution spaces.

Gradient-based methods are traditional search methods that are ideal for solving for the value of a single
or a few interrelated design variables. Gradient-based methods are utilized prominently in controls-based
WEC studies due to their fast computational time and guaranteed global convergence for convex prob-
lem formulations. Controls-based WEC studies allow for the direct calculation of derivatives, which is
necessary for gradient-based search.

In contrast, heuristic optimization methods (also referred to as meta-heuristic optimization methods)
are specifically designed to accommodate large nonlinear complex systems where traditional operations
research methods can fall short. Common heuristic optimization algorithms include genetic algorithms
(GA), simulated annealing algorithms (SA), or particle swarm optimization (PSO). GA/SA/PSO and
other related algorithms can readily accommodate multiple objectives of varying linearity, and can operate
under any number of realistic constraints.

Heuristic optimization methods are designed for solving complex systems, in that they are able to search
large solution spaces effectively and in less time, and can be applied to problems that are unsolvable using



traditional exact optimization methods such as steepest descent [41, 55]. Heuristic methods are also ca-
pable of optimizing systems represented by nonlinear, non-convex modeling and objective formulations,
and can simultaneously optimize discrete and continuous variables, rendering them ideal for analyzing
real-world systems such as power grids and manufacturing supply chains [24]. While not guaranteeing
global solution-finding as with exact methods, heuristic optimization methods find near-optimal solu-
tions and conduct expansive searches of large solutions spaces efficiently [18]. As such, many heuristic
optimization methods have been developed and tested in the last three decades and have been applied to
a host of test problems and real-world complex systems.

Heuristic optimization methods have been applied to more systems-level WEC design problems, and
generally make use of multiple competing objective functions. Heuristic approaches enable the consid-
eration of real-world concerns and generally do not require any simplification in modeling to perform.
However, these high-fidelity approaches can be substantially more computationally expensive than gra-
dient or direct search methods, and do not necessarily have guaranteed global convergence. While few
WEC systems optimization studies exist currently, the ability of heuristic optimization approaches to
accommodate more complex problem formulations makes them desirable.

1.2. REVIEW OF PREVIOUS WORK

Wave energy converters, or WECs, use the momentum and motion of ocean waves to generate electric-
ity. While not yet widely integrated into global electricity grids, WECs are extremely promising, as they
provide reliable, renewable electricity and can be located close to the majority of global population and
demand centers. Designs for WECs have been proposed, developed, and tested for more than 200 years
(Pierre-Simon Girard filed a patent in 1799). Over the course of this history, many wave energy conversion
concepts and device archetypes have been proposed. However, to date, no single archetype has gained
widespread application or acceptance.

The WEC development process has generally followed the so-called “design-build-test” framework. WEC
designers and design teams currently improve a design concept iteratively using qualitative feedback and
engineering design intuition. In analogous systems, such as horizontal-axis wind turbine design, develop-
ers have both converged on a small set of accepted technologies (e.g., the ubiquitous three-blade design)
and have used computational design optimization to improve these concepts. Design optimization is the
systematic improvement of a concept using advanced models that represent complex physical phenom-
ena, such that design concepts are iterated automatically and improved to meet design objectives. For the
design of energy generation technologies, these objective functions typically include design for maximum
power development, minimized system costs, or minimized cost of energy (COE), which encompasses
elements of system capital costs and selling the electricity to users.

Design optimization has contributed to substantial growth in the wind energy sector, reduction in sys-
tem costs, and more accurate performance prediction. Accordingly, we see a significant opportunity to
develop and apply computational optimization techniques for WECs in an effort to drive the WEC in-
dustry forward. Computational optimization can improve existing WEC designs in a more systematic,
measurable way; by using optimization approaches, researchers can expressly consider multiple objec-
tives, such as the trade-oft between power development and system cost. There is also an opportunity to



use advanced models that represent the state of the art in hydrodynamics, controls, and geometric rep-
resentation. Moreover, studying WEC optimization can inform subsequent conversations about design
convergence by offering more systematic means of comparing archetypes.

To give an informative basis for WEC design optimization tool development, in this study we explore
foundational optimization science, how researchers have used optimization to design analogous systems,
and previous WEC optimization studies. Through this exercise, we identify lessons learned from previous
research and propose a promising and necessary path forward for WEC design optimization.

1.2.1. Optimization of analogous systems

To better understand the needs for applying optimization approaches to WEC design, we can look to
similar systems. Three engineering systems that have analogous characteristics to WECs are considered:
wind turbines, radio systems, and offshore platforms. Wind turbines were selected because they have un-
dergone a recent progression in performance and economic viability that is often considered as a potential
development pathway for WECs. Radio systems, while not mechanically or functionally similar to wave
energy converters, do capture energy from waves and their design is often targeted to achieve resonance.
Oftshore oil and gas platforms are large ocean structures that facilitate energy extraction and are often
designed for operation in energetic environments.

1.2.1.1. Wind turbines

Historically, three objective functions have driven wind turbine design optimization: power coefficient
(Cp), annual energy production (AEP), and total cost of energy (COE), which includes both capital
expenditures (“CapEx”) and operational expenditures (“OpEx”) [13]. Power coefficient represents how
much power can be extracted from the wind by the turbine, so initial design studies aimed for power
maximization. However, C), varies significantly with wind speed, so design efforts shifted to maximize
AEP, which takes into account some specific resource. As a final step in complexity, COE takes annual
energy production and compares it with total cost of operation, rather than simply maximizing for out-
put. As described by Chehouri et. al, a turbine blade will cost less initially if the weight is decreased, but
blade reliability over time may be improved if the weight is increased [13]. In practice the use of COE has
generally meant a slight reduction in power to allow for a large reduction in blade loads, accompanied by
slender blades and a smaller material cost, i.e. CapEx. While there isn’t a consensus on the best way to
balance CapEx and OpEx, it is generally understood that only an analysis using COE, or some proxy of
COE, will allow a logical basis for multi-objective design.

GAs have found much popularity in wind turbine optimization for their ability to handle complex fitness
surfaces. Diveux et al. conducted a study on the implementation of a COE-driven optimization analy-
sis using a multi-factor cost model [21]. Here, the authors considered both the price of electricity and
the COE for wind turbines in an optimization analysis with a GA and evaluated them for two distinct
sites: one in the Mediterranean and another in northern Europe. Comparing the two sites, the optimal
Mediterranean wind turbines were found to be smaller than for northern Europe. In addition to the size,
the cost of electricity was also found to be lower in the Mediterranean. This study provides an example of
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how local resources (wind in this case), as well as the market for the produced energy, can drive the fitness
of a design.

Selig and Coverston-Carroll were among the first researchers to apply optimization to wind turbine de-
sign [52]. Prior to their work, design-by-analysis was most common, but suffered from having to account
for numerous and often competing design variables. In their their study, Selig and Coeverston-Carroll
applied a GA to maximize AEP while changing rotor blade length and peak power rating. Results of this
study showed that, for a low-speed wind site, increasing rotor radius benefited maximum AEP more than
increasing peak generator power [52]. Giguere and Selig later applied a similar GA approach to optimize
blade geometry [30]. This study effectively extended the work to include noise in the objective function
in addition to the COE.

In addition to GAs, PSOs and other heuristic algorithms have been successfully applied to wind turbine
design optimization [56, 12]. Optimization has also been used to improve the operational control of wind
turbines. At the device level, this includes control of blade pitch and generator torque. Work has included
the application of many gradient based methods, as well as heuristic methods including evolutionary
algorithms and PSO [37, 36, 7].

1.2.1.2. Radio systems

Radio systems capture electromagnetic waves through an antenna which is converted into usable data
by the receiver. The technology extracting energy from electromagnetic waves creates a myriad of op-
portunities. Some include benefits to product design, transferring power wirelessly over distances, and
self-powering [s0]. Much like WECs, radio systems are designed to resonated based on some fluctuat-
ing input signal. Two types of design optimization problems for radio systems revolve around power
transmission and energy harvesting [s7, 50, 44].

An objective function found for these systems is the efficiency of the antennas, also called the aperture,
which is the ratio of the power delivered to the load and the power density of the source [s57, s0]. An-
tenna design is one way to drive the performance of these systems. Roscia et al. implemented a hybrid
heuristic method of a GA and PSO to couple the optimization of antenna design to the power perfor-
mance of the system [so]. Gradient based methods have also been successfully applied to radio systems
optimization[s7, 44].

1.2.1.3. Offshore platforms

Oftshore platforms must be robust and reliable to perform a variety of purposes, including renewable
and non-renewable energy extraction, conversion, transmission, and containment of both workers and
machinery [s4]. Designs for offshore platforms include floating and fixed structures for both shallow and
deep water applications. One of the first attempts to design offshore structures was made by Chou in 1977
that proposed an analytical procedure for the optimal design for the structures that solved a minimization
problem by calculus of variations[14]. A set of distinct platform archetypes have arisen to fit the varying
environments these structures are being builtin. These include jackups, gravity-based structures, tension
leg platforms (TLPs), semi-submersibles (“semi-subs”), and floating production storage and offloading
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(FPSOs). This utilization of distinct archetypes within the offshore oil and gas industry is interesting
when considering the wide variety currently seen within the WEC design space.

Optimization of offshore platforms has both improved designs and provided designers with insights into
principles that drive design performance. Clauss and Birk used nonlinear programming (NLP) to expand
on the work of Chou to optimize a gravity-based structure, a TLP, and a semi-sub design to minimize
loading and responses while constraining the design for hydrostatic stability [15]. Long term wave statis-
tics were incorporated to inform the NLP algorithm to more efficiently test the extreme responses on
these structures. Lee et al. applied coupled frequency and time domain analyses using a GA and sequen-
tial quadratic programming (SQP) to optimize a TLP hull form [39]. Zhang et al. utilized a GA to better
understand design principles for decreasing fatigue in TLP tendons[62].

In 2017, Al Hamaydeh et al. utilized a GA with “domain-trimming” to optimize wind turbine support
structures [3]. Both member size optimization and complex least-weight topology are considered by the
GADT, which was validated using the benchmark ro-dimensional truss problem. Design variables consist
of truss member cross-sectional areas and end node coordinates, while maximum member stresses and
node displacements are the constraints. Two design alternatives, tripod and quadropod jackets, showed
optimal solutions as a result of the GADT.

The semi-submersible structure is a popular design, particularly for offshore oil and gas development
[34]. However, the semi-submersible must have a light substructure to account for the small water plane
area. Jang et al. chose the steepest descent method for numerical optimization with a sequential group-

by-group approach.

Yamamoto and Morooka evaluate the dynamic positioning system (DPS); the DPS controls platform
surge, sway, and yaw [61]. The DPS must keep a stationary platform, with a tolerance radius of 2-6% to the
water depth. Yadav etal. also optimized DPS by use of an improved harmony search (IHS) algorithm [60].
IHS is a meta-heuristic method based on music theory; specifically, the improvisation of a musician to
continuously improve their pitch for better harmony. Compared to sequential quadratic programming,
IHS saves about 51% total power consumption for the DPS.

TPLs are another popular structure for floating offshore energy production; TLPs feature tendons that
are moored at each corner and have high axial stiffness, which minimize vertical motion and subsequent
downtime [22]. However, TLP design must be robust to suppress movement in the horizontal and ver-
tical directions to avoid high bending moments and axial loads. Du Kim and Jang utilize multi-objective
optimization with objective functions of maximum heave response and total weight [?]. The study con-
cludes, based on a Pareto set of eight solutions, that cross-sectional area of the tendons and pontoon
volume are the strongest contributors to the aforementioned objective functions.

Brogran and Wasserman use risk-based, hydrostatic, and hydrodynamic analyses to measure the vortex
induced vibration (VIV) of a TLP [10]. Because many TLPs operate in hostile wave environments, VIV
potential is ever-present and causes fatigue damage that can escalate to component failure. The authors
highlight a need for VIV effects to be considered during design of the structure, rather than after costly
damage has occured. A 2012 design called Windstar TLP was created with environmental conditions of
the OC3-Hywind and physical dimensions of the NREL s MW offshore wind turbine [63]. The nu-
merical tool FAST performed aero-hydro-servo-elastic coupled analysis that was able to prevent rotor
excitation-based resonance. Comparison to other TLP studies confirmed a lighter and smaller structure
that holds up well in extreme weather conditions.
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1.2.2. Key concepts for WEC design optimization

As with wind turbine, radio system, and offshore platform design, it is common to explore multiple de-
sign objectives to better represent stakeholder interests. One primary objective function that must be
considered in the design optimization of a WEC is the performance of the device. Previous researchers
have emphasized that WEC performance should be measured in terms of the economic viability of the
WEC concept. The most common metric used to assess economic viability is COE, which is commonly
defined by the levelized cost of energy (LCOE), which provides an estimate of the cost of electricity to
the consumer without any incentives or subsidies. LCOE models can be complex, but they generally
represent the ratio or sum of the device’s costs to the benefit it provides (i.e. value of energy delivered),
discounted over the device lifetime. By considering the design optimization problem in terms of LCOE,
an optimization approach ensures WEC viability in terms of what is most important to developers and

stakeholders.

The use of an LCOE objective is also consistent with preliminary research that suggests WEC design
must be considered at the systems level. Weber et al. [s9] discuss the importance of the evaluation and
assessment of WEC systems in their entirety, including the parameterization of all subsystems, and the
problems associated undertaking such systems-level approaches. This methodology was attempted on a
Wavebob WEC, and it showed improvement of the systems engineering development process as well as
an improvement of the simulation tools used for the techno-economic system optimization aspect.

WECs have a fundamentally multidisciplinary nature, with dynamics influenced by hydrodynamic, struc-
tural, hydraulic, and electrical subsystems. Additionally, WECs operate in a marine environment, and as
such, the deployment, maintenance, and recovery costs of these systems can be significant. Thus, as with
any other engineering system, we must carefully consider the model(s) used for optimization of a WEC.
In design optimization, models relate the design parameters to the objective function or functions. For
example, we can use optimization to select new values for geometric parameters of a WEC, such as the
lengths of certain components (design variables), enable each new potential set of these design variables to
be assessed for hydrodynamics (using modeling), the results of which are fed into the objective function
(power development). Current WEC models include accurate capital, O&M, and other costs; hydrody-

namic modeling, modeling of the mooring and anchoring system, modeling of the control system, and
modeling the PTO.

One important consideration in WEC design and modeling is the application of control. While current
WEC designs generally apply a simple damping control (i.e., the braking force/torque is proportional to
the velocity of the device), research increasingly shows the potential of applying control to the generator
system which increases the frequency range over which the WEC resonates in the waves (see, e.g., [32,17]).
In practice, this requires that in addition to some proportional damping reaction, the PTO must also
apply some reactive input (i.e., the PTO works in both “braking” and “motoring” modes). This aspect
of WEC design is important when considering design optimization. Since optimal power absorption'
occurs under resonance, WEC design to maximize power absorption is effectively a tuning exercise. When
we consider only a damping control, this means that for longer, lower frequency waves, the device should
be larger; for shorter, higher frequency waves, the device should be smaller. The problem changes when
reactive controllers are included. When the control input can be used to shift the resonance of the device

"Note that power absorption refers to the mechanical work done by the WEC, not electricity. This is an important distinc-
tion.
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(i.e. instead of simply making the hull larger or smaller), the optimization problem changes completely
[45]. This is a key consideration that has been considered in only a small subset of WEC optimization
studies [4s, 1, 26, 31].

When researchers consider optimization in the context of control, they often think of so-called receding
horizon methods, such as model predictive control (MPC). Many studies have applied MPC to WECs
(see [19, 40, 32]). However, optimization can also be considered in the design of a control algorithm. The
difference between these two frameworks is important, particularly for the current discussion. Exam-
ples of each type of approach are discussed by [16]. For receding horizon control, the control input for
the system is iteratively optimized based on predictions over a some finite future time. In practice, this
requires that the optimization be implemented for real-time execution. Offline optimization, in which
optimization is used to determine the value of control tuning/gain parameters, does not have this con-
straint. Examples of this include tuning of simple PID controllers and linear quadratic control (see, e.g.,

[s1]).

At the device design stage, we are concerned not about the real-time implementation of a controller (i.e.,
programming the logic into some real-time target for it to operate in wave tank or at sea), but instead
about the understanding the performance potential of the overall design. Thus, in the present study, our
interest is on optimization as a design tool for control algorithms. Considering only this need, we can
review the maximum power transfer law that is the basis for all WEC control (see, e.g., [23]).

This relies on the linearization of the WEC dynamics into the form

= Fo(w) + Fpo(w).

Here, w is the radial frequency, M is the rigid-body mass, m(w) is the hydrodynamic added mass (which
is frequency dependent), B, is the viscous damping, R(w) is the radiation damping, S is the stiffness used
to represent the balance between hydrostatic and gravitational forces, and v is the velocity the WEC. On
the right-hand-side of (r.1), F¢.(w) and F},;,(w) are the wave excitation and power take off (PTO) forces,
respectively.

From the left hand side of (r.1), we can define the intrinsic impedance for the WEC as

Zi(w) =iw (M + m(w)) + R(w) + B, + %, (r.2)

such that

Zi(w)v(w) = Fe(w) + Fpio(w)
= P (W),

Solving for the complex velocity v(w), we have
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v(w) = Z:(w)
B Fo(w) (14)
(iw (M + m(w)) + R(w) + B, + 2)°
If we define some impedance, Z,,(w) for the PTO force, such at Fjy,(w) = —Zp0(w)v(w), the useful

time-averaged power absorbed will subsequently be

Pof@) = 3R {=Fyofuo)o(w)}

1 ) (1)
= SR {Zo(@)} o)

Control design is effectively determining the definition of F),(w), which in our current formulation is

defined by Z,,(w). For resonance, it can be shown that maximum useful power is obtained by setting

Zpto(w) = —Z] (w), (1.6)
where * denotes the complex conjugate.

In practice, F,(w) is non-causal, which means that implementing (1.6) can not be accomplished in the
exact sense. However, this is of little concern for our present interest. Since we are primarily focused on
understanding the performance potential of a WEC design, it is sufficient to find the performance that
would be produced by directly implementing (1.6) and leave the approximation of this will result in a
relative similar performance.

However, the validity of this approach is limited by the physical implications of (1.6). While this so-called
“complex conjugate control” will always maximize mechanical power absorption, this is not necessarily
the desired outcome. We are more interested in generated power (or even better, power delivered to the
grid) than absorbed power. Additionally, as pointed out by [11], (1.6) sometimes requires that the WEC
motion be extreme (e.g., vertical displacements that exceed the WEC’s draft).

Considering this, we desire a way of understanding the potential performance of a WEC with control de-
sign that increases energy generation without violating some physical limits. The pseudo-spectral control
design approach developed by [6] and applied in some preliminary optimization studies [1, 45] presents
an attractive solution. This allows for efficient evaluation of a dynamic system which can include non-
linearities, such as limits on displacements.

1.2.3. WEC optimization work to-date

While WECs have not been the subject of design optimization studies to the same degree as more de-
veloped systems, there have nonetheless been some useful pieces of work completed to-date. Table 1-1
provides a summary of studies reviewed herein. For each study, Table 1-1 lists the optimization type (ei-
ther gradient-based or heuristic) as well as a description of the objective function(s) employed. Within
this table, the following symbols are used to define objective functions:
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Table 1-1. Summary of WEC optimization studies to-date. (Note
that two studies marked with * have been included which do not
use an optimization algorithm, but instead use an exhaustive
parametric search approach or are some type of trade study.
The ' mark indicates that volume is not directly calculated, but
represented by the cube of some scaling parameter.)

Study  Optimization type

Objective function

[x] Gradient & Heuristic max Py, /V

[4] Heuristic max P,ps; min V

[53] *Parametric search ~ max P, match T},, max 3

[31] Heuristic max P
[27] *Parametric search ~ max P,

[25] *Parametric search max P

[35] Heuristic min A / Puys, min Fpro / Pups
[45] Gradient max Py, /(1 + V1)
[42] *Trade study max P,
[43] Heuristic separate cases, max Ppps, Paps/ WV, Poys /Y
[49] Heuristic max C,,

[9] Heuristic max Pyep; min V

(8] Heuristic max Pyep, min A

[2] Heuristic max P
[29] Heuristic separate cases, max FPyps, Paps/V, % change in LCOE
[28] Heuristic separate cases, max Ppps, Paps/V

* P,ep - Generated power

* Ppps - Absorbed power

* V- Displaced volume

A - Hull surface area

¢ T}, - Natural period

* (3 -Bandwidth

* (), - Average capture width ratio

A variety of objective functions have been applied in WEC optimization. From Table 1-1, we can see that
the majority of studies to date have considered power absorption as the only objective function. Others
have used ratios of absorbed power to a proxy for LCOE, e.g., volume [1, 29, 28, 43], or hull surface area
[8, 35]. Rather than use volume as a proxy for LCOE, the authors of [45] used a simple function of the

scaling parameter in their objective function.
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Here, P, is average absorbed power over some period and A is a linear scale parameter. The concept of
(1.7) is to capture some 1*-order behavior of cost as a function of volume in denominator, thus balancing
the benefit gained by collecting additional energy. Some studies have utilized multi-objective approaches
to maximize power and minimize volume [4, 9] or to minimize surface area [8, 35].

The authors of [43] looked more carefully at the impact of objective functions in WEC optimization. In
this study, the author considered three separate objective functions of power (F,;), the ratio of power
to displaced volume (P,s/V), and the ratio of power to the cube root of displaced volume (P / A ).
Others compared the use of volume to hull surface area as the LCOE proxy [8]. Both studies indicate
that optimized WEC designs are very sensitive to the objective function and the LCOE proxy chosen.
In the case of LCOE proxies, hull surface area exacts a more stringent "size penalty” than volume [8].
While widely used in wave energy, capture width, which measures the efficiency of a WEC, has not been
widely used in design optimization. Capture width ratio, which normalizes the capture width by the de-
vice dimension, provides an attractive optimization metric. However, [49] uses capture width ratio to
optimize a flat-type surging wave energy converter for a specific location and compare it with past Oys-
ter prototypes. Garcia-Teruel et al. investigated other cost parameters with an effect on shape, such as
manufacturability in [29], and the effect of the combination of modes of oscillation on optimal WEC
shapes while optimizing for maximal annual energy production and for the ratio of annual energy pro-
duction to submerged volume [28]. Results from these studies point to the limitations of using volume
as proxy for costs. With a parametric search approach using Design of Experiments, [s3] aimed at finding
a cylinder shape that maximizes power performance at the energy period but simultaneously has a wide
resonance bandwidth. By defining many constraints and relationships between different metrics, and
giving a weighting to the various objectives a preferred radius and draft was found for a location at the
coast of Rio de Janeiro.

As discussed in Section 1.2.2, control can play a major role in determining the overall performance of a
WEC design. However, to-date the majority of studies on WEC design optimization have not considered
control in detail. Instead, most studies have applied a simple damping control, while often acknowledg-
ing this as a shortcoming. Some exceptions include studies in which optimal impedance matching control
was assumed [43, 45, 29, 28]. Sub-optimal but perhaps more realistic strategies, such as latching control
[31] and stroke limited reactive control [4s, 1], have also been applied. In particular, a handful of these
studies have specifically considered the effect that utilizing a more complete control design has on over-
all device design optimization [31, 45]. The general conclusion from these studies is that control design
must be included in the larger device design optimization process (this is often referred to as “co-design”),
because control design can have a considerable effect on the resulting optimal shape and on the overall
device performance.

A number of different geometric representations have been used for WEC hull optimization. These fall
into two categories: cases in which dimensions of some predefined shape are optimized and cases in which
some parametric surface (such as Bézier surfaces or splines) are used. Both of these approaches have been
considered for WECs. The size of predefined hulls has been considered by many studies. These have
included simple cylinders [31], as well as scaling of more complex shapes as in the case of the Reference
Model 3 [45]. The authors of [1] use both Bézier curves and polynomial functions of various orders to
define an axis-symmetric body, and conclude that Bézier curves are capable of providing better results. In
[43, 29, 28] a bi-cubic B-spline surface is used for a very flexible geometry definition. The authors of [29]
obtained results by this very flexible geometry definition which are compared to results for a geometry
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defined from a design for manufacturing point of view - made out of rolled steel sheets, common in ship
hull manufacturing.

1.2.4. Conclusions and identification of critical needs

Given the relative youth of the WEC industry and significant variation in commercial WEC concepts,
there are currently no available tools or even widely accepted approaches for systematically optimizing
WEC concepts. While much work has been done to develop new concepts and mature those concepts
to a high readiness-level, it is very likely that optimally performing designs are not being realized due to a
failure to apply a systematic optimization process which synchronously considers system dynamics and
control. That is, while many good concepts have been developed, the detailed design and maturation of
WEC: often results in a far from optimal solution due to the disjointed nature by which the major WEC
components and design steps are integrated (e.g., hydrodynamic design is considered separately from
control design). The consequence, in terms of reduced energy capture, increased loading, and overdesign,
has likely been an increased LCOE for WECs.

Many well-engineered mechanical devices have similar characteristics to WECs, including wind turbines,
radio frequency systems, and offshore platforms. Such analogous mechanical devices have undergone
both direct and heuristic optimization processes throughout their development, and have benefited from
this work. To avoid costly design mistakes in WEC optimization, consideration of these analogous devices
should provide a foundational understanding of how optimization works. Primarily, history has shown
that designing devices for one objective often doesn’t necessarily provide the best solution, and that multi-
objective design allows for a more holistic optimization.

Wind turbines, radio frequency systems, and offshore platforms have all been optimized successfully via
several types of multi-objective algorithms; the genetic algorithm (GA) is common among them. Further-
more, optimization of wind turbines has seen particularly good success with multi-objective algorithms
in recent years. These past successes, coupled with the need to produce efficient low-cost energy, point to
heuristic algorithms as the best available tool for WEC optimization.

Based this review, we have distilled the following as best-practices and areas for additional consideration
moving forward:

1. Key WEC optimization parameters - When considering hull optimization, Bézier curves have
proven to be the most efficient and effective approach for “free-form” parametric geometry. How-
ever, it may also be useful to simply consider some scaling of pre-defined shapes. Other key param-
eters include specifications for the PTO system, such as power rating, power stroke, and control

design.

2. Key objective functions - It has been shown that optimized WEC designs are sensitive to the ob-
jective functions and cost proxies chosen. It is, therefore, important to investigate the sensitivity of
the optimized WEC design to different objective functions and cost proxies. Volume is not a good
proxy for costs because XX it (over-/under-penalizes for WEC size); Othe proxies for costs need
to be studied further; including ways to better calibrate these proxies to actual LCOE. For power,
in addition to maximizing power generation, it will also be important to consider smoothness,
capacity factor, and peak-to-mean ratios.
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Table 1-2. WEC Optimization Tool releases.

< Design Optimization Device(s) Public
Version . . . Notes
variables algorithm(s) considered release?
alpha Single scaling MC RM; No
factor
Seven design EPS, GA, MC,
bee parameters CMA-ES adils T
. EPS, GA, MC, ,
Vo Generalized CMAES Generalized Yes
Improved
, EPS, GA, MC, , "
VI Generalized CMALES Generalized Yes usability and
robustness

3. Multi-objective optimization - Using a multi-objective optimization approach removes/reduces
the need for the engineer to make subjective decisions in the definition of complex cost functions.

4. Tuning - Since hull design, PTO design, and control design are all strongly coupled factors which
can “tune” device dynamics, these components must be considered synchronously in a “co-design”

approach to achieve the best possible designs.

5. Heuristic and gradient based optimization - Heuristic algorithms provide the flexibility needed

to handle multi-objective nonlinear design problems. However, using gradient based and heuristic
methods in conjunction can sometimes improve on only using the heuristic method.

1.3.

PROJECT OUTLOOK

This project is targeted developing an open-source tool for the optimization of WEC design commercial
viability. Table 1-2 shows a planned progression for the tool. Version alpha will allow for verification of the
code via systematic verification of a small (single design variable) problem. The beta version will support
the development of a case study on the RM3 device (see Section 3) and allow for initial open-source usage.
Versions vo and vi will provide a generalized tool applicable to any resonant WEC. Version v will extend

the usability and robustness of vo.
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2. IMPLEMENTATION

This chapter summarizes the implementation of the WEC design optimization tool. First, a general ar-
chitecture of the algorithm is discussed, followed by discussions of individual steps (or “blocks”) within
this algorithm. Next, some details on the code implementation in MATLAB are provided.

2.1. ALGORITHM ARCHITECTURE

Figure 2-1 shows a diagram of the architecture of the WEC design optimization tool. This diagram is
drawn with some blocks specific to the RM3 case-study discussed in Chapter 3, but the general structure
is valid for any application of the tool. Designs, defined by a set of design variables, are generated in the
upper left-hand corner and are evaluated by the sub-blocks within the large grey rectangle.

2.2. ALGORITHM MODULES

2.2.1. Optimization algorithm

Based on the application of optimization methods in similar and related work, and on the nature of the
problems' considered in this project, the following optimization algorithms were selected:

* Monte Carlo A statistical based algorithm used to model probabilistic or stochastic systems and
establish the odds of a variety of outcomes.

* Genetic Algorithm An initial population of potential solutions are generated and evaluated for
evolutionary fitness. Mimicking the biological process of passing chromosomes from parents to
children, crossover and mutation occur at each iteration to expand the solution space and avoid
local optima.

* Extended Pattern Search A variant of a traditionally deterministic pattern search algorithm that
employs stochastic elements to aid the search in escaping local optima. The random initial solution
is passed through user-defined pattern directions and selects the superior evaluation at each step
size.

"Note that multiple optimization problems are considered to be of interest in this project. In particular, problems with
entirely continuous design variables are considered, but problems with discrete design variables, in order to handle, for
example, discrete generator models, are also considered relevant.
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Figure 2-1. Diagram of WEC design optimization algorithm ar-
chitecture.

* CMA-ES - Covariance matrix adaptation evolution strategy (CMA-ES) is a stochastic derivative-
free optimization method well-suited for nonlinear and non-convex continuous optimization prob-
lems [33].

2.2.2. Meshing and boundary element analysis

A simple wrapper for the open-source boundary element solver NEMOH [s] is implemented in MAT-
LAB. This tool is currently suitable of axisymmetric devices with z-bodies and is built from previous
work by [48]. The general steps are as follows:

1. Parametric description of geometry: The geometry for the hull must be described by some
finite set of parameters.

2. Meshing: The surface of the hull must be discretized; this is accomplished via the aximesh.m
MATLAB tool that comes with NEMOH.

3. BEM problem setup: The necessary problem setup parameters, such as frequencies at which to
evaluate the solution, degrees of freedom, and output selection, must be specified.

4. Solver: The NEMOH solver and post-processor are run.
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5. Parsing: The results from NEMOH are parsed from text files by the WEC-Sim [38] function
Read_Nemoh.m.

2.2.3. WEC modeling & control

Modeling of WECs in the WEC Optimization Tool relies on the widely utilized linear approximation for
a floating body (see, e.g., [23]).

Three interchangeable control approaches are implemented in the WEC design optimization tool.

* Resistive damping - This controller implements maximum power for a resistive damping (pro-
portional velocity) control.

¢ Complex conjugate control - The optimal mechanical power absorption is achieved viaimpedance
matching (see, e.g., [23]).

* Constrained complex conjugate control - This approach uses a pseudo-spectral method to solve
for the optimal control give some set of input and state constraints [6].

The constrained complex conjugate control approach is considered the most realistic and relevant in
terms of design optimization. Note that this approach is considered a “stand-in” for the purposes of
design optimization. The results produced by using the constrained complex conjugate control pseudo-
spectral solver will be similar to whatever controller is eventually implemented, whether it be some feed-
back based control or a controller that relies on wave prediction [17]. Using this stand-in approach allows
for the dynamics of the controller to influence the design optimization without requiring detailed imple-
mentation early in the design process.

2.2.4. Objective function

The objective function utilized in the WEC Optimization Tool is intended to provide some represen-
tation for commercial viability of the design. In this project, some focus will be given to investigating
the best means of formulating such an objective function for a WEC. However, especially with respect
the case study of the RM3?, the amount of resources committed to this endeavor will be limited, as it is
envisioned that the specific formulation will depend heavily on the specific device. Given the high degree
of variability amongst WEC designs under consideration today, it follows that objective functions for
these design may also vary substantially as well. Thus any work in this area will be targeted at providing
generalized findings suitable for guiding objective function formulation for WECs in general.

While it is important to optimize the power generation of the device (and to understand how this power
metric changes with variation in the design variables), simply maximizing power generation in an opti-
mization scheme will lead to solutions that are z77vial. While it is generally desirable to produce more
power, this does not exclusively define the suitability of a design. In many renewable energy studies, opti-
mizing device design with the objective of minimizing costs (or Levelized Cost of Energy, LCOE) are very
common and give researchers and stakeholders a clear understanding of the cost of these technologies to

*See Sections 3 for some initial objective functions applied to the RM3
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power consumers. However, accurately predicting LCOE for a WEC concept is challenging due to the
relative youth of the market and the high degree of variability between WEC designs.

Due to this, we propose investigating multiple objective function formulations during this project. Using
volumetric values, such as surface area or device volume, can give a preliminary understanding of the costs
and manufacturability of a device concept.
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3. INITIAL RESULTS

3.1. INTRODUCTION

As discussed in Section 1, the RM3 device is considered for a case study to assist in the development of the
WEC Optimization Tool. Figure 3-1 shows a schematic for the geometric design variables considered for
the RM3. Additionally, PTO design variables and operational design variables were considered. Table 3-1
shows a full listing of design variables and their constraints.

To better understand the design problem at hand, a sensitivity study was conducted. Using a latin hy-
percube sampling, 1e3 designs within the bounds of Table 3-1 were created and evaluated. For each design
(i.e., set of design variables), the following responses were calculated:

* Power using damping control, Pp
* Power using complex conjugate control, Poo

* Volume, V'

* Surface area, A

This study is intended to provide a better understanding both of which design variables have a large
impact on the design performance and also to understand which response variables (or combinations
there of) could be used for objective functions.

3.2. SEA STATES

For this RM3 case study, a set of sea states based on the original deployment location of Humboldt Bay,
CA will be considered. Figure 3-2a shows the joint probability distribution (JPD) plot from the original

Table 3-1. RM3 case study design variables and bounds.

Parameter Bounds

Float radius, 7 [m] 5 <7r; <12.5m
Reaction plate radius, 7o [m] 10 <75 < 17.5m

Float draft, d; [m] l1<di<bm
Reaction plate depth, ds [m] 32 <7y < 47m
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Figure 3-1. RM3 geometric design variables.

RM3 design report [46], which was compiled based on 54 months of data. Subsequently, [20] provided
a more extensive assessment of site using ten years of hindcast model data (Figure 3-2b).

For the results presented in this scoping report, a single sea state was chosen for analysis. Based on the
JPDs shown in Figure 3-2, a sea state with an energy period of T, = 7.5s and a significant wave height
of Hy = 1.75m was chosen as this single sea state. Based on the comparisons with average spectral
distributions observed in data for the Humboldt Bay site [20], a Bretschneider wave spectrum generated
using WAFO [58] was employed. Note that in future work, a set of sea states will be used to provide a
more comprehensive representation of the wave climate.

3.3. RESULTS

Figure 3-3 shows the results from the sensitivity analysis for the RM3. These response variables are con-
sidered to form some set which may be used later on to compose objective functions for optimization.
In Figure 3-3, the results for a single response variable is shown across a single row. For example, all of
the plots along the top row of the figure show the power using complex conjugate control. The response
on each y-axis are normalized by the median response. The four design variables (71, 73, d, d2) correlate
with the four columns in Figure 3-3. In each plot, the results from the analysis are shown with blue points
along with a linear trend (red line). The slope and fit (r?) for the line are also shown.

It is interesting to compare the two power response for the 7 design variable. We can see that the power
from complex conjugate control (Pc¢) is not strongly linked to 7. However, the power from damping
(Pp) is strongly correlated to 1. This result illustrates an important point. Since the complex conjugate
control, which is not realistic in that it violates physical limits, can achieve perfect absorption around
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Figure 3-2. Resource assessments for RM3.

the resonance of the device, changing 7 has no effect (i.e., there is no room for improvement). With

damping control however, we can see the stronger effect that we suspect — that is that power is increased
with increases in 7.

By looking in the far right column of Figure 3-3, we can see that, for the range of values considered, the
depth of the reaction plate, dy, has relatively little effect on the response variables. At the least, this would
indicate that the range of potential values for ds should be reconsidered. However, it may also mean that
ds should not be included as a design variable.
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