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EXECUTIVE SUMMARY

The goal of the ExaWind project is to enable predictive simulations of wind farms comprised of many
megawatt-scale turbines situated in complex terrain. Predictive simulations will require computational fluid
dynamics (CFD) simulations for which the mesh resolves the geometry of the turbines and captures the
rotation and large deflections of blades. Whereas such simulations for a single turbine are arguably petascale
class, multi-turbine wind farm simulations will require exascale-class resources.

The primary physics codes in the ExaWind project are Nalu-Wind, which is an unstructured-grid solver for
the acoustically incompressible Navier-Stokes equations, and OpenFAST, which is a whole-turbine simulation
code. The Nalu-Wind model consists of the mass-continuity Poisson-type equation for pressure and a
momentum equation for the velocity. For such modeling approaches, simulation times are dominated by
linear-system setup and solution for the continuity and momentum systems. For the ExaWind challenge
problem, the moving meshes greatly affect overall solver costs as reinitialization of matrices and recomputation
of preconditioners is required at every time step.

This milestone represents an effort to increase the fidelity of Nalu-Wind at a fixed resolution through the
implementation of a tensor-product based, matrix-free high order scheme. High order finite element methods
have increased local work per datum communicated and have the potential to provide significantly more
accurate solutions at a fixed number of degrees of freedom. Previous to this milestone, Nalu-Wind had an
arbitrary order Control Volume Finite Element Method discretization as a solver option, but it required too
much memory and was too slow to be of practical use. The work in this milestone addresses these issues
by first implementing an implicit, high order solver that only partially assembles the global system. This
reduces the memory footprint of the high-order scheme by orders of magnitude for higher polynomial orders.
Second, a faster, tensor-product based method for evaluating the action of the left-hand side was implemented.
This reduces the amount of computational work required by the scheme and dramatically enhanced the
time-to-solution on example problems.

Finally, this milestone is an evaluation of the value of high order methods in the wind application space.
With the enhancements to memory and computational cost, accuracy vs. time-to-solution was evaluated
for several resolutions on an underresolved Taylor Green vortex test case. Results show that the high order
scheme is cost-competitive with the production low-order schemes in Nalu-Wind, being moderately more
expensive than the production edge-based vertex centered finite volume scheme. The evaluation of accuracy
on the test case shows a potential benefit to high order at the highest resolution while not deteriorating
accuracy on the lowest tested resolution. More work is needed to show value in the wind application, but
positive strides have been made.
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1. INTRODUCTION

The ultimate goal of the ExaWind project is to enable scientific discovery through predictive simulations of
wind farms comprised of many megawatt-scale turbines situated in complex terrain. Predictive simulations
will require computational fluid dynamics (CFD) simulations for which the mesh resolves the geometry of the
turbines and captures the rotation and large deflections of blades. Whereas such simulations for a single
turbine are arguably petascale class, multi-turbine wind farm simulations will require exascale-class resources
[12].

In a wind farm, each turbine generates an extremely long-lived wake that stretches many turbine diameters
downstream, interacting with the atmospheric boundary layer and potentially other turbines and their wakes.
Crucial to modeling these wakes is the accurate transport of the vortical motions induced by the turbine blades
as they spin—effectively a wave propagation problem. High-order finite-element-type methods are attractive
to ExaWind due to their enhanced ability to resolve wave propagation and their favorable computational
intensity to established second-order accurate methods.

This milestone represents an evaluation for including a high-order, unstructured -grid discretization
in Nalu-Wind. In particular, this milestone describes and evaluates a matrix-free implementation of a
tensor-product based finite element method on a simple turbulent flow with accuracy versus time-to-solution
as the key benchmark. The test case is an intentionally under-resolved turbulent flow. Full resolution of
the Navier-Stokes equations is an intractable problem at the scale of a wind-farm, and even at exascale,
models that account for our inability to fully resolve the dominantly nonlinear, “subgrid” dynamics are
necessary. These models account for an ever smaller portion of the total energy of the flow as resolution
improves, providing a convergence of the model-form error that varies depending on the problem and quantity
of interest being examined, but is generally of an order below two. It may not be beneficial to invest in
numerical methods that converge at an order beyond two, given the overall convergence rate of the simulation
will nonetheless remain perhaps at O(h*/3) (for the wall-parallel kinetic energy distribution in a channel [8]).
However, there is a particular scale of interest in a wind farm—the diameter of the tip vortex emanating from
the turbine blade and traveling persistently a long distance downstream. The physics at this particular scale
of interest, with exascale computing power, can be captured by the high-order numerical scheme, increasing
the accuracy at a particular resolution albeit not affecting the overall convergence to the statistics of the
actual, unfiltered fluid flow.

An efficient high-order implementation is necessary for evaluating such a claim, both in terms of memory
usage and performance. In terms of memory, storing all the required connectivities between solution points
scales with the polynomial order to the sixth power in 3D. For a mesh with an equivalent number of degrees
of freedom, a high-order scheme will take many times more memory than the equivalent second-order scheme:
for p = 8 it would take 512 times more memory for a structured, hexahedral mesh. This severely limits the
amount of work available to a computational node and makes storing the matrix impractical except for p =1
and, questionably, p = 2. A matrix-free high-order approach is necessary due to memory considerations alone.
In this context, by “matrix-free”, we mean storing only a reduced set of matrix entries such that the scaling
with polynomial order is broken in terms of memory cost.

In addition to memory cost, forming the left-hand side matrix is relatively expensive. For hexahedral
elements, it is possible to factorize out part of the residual evaluation, utilizing the structure of the underlying
operations, making computing the action of the left-hand-side matrix scale with p* instead of the pb implied
by the number of non-zero entries. This represents an algorithmic improvement for high-order schemes: the
algorithm produces the same result while scaling better with polynomial order. In Nalu-Wind, we exclusively
use Krylov-subspace-type iterative solvers to solve our linear systems—mostly GMRES iteration. These
methods only require the action of the matrix, which with a careful implementation scales as p* [10]. In
either case, storing the full-matrix is untenable in terms of computational efficiency and memory usage. To
determine the usefulness of an unstructured, high-order discretization in Nalu-Wind, we need an implicit,
matrix-free high-order implementation.

The milestone report first will detail the algorithm used to discretize the governing equations. Then, we
describe details of its implementation such as the extensive use of explicit vectorization in combination with
Kokkos. Finally, we will present our test case with an evaluation of the computational cost of increasing
polynomial order in terms of accuracy versus time-to-solution.
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2. MILESTONE DESCRIPTION

In this section, we provide the approved milestone description and execution plan followed by a brief description
of how the milestone was completed. Details regarding completion are included in the following sections.

2.1 DESCRIPTION

Continuous higher-order systems require significant memory overhead due to the sparse linear matrix graph
size. However, the increase in local work for higher polynomial orders is possibly advantageous on next
generation platforms. We will implement and evaluate a matrix-free solver approach for low Mach flow.
This will include the implementation and evaluation of matrix-free preconditioning strategies for both the
momentum conservation and pressure Poisson systems. The efficiency and scaling with polynomial order will
be evaluated on a simple turbulent flow with appropriate solution quality metrics. Alternative discretizations
to the high order ”control volume finite element” method will also be evaluated, with evaluation of tools
from CEED ECP.

2.2 EXECUTION PLAN
1. Deploy preconditioner coarsening strategies which may require only the P=1 system to be stored.
2. Evaluate matrix-free methods for both advection/diffusion.

3. Implement and evaluate a matrix-free preconditioning strategy for the pressure-Poisson system.
4. Run and analyze full system performance on a simple flow.

5. Explore alternate discretizations to overcome limitations of baseline approach.

Completion Criteria: Technical report describing the milestone accomplishment as well as a highlight slide
summarizing those accomplishments.The capability will be available as a solver option for the Nalu-Wind
codebase.

3. OVERVIEW OF MILESTONE COMPLETION

The following is a concise description of how each of the items in Section 2.2 was satisfied for milestone
completion.

1. The creation of the matrix preconditioner only uses at most the connectivity of connected edges between
solution points in the high order mesh. This reduces the memory footprint by orders of magnitude for
high polynomial orders.

2. The matrix-free application of a tensor-product, high order generally unstructured control-volume
element discretization was implemented and tested on for the momentum equation of the variable-density,
acoustically incompressible Navier-Stokes equations. For a fixed number of degrees of freedom, p = 3 to
p = 6 outperformed the production second-order node-centered finite volume scheme in Nalu-Wind for
the momentum equation specifically.

3. A matrix-free implementation of the pressure-Poisson equation was implemented, storing only connec-
tivities based on edges between solution points. The preconditioner dramatically reduced the number
of linear iterations required to solve the Poisson equation in Nalu-Wind.

4. A Taylor-Green vortex breakdown case was run in Nalu-Wind at a sequence of polynomial orders,
evaluating accuracy in prediction of kinetic energy decay rate against total simulation time. At higher
resolutions, there appeared to be a benefit in terms of solution accuracy with a relatively small increase
in the end-to-end simulation time.

5. A faster quadrature for control-volume finite element was implemented in order to achieve optimal work
scaling with polynomial order.

Exascale Computing Project (ECP) 2 ECP-Q3-FY19
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Figure 1: Schematic of the “subcontrol volumes” (grey lines) and integration
points used in the p = 3 element. Volume integrals are evaluated at the nodes
(circles) while surface integrals are evaluated at the flux points (crosses)

3.1 FAST RESIDUAL EVALUTION FOR A CONTROL-VOLUME FINITE ELEMENT
SCHEME

Control volume finite element is a finite-volume type discretization that uses a finite-element type assembly.
Here, we phrase the method as a Petrov-Galerkin type finite element technique where the test-space consists
of a set of piece-wise constant functions taking a value of 1 inside a specially defined “dual cell” surrounding
a node in the mesh, and 0 outside (the indicator function of the dual cell). This results in a weak form of the
governing equations that is identical to the classic integral form used in node-centered finite volume methods,
[1]. In this sense, control-volume finite element is a particular type of node-centered finite volume scheme
where the finite-element basis is used to evaluate volume integrals and surface fluxes. However, this phrasing
as a Petrov-Galerkin scheme also provides a natural way to extend the method to high-order without requiring
a costly reconstruction procedure or special extended connectivity while still providing the finite-volume
quality of direct enforcement of local conservation. Some careful consideration of the dual cell definition and
nodal locations is necessary for maintaining optimal accuracy [7]. In particular, a basis through the p + 1
Gauss-Lobatto-Legendre nodes defined on the element combined with a dual-cell partition defined through
the p Gauss-Legendre nodes provides an optimally accurate CVFEM scheme. As an example, we will focus
on a scalar advection/diffusion problem.

3.1.1 The integral conservation law for CVFEM

Consider an advection-diffusion equation on a domain €2,
91 (p9) + V - (pup — V@) = 0 on ©, (1)

where ¢, p are scalars, u is a vector, and I is a scalar for the purposes of this discussion. We create a hexahedral
parition of domain, 7,(Q2). For a K € T, we denote Tk as the trilinear the map from the reference element
Kot = [—1,+1]3 to K. Labeling the (p + 2)3 “padded Gauss points” as {Ei}g+1 ={-1,&0;...s€p—1,+1}—
where {fi}f)’_l are the p-point Gauss quadrature abscissae—we can describe the vertices of our “subcontrol
volumes” on K as G; j . = Tk (&;,§;,&))- Each subcontrol volume is constructed by by connecting the vertices

to form hexahedral subdomains on the element as G j kGit1,j.k, Git1,j,kGit1,j+1.k> - - - Gij k+1Gi j b, With
i, j, k between 0 and p, so as to construct (p + 1)3 hexahedral subcontrol volumes. See Figure 1 for a depiction
of the subcontrol volumes on an element in 2D. Similarly, we label the (p + 1)3 Gauss-Legendre-Lobatto
(GLL) points as Nk jx = Tk (Cir . Ck), with {¢;}f being the abscissae locations of the (p + 1)-point GLL
quadrature rule. These are our “nodes” over which we’ll be constructing Lagrange polynomials. The union of
all subcontrol volumes containing a node m forms the dual cell 27, and our “dual mesh” is the set of all the

Exascale Computing Project (ECP) 3 ECP-Q3-FY19



dual cells in the domain, forming a partition 7,7 (Q) = {2}, : 0 < m < N — 1} where N is number of nodes.
Our discrete test space then is
Vh = Span {1an : Q:n € ]:((Q)} 5 (2)

where 1g: (x) is the indicator function for the dual cell Q} —taking a value of 1 if x is inside the cell and 0
otherwise. ¢ is discretized using the set of piecewise continuous tensor-product polynomials through the GLL
nodes of order p, PP(K,ef),

P, ={pc H'(Q): ¢|x 0Tk € PP(Krer) } - (3)

Using these definitions and the Gauss divergence theorem, we can create a “weak form” for an advection-
diffusion equation, Eq. 1, for all QF, away from the boundary 0€27, N 02 = @. Seek a solution ¢;, € P} such
that

d

— por dx + / (pug, —I'V¢y,) - ds = 0 for each Q. 4)
dt Jos, oy,

3.1.2 Definitions

Recall the padded Gauss-Legendre quadrature points {Ei}gﬂ ={-1,60,...,&p—1,+1}, where {§i}g_1 denoted
the p-point Gauss quadrature locations. Denote the p + 2 Lagrange interpolants through {Zi}gH as {d; }g+17
then the “histopolation functions” (see e.g [5]) are a set of polynomials orthonormal to the test space on the
element, written as

j-1 Ei+1
hj(&) == dj(&) so that [ hj(z') dz’ = ;. (5)
k=0 £
We define matrices W, I and D that are used for the integration, interpolation, and derivative operations
respectively using the Gauss points and the GLL points {Q}g ,

I; = 4;(&), Dij = 058,
Wit = hi(G), Ly = £;(G) = 6i; and Di; = £5(). (6)

Here the W, I and D are square (p + 1) x (p + 1) matrices. I is the identity matrix due to the Kronecker-6
property of the Lagrange interpolants. W, I, and D could be modified to be evaluated at points other than
the GLL nodes in which case I would be a full matrix, but that is not done here. The tilde overscript denotes
matrices evaluated at the dual cell surfaces and they are rectangular, p x (p + 1)

Finally, we will define a (p + 1) x p differencing or incidence matrix as

-1 0 ... 0 0
+1 -1 0 ... 0

A=| o0 : (7)
f e B 1 1
0 0 ... 0 +1

This compactly represents the equal and opposite fluxes “entering” and “leaving” a dual cell and results in a
telescoping flux form for the conserved quantities.
With these definitions, we have for the time term

(Mass) 0 (p0) g = D D D WepWongWar (det Tpgr) D vibpart '™ (8)
p aq 7 F;

where {Vj}? are the coefficients for BDF2, divided by the timestep. For clarity, we will describe advection and
diffusion separately. In practice, they are combined into an “advection-diffusion” kernel since some operations
are shared. First, we define a mass flux term to be

mgqr = (Z jpi (piqruiqr)> ’ Aiqr (9)

Exascale Computing Project (ECP) 4 ECP-Q3-FY19



which is stored at each of the dp(p + 1)d_1 flux points inside the element. A is the area vector of the dual
cell surface evaluated at the flux point, quT =Jpgr - €5 X Jpgr - €5 = (det Jpgr) Jqu;eI7 where J = 93x is the
element Jacobian matrix from the reference coordinates X to the physical coordinate x. ez is the unit-vector
aligned with the & coordinate of the reference element.

lmn Z Z Z AZP qu Wm"mpqr Z Ipz ¢zqr
[(Adv lmn Z Z Z WEPAWI W”Tmpqr Iqj Ppjr

[(Adv lmn Z Z Z ngquAmmpqr Z Ik ®pgk (10)

[(Adv

where we have used A for compactness of notation but we never explicitly use an undivided difference matrix.
For ¢/ # 0 and ¢ # p + 1, the term is computed

[(Adv Z qu Z W [7ngqr Z I€z¢zqr - m(g 1)qr Z I(Z 1)i ¢1qr . (11)

and we add “boundary” terms for £ = 0 and ¢ = p + 1. For diffusion, the metric term is

il

pqr = <Z Iszzqr> pqr ’ APQT = quT (d(—}t Jpq"“) (JTJ);qr €z (12)

with an index-shifted form for the other reference directions. For the reference element with I' = 1, Gi; = ;5.

This assumes I is a scalar quantity. For a tensor-form like what is needed for the M*/3 turbulence model [6],
then I would need to be computed with the metric. With this definition, the diffusion term is

lmn Z Z Z AZPWM(IWTW

[(Dlﬂ

Gi,pq'r’ Z ﬁpi(biqT -+ Gi pqr Z Z jpiqu(bij’l‘ oz Gf .pqr Z Z jpiDT'k¢iqk 5 (13)
7 7 ] % 7

with a similar, but index shifted form for the other reference directions. More compactly we write these
operators as

(5% 89 S )=(AWRW WRAW WeW®eA)
(12 P F)=(I®I®] I®I®I I®IR®I)
DeI®I DRI®I DRIX®I

I®D®I I®DelI IeD®I (14)
I®I®D I®I®D I®I®D

—
w]l
3
w]l
<
w]l
T
S—
Il

where ® denotes the Kronecker product.

3.1.3 Quadrature modification

Previously, as the test function is discontinuous over the element, a Gauss-quadrature method was used
per control volume to achieve the correct accuracy for the polynomial order. That is, for each subcontrol
volume, for an even number polynomial order, (p/2 + 1)3 Gauss-points were used in a particular continuous
section of the test-space in order to integrate volumes (with a simular rule being used for face quadratures).
As there are p® sections of the subcontrols volumes in each element, this resulted in a quadrature scheme
with (p+ 1)3(p/2 + 1)® ~ pb quadrature points. While this quadrature is more accurate than the current
quadrature, the work scaling made it impractical. The new quadrature overcomes this scaling and produces a
method whose work scales as p* (with sum factorization) while maintaining the order of accuracy for the
overall scheme.

Exascale Computing Project (ECP) 5 ECP-Q3-FY19



3.1.4 Governing equations

Nalu-Wind uses a stabilized, equal-order interpolation scheme for pressure and velocity. A spectrally
vanishing pressure dissipation term is added that damps spurious pressure modes. The following equations
are understood as the interior element-wise contributions to the left- and right hand sides that are assembled
solved, with periodic boundary conditions for the purposes of this paper, for timestep n with an outer Picard
iteration over the index k,

1 nk ot z{z iy (Vc) &; fzz}_, remi =i @y
. 7_M(,o @u)+;5 m* e I"u -2 (I["pn) ©S" © A% | =-M | Gp +;%p GOu

5 1 5 % 4 2.2 P& 1 . st i
where S** = 5 (JT’“ o D%u + (J“T’“ ® Dziu) > —3 trace (J*T’m’f ® Dxiu) I

e 1 o . 1 ,
o Yost[emeDi ] = o3 s (AT o I (it out -G )| - M DDy

° update m® = A% @ % (p”’k GOu* — TG—pn’k) — 7G¥ @ DFipmktl

. MG—pn,kJrl _ Z S:Tr7 [A{cl Qpn,k—l-l}
7

1 S S
S ( k) 5 (Gp 1 Gp k)
p

° Solve transport equations for EOS and update density if applicable

—+1 n,k+1 n+1 __ , n,k+1 n+1 _  n,k+1
;and p" Tt = pmtT p" T =p (15)

. if tolerance is met, update u"" = u

where « are the coefficients for the backwards differencing-type time-integration (BDF2 is used exclusively
herein) divided by the time step and 7 is the “projected time scale”, 7 = ~1 1 QTM for a constant timestep.
The symbol ® is the Hadamard product. In the p =1 case, M = W @ W ® W detJ can be lumped and
becomes the typical Green-Gauss gradient for finite volume schemes—the nodal gradient is averaged over the

dual volume.
Gp dx = / p ds. (16)
Qr Ik

For higher order, a sufficiently accurate projected nodal gradient is required such that the pressure stabilization
error vanishes at the appropriate rate— ‘f LirGp — I~ D% @ D% p‘ < C'hP—and does not affect the order of

accuracy of the overall scheme. This requires inversion of the mass matrix, a “reconstruction” of the gradient
from the volume-averaged gradient. This is a consequence of the particular pressure stabilization technique
used by Nalu-Wind and is not required by the CVFEM discretization itself. For this effort, the overall
pressure-splitting scheme and stabilization is unmodified in the high-order, matrix-free approach compared to
the default approach in Nalu-Wind. More details are available in the FY19Q2 milestone and in [9, 3].

When solving the equations, we assemble the right-hand side in d-form from Eq. 15. Additionally for
the momentum, the off-diagonal components of the block matrix resulting from gradients in the viscosity
are dropped, creating a “split” momentum evaluation of one left-hand side and three right-hand sides. The
full variable viscosity right-hand side, however, is kept even in the constant viscosity case. All test cases
herein use constant density and constant viscosity, though some verification testing is done using full variable
property case.

3.1.5 Implementation details and code structure

Nalu-Wind is built heavily on Sandia’s Trilinos package (stk and Kokkos in particular) and uses either the
Tpetra-solver stack or LLNL’s hypre solver stack. The initial implementation is focused on the Tpetra-solver
stack, using Tpetra’s datastructures and a custom Tpetra: :0perator<> to implement the scheme. At a high
level, Nalu-Wind implements an apply function that computes the action of the left-hand side matrix on
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an input Tpetra::MultiVector<>, either of 1-column (for the pressure-Poisson) or up to 3 columns for the
momentum equation and projection equation, code snippet 1. As Nalu-Wind uses a shared-node abstraction
for parallel assembly, there is a “import” stage that performs the off-processor gathering of data according to
the internal maps of the Tpetra::Importer<> class. Similar, there is an export stage that adds the element
contributions of shared-but-not-owned nodes on a particular process to the node-owner’s process. This is the
same essentially as what occurs for sparse mat-vec operation that Nalu-Wind currently performs.

void apply(const Tpetra::MultiVector<double, int, long>& ownedSolution,
Tpetra: :MultiVector<double, int, long>& ownedRHS,
Teuchos: :ETransp trans = Teuchos::NO_TRANS,
double alpha = 1.0,
double beta = 0.0
) const final

// ... error checking ...
auto sln = ownedAndSharedSlnCached_;
auto sharedRHS = sharedRHSCached_;

sln->doImport (ownedSolution, *importer_, Tpetra::INSERT);
const auto xOwnedAndShared = sln->getLocalView<ExecSpace>();

ownedRHS .putScalar(0.);
auto yOwned = ownedRHS.getLocalView<ExecSpace>();

sharedRHS->putScalar(0.);
auto yShared = sharedRHS->getLocalView<ExecSpace>();

mfInterior_.compute_linearized_residual(mawanedRowLid_, maxSharedNotOwnedRowLid_,
x0OwnedAndShared, yOwned, yShared);

mfBoundary_.compute_linearized_residual (maxOwnedRowLid_, maxSharedNotOwnedRowLid_,
x0OwnedAndShared, yOwned, yShared);

ownedRHS . doExport (*sharedRHS, *exporter_, Tpetra::ADD);

Listing 1: Matrix-free evaluation

After the import stage, the matrix free operator calls an “interior” and “boundary” operator, implemented
currently using a templated policy pattern. These operators compute for instance the interior element
contributions of linearized momentum equation in the Navier-Stokes equations, and the “boundary” operator
either overwrites that contribution on the boundary to implement a strong-Dirichlet condition or adds to it
to implement for instance an open condition.

3.1.6 SIMD element fields

The core algorithm works on a set of Kokkos: :View datastructures termed “SIMD element fields” collectively.
These are elemental field data or element geometric data for n-elements, where n is the SIMD-length for
double-precision numbers (8 for avx512 on skylake). The explicit vectorization is performed using the
stk::simd library, which implements a floating-point type that stores m-values and provides overloaded
mathematical operations. The Kokkos team is currently implementing a similar, GPU-friendly vectorization
abstraction. The matrix-free operators perform gathers of required field data, such as density or velocity, into
these SIMD-element fields, as well perform metric computations to determine the volume (scaled by density,
possibly) evaluated at dual cell volumes or the “mapped area”—GQG, from Eq 12—evaluated at dual cell
surfaces. Other calls required for the method are the “corrected mass flux”—the mass flux with a correction
due to the pressure-dissipation stabilization used and a computation of the area (1 in Eq 15). In all these
methods, the elements are considered to be multilinear boxes without curvature. The geometric computations
are done every timestep, despite the constant-in-time mesh, but take only a small fraction of total simulation
time according to profiling data.
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Time per apply

Order Auto-vectorized Explicitly vectorized Speed-up
p=1 230. ms 148. ms 1.56
p=3 93.5 ms 62.3 ms 1.50
p="7 99.4 ms 57.9 ms 1.72
p=3 108. ms 58.8 ms 1.83

Table 1: Effect of explict outer-loop vectorization on the matrix-free apply with
avxb12 instructions of a skylake machine

From some rudimentary tests, there’s a large performance benefit for the solve of around 50-80% from
explicit outer-loop vectorization, as seen in Table 1. The effect is lower than what was seen in the FY17Q4
milestone, however, so more investigation is warranted.

3.1.7 Interior Operator

template <typename OwnedViewType, typename SharedViewType>
void compute_linearized_residual(
global_ordinal_type maxOwnedRowLid,
global_ordinal_type maxSharedNotOwnedLid,
OwnedViewType xv,
OwnedViewType yowned,
SharedViewType yshared) const
L
const auto range = HostRangePolicy (0, entityOffsets_.extent_int(0));
Kokkos: :parallel_for("continuity_linearized_residual", range, KOKKOS_LAMBDA(const int index) {
const auto delta = gather_delta<p>(index, entityOffsets_, xv);
const auto delta_view = nodal_scalar_view<p, DoubleType>(delta.data());
add_element_rhs_to_local_tpetra_vector<p>(
index,
maxOwnedRowLid,
maxSharedNotOwnedLid,
entityOffsets_,
continuity_element_residual<p>::linearized_residual (index, mapped_area_, delta_view),
yowned,
yshared

i

Listing 2: Interior evaluation

DoubleType in this context on the host is a stk::simd::Double, an explicit vectorization type that stores
n-doubles with overloaded vector operations, see the FY17Q4 milestone for more details. Here, “mapped_area_’
is the pre-computed element metric G (Eq 12) for the n-elements that are being operated on. The residual
operator calls the function that performs elemental-action of the laplacian, which is summed into the Tpetra
::MultiVector<> used by the Belos::PseudoBlockGmres solver. A block size of one for the pressure Poisson
equationm, three for momentum and the projected nodal gradient equation with a specialized algorithm for
evaluating three right-hand sides.

3

template <int p, typename Scalar>

void scalar_laplacian_rhs(
const CVFEMOperators<p, Scalar>& ops,
const scs_vector_view<p, Scalar>& metric,
const nodal_scalar_view<p, Scalar>& scalar,
nodal_scalar_view<p, Scalar>& rhs)
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static constexpr int nlD = p + 1;

nodal_vector_array<Scalar, p> work_grad_phi;
auto grad_phi_scs = la::make_view(work_grad_phi);

nodal_scalar_array<Scalar, p> work_integrand;
auto integrand = la::make_view(work_integrand);

ops.scs_xhat_grad(scalar, grad_phi_scs);
for (int k = 0; k < niD; ++k) {
for (int j = 0; j < niD; ++j) {
for (int i = 0; i < p; ++i) {
integrand(k,j,i) =
metric(XH, k, j, i, XH) * grad_phi_scs(k, j, i, XH)
+ metric(XH, k, j, i, YH) * grad_phi_scs(k, j, i, YH)
+ metric(XH, k, j, i, ZH) * grad_phi_scs(k, j, i, ZH);

}
}
}
ops.integrate_and_diff_xhat(integrand, rhs);
// ... other directions ...

}

Listing 3: Element Residual

where the “CVFEMOperators” performs tensor-contractions on the SIMD-elemental data.

While the code is not compatible with GPUs at the point in time, it heavily uses Kokkos with some
abstractions being used from Nalu-Wind’s on-going GPU conversion. The next step for this effort would
be to use Kokkos’s performance-portability infrastructure to run on the GPU as the NGP effort has now
finalized a design for Nalu-Wind on the GPU.

3.1.8 Verification

Multiple levels of verification were used. The tensor-product operators are tested with patch tests to ensure
proper order of accuracy for the integration, interpolation and differentiation operators in Eq 14. Each “kernel”
operator has an independent, unit-level verification test that is executed nightly. A smooth trigonometric
“method-of-manufactured solutions” (MMS) source term is devised using Mathematica and implemented in the
Nalu-Wind unit tests. For example, an MMS source for the variable-density, variable-viscosity momentum
advection-diffusion “kernel” is applied to a single element. The polynomial order is increased until the kernel
is able to satisfy the MMS to a tolerance of 107!°. The order at which this occurs varies but generally a
much higher order (e.g. p = 22 for the pressure Poisson test) is necessary for the element to spectrally resolve
the MMS than what would be used in practice. The matrix-free portion was compared to the CrsMatrix
implementation and showed agreement.

In addition to the unit-level verification tests, an integrated MMS is used. Source terms for forcing a
manufactured solution of

u = + cos(2mx)sin(2my) sin(27z) /2
v = —sin(2rx) cos(27y) sin(27z)
w = +sin(27z) sin(27y) cos(27z) /2 (17)

were derived and applied to the matrix-free scheme. Optimal convergence is achieved, with higher convergence
at even orders of p + 2 given the cubical mesh, inline with previous verification efforts that also show the
accuracy degrading back to p + 1 on general meshes.

For a smooth problem with very tight error tolerances, the advantage of high-order is clear from Table 2:
extrapolating the p = 1 result, it would require over a billion nodes to achieve the same error as the p =4
refinement with two million nodes. In direct numerical simulation, where we are concerned with creating
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# elements # rows L? error rate  # elements # rows L? error rate

p=1 p=2
323 323 1.18 x 1073 — 163 323 4.05 x 1074 —
643 64 4.58 x 107% 1.98 323 643 3.26 x 1075 3.64
1283 1283 1.15x 10~* 2.00 643 128 2.13x107% 3.93

p=3 p=4
103 30% 3.89 x 1075 — 83 323 5.70 x 1076 —
203 60° 1.55x 1076 4.65 163 643 898 x 1078 5.99
403 1203 7.90 x 10~% 4.29 323 1283 1.54 x 1072 5.87

Table 2: Convergence of velocity for a manufactured soluton, Eq. 17

reliable, highly accurate databases, this argument may apply. In the wind application space, there are
many sources of error and we are rarely interested in driving the spatial numerical error to 10~°. While the
usefulness is more complicated than the MMS would imply, it may still be useful in wind area by providing
highly accurate propagation of resolved flow features.

3.2 PRESSURE POISSON EQUATION PRECONDITIONER

The preconditioner is created by Trilinos’s MueLu [11] package using a sparse, approximate representation
of the high order system. First, an equivalent low-order representation of the Laplacian was used, using
the low-order basis to form a Laplacian for each of p* subelements of the the high-order element. For an
orthogonal element with an aspect ratio of o, we can write the CVFEM stiffness matrix as

Korth,element = (W ® Af)) + CY_2 (Ab X W) (18)

and with some algebra, we can determine that the Laplacian matrix for p = 1 ceases to be an M-matrix
when the aspect ratio is sufficiently large, a > v/3 with a similar result in 3D (a? + a% > 3). For an element
with nodes at the Gauss-Lobatto quadrature points, the M-matrix condition is violated for the sub-element
matrices if p > 2. As we will be using a smoothed-aggregation multigrid preconditioner, providing a monotone
system was suggested as perhaps providing a better preconditioner. To that end, we use a lumped mass
matrix (W is identity) to form the low-order preconditioner. The Laplacian then remains an M-matrix
and the contributions from nodes not connected by a common edge are zero. The approximate Laplacian
that we provide to MueLu only contains connectivity information for the connected edges of the equivalent
low-order mesh, increasing the sparseness of the matrix. However, we have yet to test the edge reduction on
a highly skewed mesh. All tests are performed using the same MueLu parameters. Generally, we see in Table 3
using the sparsified full CVFEM matrix or the edge matrix to generate the multigrid preconditioner does
not have a large effect on iterative convergence generally except for at relatively high p where perhaps the
lack of monotonicity of the CVFEM stiffness matrix is degrading the quality of MueLu’s preconditioner. Both
options are available, but due to increased sparsity and sometimes superior performance, the edge-based
sparse system was used herein.

4. TAYLOR GREEN VORTEX BREAKDOWN

The Taylor-Green vortex breakdown, in this case at Re = 1600, is a well-studied test for high-order schemes
[13]

Exascale Computing Project (ECP) 10 ECP-Q3-FY19



Preconditioner matrix
p = 1 Matrix-free

Linear iterations

Preconditioner matrix
p = 2 Matrix-free

Linear iterations

None 60  None 71
Full Matrix 5  Sparse CVFEM 8
Sparse Edge 8  Sparse Edge 9
p = 3 Matrix-free p = 8 Matrix-free
None 86  None 129
Sparse CVFEM 8  Sparse CVFEM 15
Sparse Edge 8  Sparse Edge 9
Table 3: Effect of Matrix-free preconditioner on average GMRES iterations
(first 40 solves) to solve the Poisson problem to 107 of its initial preconditioned
residual norm, 144° Taylor-Green problem
Figure 2: The Taylor-Green vortex breakdown case at t = 15, for p = 8 with
243 elements
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Figure 3: Comparison to the DNS result between the low-order (EBVC) and
high-order(p = 8) schemes at two different resolutions

The initial condition breaks down and forms a turbulent-like flow with the classic Kolmogorov 5/3 decay of
the energy spectrum. This provides a relatively easy case to set-up and compare the effect of polynomial
order on accuracy for underresolved simulations. Note that because these cases are underresolved, there is
no asymptotic convergence to be expected. From other studies [13, 2], a resolution of 2562 is necessary for
convergence to begin for this problem. While the method converges at the expected p + 1 rate for resolved
problems, in our application we are typically only marginally resolved—we resolve to the effective Nyquist
frequency and rely on the turbulence model to correctly account for the energy transfer between the resolved
and unresolved fluid motion. Because the effect of the turbulence model is reduced at a physics-based rate
below O(h?), the overall asymptotic convergence benefit of high-order (beyond a second-order discretization)
is not relevant. However, a turbulent flow contains many motions at a large range of scales, the most important
of which are captured adequately by the numerical mesh and may benefit from a high-order discretization.
To this end, we examine an underresolved turbulent flow and look directly at the accuracy of the scheme
scheme at a few resolutions versus the overall time to solution.

This type of study is inspired by [4], in which stabilization is shown to play a critical role in achieving
good accuracy and stability at low resolutions. The cases herein do not use any stabilization beyond the
pressure dissipation necessitated by the collocated scheme

4.1 DETAILS

Meshes of (96/p)®, (144/p)®, (192/p)* elements—so that the number of nodes is kept constant—were used
and compared with a pseudo-spectral method DNS using 5122 modes [13]. Since the number of nodes isn’t
exactly matched for p = 5 and p = 7, a normalization factor is applied for the timing data—however, the
normalization factor is close to one (94% in the worst case). The 962 case is significantly underresolved
while the 1923 is marginally underresolved. We look at the rate of integrated kinetic energy decay—the
dissipation—as our quantity of interest. A constant timestep of 0.025 was used for all the 963 cases resulting
in a peak Courant number of approximately 0.5 for the p = 1 cases. A constant of four outer Picard
iterations was used. Subsequent resolutions have the time step reduced proportionally. Each case was run to
a non-dimensional time of 20, matching the end of the DNS data provided. The L? error in the integrated
quantity relative to the DNS result was computed over the entire time horizon of the data. All errors are
normalized by the L? norm of the DNS result over the same time window (a constant, same for all case).
No turbulence model is used in this case, nor is any stabilization beyond Nalu-Wind’s pressure-dissipation
scheme. Timings are averaged over two runs for the R0 case with the variability between the two being low.
Subsequent resolutions are not averaged in timings. The matrix-free branch of Nalu-Wind was compiled with
-xHost -03 with intel-19.0.2. Each case was kept to a fixed number of processors—a resource limited case.
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Figure 4: A comparison between accuracy and error for an underresolved
Taylor-Green vortex decay problem

4.2 RESULTS

The time-to-solution for the new matrix-free implementation is roughly independent of polynomial order at a
fixed number of nodes (see Figure 4 and Figure 5, Table 4 and Table 5). While the amount of work scales as Np,
where N is the total number of nodes, more of the mesh points are collected together into memory-coherent
elements. Beyond that, the computation is likely memory-boundary bound. For conventional architectures,
we observe that the time-to-solution is not strongly a function of polynomial order, with p = 1 performing
the worst out of the eight matrix-free runs. Note that the p = 1 cases are run identically to the high-order
cases, but there is opportunity for specialization (some of the matrices are just a constant value for p = 1)
The full matrix can also be stored to generate the preconditioning matrix, but that’s not done here. The
discretization for the p = 1 matrix free is different from the “default” scheme in Nalu-Wind

In terms of accuracy, for this particular problem, it seems that high-order only provides a real benefit at
the highest resolution tested. As the simulation becomes resolved, the highest order schemes will eventually
pull away in terms of accuracy at a given resolution considering the enhanced rate of convergence, see Table 2.
In these underresolved simulations, there may be a similar trend where there is no particular benefit to the
high order scheme if one is too underresolved, but as the resolution increases, the large scale motions become
well-resolved by the scheme despite there still being small residual motions that cannot be captured. On the
other hand, the underresolved cases are not particularly polluted by aliasing-type errors seen with higher-order
scheme and the overall run times are only marginally greater than the edge-based vertex-centered finite
volume scheme (EBVC, also called “node-centered finite volume”). Implementing an effective stabilization
has been shown to greatly improve accuracy on these underresolved flows for high order [4], and it’s an
avenue that should be pursued in the future. While LES cases are not “well”-resolved, the turbulence model
ideally provides an appropriate amount of dissipation such that the flow can be resolved by the numerical
scheme, bring us closer to the 1923 result. In practice, the turbulence model will either over- or underestimate
dissipation leading to some underresolved areas of the flow.

The timing for the high-order scheme would also be improved by evaluating different pressure stabilization
strategies that do not require a separate linear solve. At the higher resolution, the matrix-free scheme would
be faster than the EBVC scheme if not for the projected nodal gradient equation which is an artifact of
extending the low-order pressure stabilization procedure to the high order system.

5. CONCLUDING REMARKS AND NEXT STEPS

Compared with the previous implementation, the new implementation is roughly 20 times faster for p = 3
while using 5 times less memory. The benefit only becomes greater with higher polynomial orders. The
milestone has taken the high-order code in Nalu-Wind into a position where the speed is, in one case, within
10% of our optimized node-centered finite volume scheme on a per-degree of freedom basis. This allows us to
evaluate the efficacy of high order on our problems of interest.
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Figure 5: Time vs. Accuracy scatter plot for all cases

RO

PNG MOM CONT TOTAL MOM/EBVC CONT/EBVC TOTAL/EBVC
p=1 446 x 102 1.13x10°> 9.69 x 10> 2.84 x 103 1.50 2.19 2.13
p=2 3.86 x 102 7.48 x 10> 9.18 x 102 2.25 x 103 0.99 2.07 1.69
p=3 3.65 x 10> 6.50 x 10> 8.28 x 10> 2.02 x 10° 0.86 1.87 1.52
p=4 3.62 x 10> 6.38 x 10> 8.21 x 102 1.99 x 10° 0.85 1.86 1.50
p=5 3.75 x 10> 6.70 x 10> 8.21 x 10> 2.04 x 10° 0.89 1.85 1.53
p=26 3.87 x 10> 7.07 x 10> 8.58 x 102 2.13 x 103 0.94 1.94 1.60
p="7 3.96 x 10> 7.72x10%> 8.23x10%2 2.16 x 10? 1.03 1.86 1.62
p=38 4.04 x 10> 8.94 x 10> 8.50 x 10> 2.32 x 103 1.19 1.92 1.74
p =3 before 1.20x 10* 1.73 x10* 7.85x 103 3.97 x 104 23.0 17.7 29.9
Default NA 2.50 x 10°  1.09 x 10 3.98 x 103 3.32 2.46 2.99
EBVC NA 7.52 x 102 4.43 x 10> 1.33 x 103 1 1 1

Table 4: Assorted timings (in seconds) for the matrix-free method for 96° node

meshes (32 processors). PNG: Projected nodal gradient assembly + Solve time .

MOM: Momentum assembly and solve time. CONT: Continuity assembly and

solve time. TOTAL: Overall simulation time
R2

PNG MOM CONT TOTAL MOM/EBVC CONT/EBVC TOTAL/EBVC

p=1 1.28 x 10* 3.04 x 10* 2.21 x 10* 7.75 x 10* 1.81 2.38 2.73
p=2 9.15 x 10> 1.73x 10* 1.93 x 10* 5.01 x 10* 1.03 2.08 1.76
p=3 835 x10% 1.39 x 10* 1.71 x 10* 4.28 x 10* 0.83 1.85 1.51
p=4 8.02 x 10 1.09 x 10* 1.22 x 10* 3.35 x 10* 0.65 1.32 1.18
p=>5 7.62 x10% 1.02x10* 1.17x10* 3.18 x 10* 0.61 1.26 1.12
p==6 7.90 x 10> 9.87 x 10> 1.17 x 10* 3.13 x 10* 0.59 1.26 1.10
p="7 797 x10% 1.10 x 10* 1.20 x 10* 3.31 x 10* 0.66 1.29 1.17
p=28 8.58 x 10° 1.74 x 10* 1.57 x 10* 4.39 x 10* 1.04 1.69 1.55
Default NA 4.85 x 10*  2.34 x 10* 8.10 x 10* 2.90 2.53 2.85
EBVC NA 1.68 x 10*  9.27 x 10° 2.84 x 10* 1 1 1

Table 5: Assorted timings (in seconds) for the matrix-free method for 192% node
meshes (32 processors). PNG: Projected nodal gradient assembly + Solve time .
MOM: Momentum assembly and solve time. CONT: Continuity assembly and
solve time. TOTAL: Overall simulation time
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The Nalu-Wind application will likely being using a hybrid discretization to solve windfarm problems,
with a “background” discretization being used for the region of the flow resolved with large-eddy simulation
and the second-order node-centered finite volume scheme (EBVC) being used in the Reynolds-Averaged
Navier-Stokes region where solution is much more difficult and the problem is dominated by model-form
error. The matrix-free high-order CVFEM discretization could be used in concert with the overset mesh
capability (see FY19Q2, for example) to model the atmospheric boundary layer and turbine wakes, where
high order may be advantageous. To that end, this work would need to be extended to use the overset mesh
capability in Nalu-Wind in order to achieve a mixed order discretization.

Next Steps:
1. Pursue alternative pressure stabilizations for higher order
2. Evaluate performance of high order on a turbulent channel flow configuration

Run a study of an atmospheric boundary layer with the high order scheme

> W

Extend to work with mixed order through overset
5. Evaluate performance on GPU-based platforms
6. Look at the performance of the preconditioner on significantly skewed meshes

While the benefit for high-order in our application has not been demonstrated yet, the comparable cost to
our second-order, optimized finite volume scheme is promising.
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