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The Monongahela River Oil Spill
January 2, 1988:

Copyright ©, Pittsburgh Post-Gazette, 2018, all rights reserved. Reprinted with permission. †

1. Ashland Oil Spill, Wikipedia.
2. The 1988 Monongahela Oil Spill, Pittsburgh Post-Gazette.
3. Pennsylvania Oil Spill Emergency Response, U.S. EPA.
4. Ashland Oil Spill Disaster Video, Disasters Channel.
5. “Disaster at Pittsburgh” 1988 Oil Tank Collapse, Pop History.
6. Monongahela River Oil Spill Threatens Water, New York Times.

44. Mathematical Model for Oil Slick Transport and Mixing in Rivers.
45. Monongahela River Oil Spill: Hearing Before the Subcommittee…
46. Harvard Business School Brief on Ashland Oil Spill and Response.
47. Selected Water Resource Abstracts, page 737.
48. Bioremediation of Water Areas Due to Oil Spills.
49. Ctr. for Haz. Matl. Research –Oil Spill Into the Monongahela River.
50. Economic and Policy Implications of the Ashland Oil Tank Collapse.

Google search terms “monongahela river oil spill”*

.

.

.

* Some titles paraphrased to fit. UUR SAND 2018-2803 PE
† “The 1988 Monongahela oil spill,” Pittsburgh Post-Gazette, April 9, 2014.

https://newsinteractive.post-gazette.com/thedigs/2014/04/09/monongahela-oil-spill

https://newsinteractive.post-gazette.com/thedigs/2014/04/09/monongahela-oil-spill
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Problem Statement

Problem: Overhead imagery data is huge, overwhelming, and growing rapidly.

Goal: Construct a search engine for overhead image data.

▪ Allow user to specify desired goal.

▪ Automatic search.

▪ Return potential matches, ranked best first.

Hypothesis 1: A graph representing basic objects (buildings, trees,…), along with 
their attributes and relationships, can be used as a general-purpose search index. 

Hypothesis 2: Given suitable overhead imagery, image processing can 
automatically find the required basic objects (buildings, water, trees,…).

UUR SAND 2018-2803 PE
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Result Overview
Hypothesis 1:  Graph can enable “search engine” for overhead imagery?

▪ Yes, very good results for some questions.

▪ Other questions limited.

Hypothesis 2:  Automatic image processing can find basic objects (buildings,…)?

▪ Partially.  Fully automated quality is reduced, and varies with feature type.

▪ Quality vs. temporal resolution issues.

▪ Rapid progress being made by other groups.

Scope:

▪ Several cases demonstrated, substantial range seems possible.

▪ Many will be out of scope.

Full details:
Brost, et al, “Geospatial-Temporal Semantic Graphs for Automated Wide-Area Search.”  
Sandia Report SAND2017-8687, Sandia National Laboratories, August 2017.

UUR SAND 2018-2803 PE
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Overview

▪ Motivation.

▪ System Description.

▪ Examples.

▪ Evaluation.

▪ Summary.

UUR SAND 2018-2803 PE
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▪ System Description.

▪ Data.

▪ Image Processing.

▪ Geospatial-Temporal Graph Search.

▪ Examples.

▪ Evaluation.

▪ Summary.
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Ga3 Ba3
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Remote
Sensing

Region
Classification

Spatiotemporal
Graph Matches

Spatial

Temporal

Spatiotemporal

Change Detection
Query:
• Spatial parameters
• Temporal parameters
• Subgraph pattern
• Algorithm control

Geospatial-Temporal Graph Data Flow

t = 0

t = 1

t = 2

t = 0

t = 1

t = 2

Ontology

UUR SAND 2018-2803 PE

UVM UVM UVM/SNL

(LANL, led by Paul Pope)
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Input Data
Height Map

(nDSM)

4-Band Imagery

(RGB+IR)

GIS Road Polygons

(optional)

Land Cover

Data provided by University of Vermont 

Spatial Analysis Laboratory.

UUR SAND 2018-2803 PE

UVM UVM

UVM
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Systematic Land Cover Classification
Steps:

1. Assemble input:

▪ RGB+IR imagery, near nadir.

▪ LiDAR data.

▪ GIS road centerlines or polygons (if available).

2. Construct normalized digital surface model (nDSM).

3. Using nDSM, split image into “Tall” vs. “Short.”

4. Using RGB+IR, split out “Tree” from Tall.

5. Using geometric morphology and LiDAR texture, split out “Building” from Tall.

6. Using morphology and LiDAR, split remaining Tall into “Wall” and “Other Structure.”

7. Using GIS road data, split out “Road” from Short.

8. Using RGB+IR, split remaining Short into 
“Grass/Shrub,” “Dirt,” “Water,” and “Other Paved.”

9. Output posterized file.

This is a refinement of O'Neil-Dunne, et al, “An Object-Based System for LiDAR Data Fusion and Feature Extraction,” Geocarto 2012.

UUR SAND 2018-2803 PE
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t = 2

Dirt

t = 3

Example Scenario

Data sequence:

t = 1

Building

Grass Road

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

UUR SAND 2018-2803 PE
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Ga1 Ba1 R1 Bb1 Gb1

(-¥,1] [1,+¥) (-¥,1] [1,+¥) (-¥,1] [1,+¥) (-¥,1] [1,+¥) (-¥,1] [1,+¥)

t = 1

Ga1

Ba1

R1

Bb1

Gb1

StoredGraph Construction

Start with land cover #1:

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

Each node has several attributes:
area, centroid, moments, 
eccentricity, orientation, 
bounding box, etc...

* Road      Grass edges omitted for clarity throughout.

Durable nodesG

Legend:

Adjacency edges

UUR SAND 2018-2803 PE



13

Ga1 Ba1 R1 Bb1 Gb1

Ga2 D2

(-¥,1] [1,2)

(1,2] [2,+¥)

(-¥,1] [2,+¥) (-¥,1] [2,+¥) (-¥,1] [2,+¥) (-¥,1] [2,+¥)

(1,2] [2,+¥)

t = 2

Ga2

Ba1

R1

Bb1

Gb1

D2

StoredGraph Construction

Add land cover #2:

Durable nodesG

Legend:

Adjacency edges

Change edges

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R
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Ga1 Ba1 R1 Bb1 Gb1

Ga2 D2

Ga3 Ba3

(-¥,1] [1,2)

(2,3] [3,+¥) (2,3] [3,+¥)

(1,2] [2,3)

(-¥,1] [2,3) (-¥,1] [3,+¥) (-¥,1] [3,+¥) (-¥,1] [3,+¥)

(1,2] [2,3)

t = 3

Ga3
Ba3

R1

Bb1

Gb1

StoredGraph Construction

Add land cover #3:

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

Durable nodesG

Legend:

Adjacency edges

Change edges

UUR SAND 2018-2803 PE
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Lawn

Avenue

New Building

Lawn

Avenue

New Building

Data: Grass
Exists now
A ≥  120 m2

Data: Road
Exists now
w ≥  18 m

Data: Building
Exists now
A ≥  200 m2

h ≥ 10 m
Input Change edge
     Achange ≥  40 m2

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

Lawn

Avenue

New Building

Data: Grass
Exists now
A ≥  120 m2

Data: Road
Exists now
w ≥  18 m

Data: Building
Exists now
A ≥  200 m2

h ≥ 10 m
Input Change edge
     Achange ≥  40 m2

≤ 15 m

≤ 1
 m

Lawn

Avenue

New Building

Data: Grass
Exists now
A ≥  120 m2

Data: Road
Exists now
w ≥  18 m

Data: Building
Exists now
A ≥  200 m2

h ≥ 10 m
Input Change edge
     Achange ≥  40 m2

≤ 15 m

≤ 1
 m

n Î [1, ∞]

n Î [1, ∞]

HUB

Star graph search algorithm.

Query Definition
Question: Where is a new luxury office building?

This configuration is consistent 
with a luxury office building.

Question semantics:

New Building

Lawn

Avenue

N

L

A

UUR SAND 2018-2803 PE
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Search Graph Source: StoredGraph

Available StoredGraph:

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

Durable nodesG

Legend:

Adjacency edges

Change edges

Ga1 Ba1 R1 Bb1 Gb1

Ga2 D2

Ga3 Ba3

(-¥,1] [1,2)

(2,3] [3,+¥) (2,3] [3,+¥)

(1,2] [2,3)

(-¥,1] [2,3) (-¥,1] [3,+¥) (-¥,1] [3,+¥) (-¥,1] [3,+¥)

(1,2] [2,3)

UUR SAND 2018-2803 PE
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A1 Gb1

Ga3 Ba3

L1

L3 N3

Question semantics:

New Building

Lawn

Avenue

N

L

A

Constructed SearchGraph

After adding edges:

Signature nodes:
▪ New Building
▪ Lawn
▪ Avenue

Signature edges:
▪ New Building        Lawn
▪ New Building        Avenue

G

Legend:

Nodes

Edges

SearchGraph only contains elements 

relevant to the question.

Semantics are now in terms of the question.

UUR SAND 2018-2803 PE
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Avenue

New Building

Lawn

L3 N3

A1

Ga3L3

Search Result

Matches found:

Remarks:

• This match is consistent with hypothesized signature.

• It does not “prove” this is a luxury office building ---

this template might also match a movie star’s mansion.

Hub node

UUR SAND 2018-2803 PE
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(2,3] [3,+¥)

Ga1 Ba1 R1 Bb1 Gb1

Ga2 D2

Ga3 Ba3

(-¥,1] [1,2)

(2,3] [3,+¥)

(1,2] [2,3)

(-¥,1] [2,3) (-¥,1] [3,+¥) (-¥,1] [3,+¥) (-¥,1] [3,+¥)

(1,2] [2,3)

L3 N3

A1

Ga3L3

LB3
Search Result Writeback

Final StoredGraph:

Data semantics:

Building

Grass

Dirt 

Road

B

G

D

R

UUR SAND 2018-2803 PE

Extended semantics:

New Building

Lawn

Avenue

Luxury Building

N

L

A

LB

Durable nodesG

Legend:

Adjacency edges

Change edges

Component-Of edges

Within-Match edges
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𝐷𝑖 =
σ𝑗 𝑑𝑖𝑗

𝑛𝑖

Quality Score Calculation
Attribute quality:

UUR SAND 2018-2803 PE

x

q

Allowable

Preferred

1.0

0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13

0.25

Nominal Boundary Uncertainty Minimum Area Maximum Area

𝑑𝑖𝑗 =
1

𝑞𝑖𝑗
− 1

𝑞𝑖 =
1

1 + 𝐷𝑖

𝐷𝑟𝑒𝑞 =
σ𝑟𝑒𝑞 𝑖𝐷𝑖

𝑛𝑟𝑒𝑞

𝑞𝑚𝑎𝑡𝑐ℎ =
1

1 + 𝐷𝑟𝑒𝑞

* Optional elements, variable topology require special handling.
See Brost, et al, “Geospatial-Temporal Semantic Graphs for Automated Wide-Area Search.”
Sandia Report SAND2017-8687, August 2017.

Node quality: Match quality:
(If all nodes required*)

Variability model:
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Segment Transformation
Undersegmentation: Solution: “Chunk” by shrink/grow

Oversegmentation: Solution: Connect via grow/shrink, or graph analysis

Path routing: Solution: Path partitioning, path search

UUR SAND 2018-2803 PE

UVM/SNL UVM/SNL

UVM

U
V

M
/S

N
L

U
V

M
/S

N
L
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Overview

▪ Motivation.

▪ System Description.

▪ Examples.

▪ Data.

▪ Image Processing.

▪ Geospatial-Temporal Graph Search.

▪ Evaluation.

▪ Summary.

UUR SAND 2018-2803 PE
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Data Set

RGB+IR, height maps, and land cover for all locations.

Anne Arundel County, MD

Philadelphia, PA

Washington, DC

10 km

Mumbai, India

Totals:

2,289 km2

23 billion pixels
UUR SAND 2018-2803 PE

Image data provided by UVM, LLNL, LANL, DigitalGlobe.
All image data from sources available to the public.
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Image Processing Results
Highest Quality GlobalFully AutomatedIntermediate

RGB+IR, LiDAR, GIS,
manual corrections

Satellite RGB+IR,
Satellite Height Map

RGB+IR, LiDARRGB+IR, LiDAR,
manual tuning

UUR SAND 2018-2803 PE

UVM DigitalGlobe©2016/USGS/LLNL
LLNL+LANL/LLNL DigitalGlobe©2015/Vricon©2015/LANL/LLNL
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Components:

Power Plant Search Template
Question: Where are fossil-burning electricity generation plants?

Heat Building
Type: Building, with Height
2,500 m2 ≤ A ≤  70,000 m2

Perimeter2/4pA ≤ 100
Circularity ≤ 0.85
h97.5 ≥ 25 m
hmax  / hmedian  ≥  1.6

(prefer A ≥ 4,000 m2)

(prefer h97.5 ≥ 30 m)
(prefer hmax  / hmedian  ≥  2.5)

Body of Water
Type: Water Segment
A ≥ 15,000 m2 (prefer A ≥ 17,250 m2)

Coal Pile
Type: Dirt, with RGB
A ≥ 30,000 m2

Eccentricity ≤  3.0
[R,G,B]median ≤ 90

(prefer 37,500 m2 ≤ A ≤ 50,000 m2)
(prefer Eccentricity ≤ 2.25)
(prefer [R,G,B]median ≤ 60)

Evaporation Pond
Type: Water
1,000 m2 ≤ A ≤  20,000 m2

Eccentricity ≤  6.0
(prefer 1,750 m2 ≤ A ≤ 9,500 m2)
(prefer Eccentricity ≤ 4.5)

Tank_Landcover
Type: Building, with Height
Circularity ≥  0.85
50 m2  ≤ A ≤  3,000 m2 (prefer A ≥ 80 m2)

Transformer
Type: Paved Chunk
A ≥ 1,000 m2

1.0 ≤ Eccentricity ≤ 4.0
hmedian ≤ 5 m
4 m ≤ h97.5 ≤ 25 m
hmax ≥ 10 m
At least 200 m2 above 4 m

(prefer 3,000 m2 ≤ A ≤ 32,741 m2)
(prefer 1.0 ≤ Eccentricity ≤ 2.75)
(prefer hmedian ≤ 2.6 m)
(prefer h97.5 ≥ 5 m)
(prefer hmax ≥ 12 m)

Tank_LC_not_I:

≤ 0 m

Tank_LC
Type: Tank_Landcover

HUB

Tank_I
Type: Tank_Image

n Î [0, 0]

Tank
Type: Tank_LC_not_I  OR
           Tank_Image

Conveyor
Type: Conveyor

Other Structure
Type: Other Structure

Pipe
Type: Pipe

Stack
Type: Stack

Tall Slender
Type: Tall Slender

Tank_Image
Type: Tank_Solid  OR
           Tank_Floatroof

Stack
Type: Stack

n Î [0, ∞]

Tall Slender
Type: Tall Slender

n Î [0, ∞]

Heat Building
Type: Heat Building

≤ 3
00 m

≤ 
30

0 
m

≤ 300 m

≤ 300 m

≤ 30 m

HUB

n Î [0, ∞]Transformer
Type: Transformer

Tank
Type: Tank

n Î [0, 14]

Evaporation Pond
Type: Evaporation Pond

n Î [0, ∞]

Coal Pile
Type: Coal Pile

n Î [0, ∞]

Body of Water
Type: Body of Water

n Î [0, ∞]

≤ 3
00 m

≤ 30 m

w = 2

w = 1

w = 1

w = 1

w = 1

w = 1

w = 1

Ensemble:

* Batch templates not shown. UUR SAND 2018-2803 PE
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Power Plant Search Results 1-6

1. FFe Power Plants A, B1. FFe Power Plants A, B 2. FFe Power Plant 62. FFe Power Plant 6 3. FFe Power Plant 83. FFe Power Plant 8

4. FFe Power Plant 14. FFe Power Plant 1 5. FFe Power Plant F5. FFe Power Plant F 6. FFe Power Plant E6. FFe Power Plant E

UUR SAND 2018-2803 PE

UVM/SNL LLNL+LANL/SNL LLNL+LANL /SNL

LLNL+LANL/SNL UVM/SNL UVM/SNL
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Power Plant Search Results 7-12

10. FFe Power Plants 9, 1010. FFe Power Plants 9, 10 11. Nuclear Power Plant 311. Nuclear Power Plant 3 12. FFe Power Plant H, FF Power Plant 312. FFe Power Plant H, FF Power Plant 3

7 FFe Power Plant G7 FFe Power Plant G 8. FFe Power Plant D8. FFe Power Plant D 9. FFe Power Plant 59. FFe Power Plant 5

UUR SAND 2018-2803 PE

UVM/SNL UVM/SNL LLNL+LANL/SNL

DigitalGlobe©2015/SNL LLNL+LANL /SNL UVM/SNL UVM/SNL
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Power Plant Search Results 13-18

13. Nuclear Power Plant 413. Nuclear Power Plant 4 14. Industrial Site14. Industrial Site 15. FFe Power Plant C15. FFe Power Plant C

16. Ship Yard16. Ship Yard 17. FFe Power Plant 317. FFe Power Plant 3 18. Water Treatment18. Water Treatment

UUR SAND 2018-2803 PE

LLNL+LANL/SNL DigitalGlobe©2015/SNL UVM/SNL

UVM/SNL UVM/SNLLLNL+LANL/SNL
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Power Plant Match #1 (True Positive)

Coal pile missed, due to
image processing error. q = 0.870

UUR SAND 2018-2803 PE

UVM/SNL
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Match #4 (True Positive)

Spurious
tank found.

Water missed by
image processing.

Coal pile missed, due to
image processing error. q = 0.694

UUR SAND 2018-2803 PE

LLNL+LANL/SNL
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Match #21 (False Positive)

q = 0.369

Special Features Match

Tall S lender
Stack
Tall S lender
Stack

Match has multiple features 

consistent with a power plant,

but is not a power plant.

UUR SAND 2018-2803 PE

UVM/SNL UVM/SNL
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Match #16 (False Positive)

q = 0.488

Optical ImageOptical Image MatchMatchnDSMnDSM

Large building, with tall subset,
matches heat building criteria.

Body of water, tanks,
correctly found

Paved areas with clutter
meet transformer criteria.

UUR SAND 2018-2803 PE

UVM/SNLUVMUVM
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A False Negative

SearchGraph (Not a Match)Special FeaturesSpecial FeaturesLand CoverLand Cover

Water
Tree Canopy
Road
Other Paved
Grass/Shrub
Dirt
Building

Water
Tree Canopy
Road
Other Paved
Grass/Shrub
Dirt
Building

Tank_Solid
Tall S lender
Stack

Tank_Solid
Tall S lender
Stack

Stack

Body of Water

Heat Building

Stack

Coal pile missed due to
image processing error.

Tank missed due to shape distortion.

Body of water found, but too far.

No visible transformer.

UUR SAND 2018-2803 PE

LL
N

L+
LA

N
L/

SN
L

LLNL+LANL/SNLLLNL
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Tank Complex Search
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Tank
Type: Tank

n Î  2, ∞ 

UUR SAND 2018-2803 PE

UVM/SNL

UVM/SNL

UVM/SNL

UVM/SNL

UVM/SNL

UVM/SNL

UVM/SNL

Question: Where are groups of chemical storage tanks?
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Multiple Matches for the Same Site

Reporting alternative explanations

is important for user understanding.

A final system should clarify these.

Power Plant Search Result Tank Complex Search Result

UUR SAND 2018-2803 PE

UVM/SNL UVM/SNL
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Refinery Search

Question: Where are fossil fuel 
and chemical refineries?

Processing Tower
Type: Building, with Details
Not circular
20 m2   A    2,5   m2

hmax      m

n Î  5, ∞ 

Tank
Type: Tank

n Î  1 , ∞ 

Tank
Type: Tank

n Î  1 , ∞ 

UUR SAND 2018-2803 PE

UVM/SNL UVM/SNL

UVM/SNLDigitalGlobe©2015/SNL

Large refineries:
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New Complexes
Question: Where are complexes 

of new buildings?

2006* 2011
≤ 40 m

Arelative ≤ 
1.5× 

Eccentricityrelative ≤ 
1.5× 

Constructed
Data: Building
Exists now
A ≥ 100 m2

New, Extended, Changed
n Î [5, ∞]

* Image from DigitalGlobe.
Other Image data provided by UVM.

UUR SAND 2018-2803 PEUVM/SNL

UVM/SNL
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Desirable House Search
Question: Where are houses with multiple trees, a pleasant walk to a park, not near traffic?

Search:

Batch:
▪ Road path segment.
▪ Building, with height.
▪ Paved chunk.

Components:

▪ Short building.

▪ Tall building.

▪ Residential housing.

▪ Shaded house.

▪ Grass+Trees complex.

▪ Park.

▪ Traffic magnet.

Ensemble:
▪ Shaded house near Park, 

not near Traffic magnet.

< 120 ft

≥ 12  ft

≥ 2 trees

Small houses,
no tall buildings

Grass+Trees,
near houses

Large buildings 
near parking lots

UUR SAND 2018-2803 PE UVM/SNL
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Desirable House Search

Are these parks, or not?

Proper segmentation may depend on legal property 

boundaries, which are invisible in overhead imagery.

UUR SAND 2018-2803 PE

UVM/SNL



41

Overview

▪ Motivation.

▪ System Description.

▪ Examples.

▪ Evaluation.

▪ Summary.

UUR SAND 2018-2803 PE
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Evaluation: Data

Data corpus:

▪ Systematic requirements.

▪ Commercially available.

▪ Anywhere in the world.

▪ Large area tested (2,289 km2).

▪ Multiple types: Airborne vs. satellite, LIDAR vs. satellite.

All tanks found Adjacent tanks blurred Building corners rounded

LiDAR Height Map Satellite Height Map Satellite Height Map

UUR SAND 2018-2803 PE

UVM/SNL Vricon©2015/SNLUVM DigitalGlobe©2015 Vricon©2015/SNLDigitalGlobe©2015
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Evaluation: Image Processing
Comments on image processing:

▪ Successful.

▪ Systematic approach.

▪ Best use of each modality.

▪ Effective use of height data, IR.

▪ Quality varies with data, manual tuning.

▪ Quantitative accuracy estimated for some cases (LLNL, led by Randy Roberts).

▪ Several lessons learned.  Examples:

▪ Wide variation in surface spectral properties.

▪ Wide variation in surface illumination/reflection.

▪ Temporal aliasing.

▪ (See following slides.)

▪ Others are making significant strides.
Example:  DigitalGlobe/PSMA continent-scale landcover for Australia.

UUR SAND 2018-2803 PE
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Evaluation: Image Processing
Spectral variation in material: water water

water

water

UUR SAND 2018-2803 PE
LLNL+LANL

UVM LLNL+LANL

UVM
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Evaluation: Image Processing
Spectral variation due to illumination:

Variation along road

UUR SAND 2018-2803 PE

LLNL+LANL
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Evaluation: Image Processing
Temporal aliasing:

Buildings seen in previous tree locations.

LiDAR Optical (Later Date) Resulting Landcover

UUR SAND 2018-2803 PE

LLNL+LANL/SNL LLNL+LANL/SNL UVM/SNL
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Template design 15 min

Run 3 min

Render and review 30 min

Total 48 min
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Evaluation: Template Preparation
How long does it take to design a template?

▪ User studies of template design not performed yet.

▪ Power plant – developed over years, mixed with code development.

▪ Tank complex – quick, easy.

▪ Refinery – easy, some iteration.

▪ Measured example:
Where are tank complexes near water?

* Manual setup.
(no user interface)

*

*

n Î  1, ∞ 

Tank Complex
Type: Tank Complex
Tank Complex
Type: Tank Complex

HUB

Tank Complex
Type: Tank Complex

HUB

Body of Water
Type: Body of Water
Body of Water
Type: Body of Water

UUR SAND 2018-2803 PE

UVM/SNL

UVM/SNL
UVM/SNL

UVM/SNL

UVM/SNL
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Fossil Fuel

Electric

Power Plant Tank Complex Refinery

Tank Complex

Near Water

True Positives 16 76 4 30

False Positives 60 29 0 4

False Negatives 1 ? ? ?

Precision 21% 72% 100% 88%

True positives

before first false
10 28 4 10

False positives 

before last true
6 / 20 27 / 103 0 / 4 4 / 34

Evaluation: Search

Cautions:

▪ Cueing system:

▪ Groups treated as one match      .

▪ Within-match errors not counted      .

▪ Small number of query experiments.

▪ A measure of the query, not the system.

A

A

B

B

Missing
coal pile

Similar 
facilities

52

24

32%

13

4 /20

24

81

77%

32

22 / 103

1

33

97%

31

1 / 34

Green = includes serendipitous

UUR SAND 2018-2803 PE

UVM/SNL

UVM/SNL



49

Evaluation: Run Time

Total

(sec)

Rate

(sec/km2)

Batch:

Graph Construction 7,334 3.2

Batch Search 36,408 15.9

Interactive:

Power Plant Search 784 0.34

Power Plant Search

(ensemble only)
234 0.10

Tank Complex Search 80 0.03

Refinery Search 274 0.12

Tank Complex Near Water 358 0.16

0

50

100

150

200

250

300

350

400

450

0 200,000 400,000 600,000 800,000 1,000,000 1,200,000 1,400,000

Ti
m

e 
(s

ec
)

Nodes

Interactive Search Run Time

Power Plant

PP Ensemble

Refinery

Tank Complex

Number of Locations 62

Total Pixels 2.3  109

Total Area 2,289 km2

Initial Graph Nodes 3,328,055

Initial Graph Edges 7,071,644

Objects/km2 172 - 3,701

Number of Steps, All Searches 22

Total GeoSearch Runs 1,364

Total Run TimeProblem Size

UUR SAND 2018-2803 PE
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Evaluation: Scope
What range of problems can we solve?

Issues:

▪ Feature Robustness. Does search goal include difficult objects?
Buildings are more reliable than ground-level features.  
Larger objects are typically more robust.

▪ Data Semantic Adequacy. Does data contain required information?
Example: Building interior features are not visible.

▪ Segment Semantic Relevance. Does segmentation match question of interest?
Undersegmentation: Paved region vs. parking lots, two towers connected by a breezeway.
Oversegmentation: River interrupted by bridges.
Lack of segment information: Invisible property boundaries needed.

▪ Environment Difficulty. How many similar, undesired items are in the environment?

▪ Search Goal Variation. Requires thoughtful template design.

Best results for search goals:

• Large components which do not change frequently.

• Classes robustly recognized by image processing.

• An environment with few visually similar elements. 

• Improved if goal has multiple visible identifying components. 

• Improved with special image processing for key features.

UUR SAND 2018-2803 PE
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Evaluation: Other Applications
Ephemeral Activity Analysis:

▪ Ephemeral nodes.

▪ Spatiotemporal relationships.

▪ Activity pattern search.

Trajectory Analysis:

▪ Moveable object nodes.

▪ Trajectory nodes.

▪ Special distance calculations.

▪ Special trajectory subset handling.

L3 N3

CTC

Contractor Tracks

New Building

Lawn

Ga1 Ba1 R1 Bb1 Gb1

Ga2

Ga3 Ba3

VTA

VTB

VTC

(-¥,1] [1,2)

(2,3] [3,+¥) (2,3] [3,+¥)

(-¥,1] [2,3) (-¥,1] [3,+¥) (-¥,1] [3,+¥) (-¥,1] [3,+¥)

(1.2, 1.3)

(1.6, 1.7)

(3.1, 3.2)

(1,2] [2,3) (1,2] [2,3)

D2

B

R

R R

B

B

B

G

G

G

G

A

E

V

V

V

V
V

V
V

Durable Nodes
Building
Grass
Road

Ephemeral Nodes
Accident
Exhibit

Movable Nodes
Vehicle

B

G

R

A

E

V

Brost, Perkins, Czuchlewski. Activity Analysis with Geospatial-Temporal Semantic Graphs. Sandia Report SAND2015-10455, December 2015.
Perkins, Ray, Brost.  Geospatial-Temporal Semantic Graph Models of Trajectories.  Sandia Report SAND2015-8592, November 2015 (OUO).
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Evaluation: Relation to Other Systems
Geospatial-Temporal Semantic Graphs:

▪ Representation Generality. Multiple modalities, hierarchical semantics, geospatial and 
temporal relationships, variety of attributes and constraints.

▪ Ease of Query Design. Modular graphical queries vs. complex nested join statements.  
(Caveat: User studies not performed yet.)

▪ Search Flexibility. Variable topology, heterogenous elements, controllable cardinality.  
Star graph, connected component, path connectivity, nested structure.

▪ User-Driven Focus. Hierarchical semantics, edge construction follow search desires.

▪ Problem Flexibility. Wide-area search, Activity analysis, Trajectory analysis.

GeoGraphy code:

▪ Multi-Modality Data. Raster images and tables points.  (Shape files not supported.)

▪ Edge Semantics. Distance, Adjacency, Change, ComponentOf, WithinMatch, multiple constraints.

▪ Lazy-Evaluated Distance Edges. Avoids O(n2) complexity.

▪ Segment Transformation Operations. Chunking, path network, grow/shrink.

▪ Automatic Provenance Management. Lookup of raw source information for regions.

▪ Search Algorithms. Star graph, connected component, source-to-sink path, disconnected star.

▪ Storing Search Results Back Into Graph. Includes semantic ComponentOf and WithinMatch edges.

UUR SAND 2018-2803 PE
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Overview

▪ Motivation.

▪ System Description.

▪ Examples.

▪ Evaluation.

▪ Summary.

UUR SAND 2018-2803 PE
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Key Ideas
▪ Data  primitive objects  StoredGraph | query  relevant objects  SearchGraph matches.

▪ Search based on semantic properties, not particular geometry or layout.

▪ Data semantics (StoredGraph) transform to user question semantics (SearchGraph).

▪ Segment transformation operations. Chunking, agglomeration (grow/shrink), path network,…

▪ Search writeback. Modular queries, faster interaction, user-driven semantics, increased scope.

▪ Quality scoring.

▪ Base on simple objects.

▪ Use geospatial location and time as registration anchors.

▪ Mixed modality: regions, points, multiple sensors, durable, ephemeral, trajectories.

▪ Variable-topology templates.

▪ Simple graph search algorithms: Star graph, connected component, interrupted star.

▪ Dynamic multi-attribute relationship specification (e.g., relative time, area, etc).

▪ Lazy-evaluate edges, complex attributes  user-driven computation focus.

▪ Durable change representation, chronology.

▪ Ephemeral activity extension.

▪ Trajectory extension.

▪ Systematic approach to image capture (UVM, USGS, DigitalGlobe, Vricon).

▪ Systematic approach to image processing (UVM).

▪ Support images anywhere in the world.
UUR SAND 2018-2803 PE
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Hypothesis 1:  Graph can enable “search engine” for overhead imagery?

Yes, we can construct a general-purpose search capability.

+ Rank results by match quality to user goal.

+ Segment transformation can improve semantic adequacy.

+ Search writeback  complex semantics, simpler queries, faster response.

+ Results for several examples.

+ Graph offers improvements over basic database approaches.

+ Multiple uses, including:  Wide-area search, Activity analysis, and Trajectory analysis.

– Ease of query writing not yet understood.

– Limited by semantic adequacy of objects, and confusers in the environment (question-specific).

– Limited by image processing (see Hypothesis 2).

Hypothesis 2:  Automatic image processing can find basic objects (buildings, trees, water,…)?

Yes, we can construct a general-purpose image processing capability.

+ Clear image capture requirements.

+ Anywhere in the world, but with varying quality.

+ Fully automatic processing  Several successful search examples.

– Quality varies by feature type.

– Quality depends on 3-d height map.

– Quality with manual intervention much higher than fully automated.

– Subset of imagery usable.

– Quality vs. temporal resolution tradeoff.

Scope:
Best results for search goals with:
▪ Large components which do not change frequently.
▪ Classes robustly recognized by image processing.
▪ An environment with few visually similar elements. 
▪ Improved if goal has multiple visible identifying components. 
▪ Improved with special image processing for key features.

Notes:

▪ Image processing progress by several groups.

▪ Time analysis is an open frontier.

▪ User interface, code architecture work needed.

▪ See report SAND 2017-8687 for full details.

Summary

UUR SAND 2018-2803 PE
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Image Credits
All of the overhead image data presented here are available to the public, either free 
from sources such as the U.S. Geological Survey (USGS), or for purchase from commercial 
vendors such as DigitalGlobe and Vricon.  We also include Google Map images.  

Images were provided by colleagues at the University of Vermont (UVM), Lawrence 
Livermore National Laboratory (LLNL), and Los Alamos National Laboratory (LANL), who
in turn obtained the imagery from USGS, other public sources, and from DigitalGlobe
and Vricon.

Image credits appear throughout the presentation, listing the data provider.  If the image 
contains annotations, the annotation source is also listed.  Thus “UVM/SNL” indicates the 
data was provided by UVM, and annotations were created by Sandia National 
Laboratories (SNL).

Images with data source marked “LLNL+LANL” are from the Benchmark Data Suite 
assembled by Lawrence Livermore and Los Alamos.  For a description of this data set, see:

White, et al. Benchmark imagery for assessing geospatial semantic content 
extraction algorithms. Technical Report LLNL-TR-645052, Lawrence Livermore 
National Laboratory, October 2013.

We gratefully thank our colleagues for their help obtaining these data.

Images of the Monongahela River oil spill courtesy the Pittsburgh Post-Gazette.
Copyright © 2018, all rights reserved.  Reprinted with permission.
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BACKUP SLIDES

UUR SAND 2018-2803 PE



58

Normalized Height Map Construction

Digital Elevation Model

(DEM)

Normalized Digital Surface Model

(nDSM)

Digital Surface Model

(DSM)

Data provided by Jarlath O’Neil-Dunne at the University of Vermont Spatial Analysis Lab.UUR SAND 2018-2803 PE
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Example Geospatial Semantic Graph

Independence Hall, Philadelphia:

E1 E2

E3

E4

E5

E6

E7

E8

E9

E1
0

E12

E17 E13

E14

E11

E29

E28 E30
E20

E21

E22

E23 E2
4

E25

E26

E2
7

E1
4

E12

E15

E13

E1
6 E18

E1
9

E3
2

E33

E3
4

E35

E36

E31

E37

B1

B2
B3

B4 B5

B6
B7

B8

G1

G2

G3

G4

R1

R2

R3

R4

R5

R6

R7

OP1

P1

P2

P3 P4

id type area centroid x centroid y

B1 building 3200 -75.14900 39.94939

R1 road 1800 -75.14910 39.94949

OP1 paved 4700 -75.14935 39.94934

G1 grass 22000 -75.15010 39.94944

R2 road 1900 -75.15060 39.94999

R3 road 1100 -75.14885 39.94934

R4 road 2200 -75.14980 39.94924

B2 building 780 -75.15045 39.94931

B3 building 6000 -75.15075 39.94944

B4 building 12000 -75.14895 39.94884

B5 building 2100 -75.14920 39.94899

G2 grass 7700 -75.14990 39.94906

R5 road 870 -75.15065 39.94896

B6 building 2000 -75.15000 39.94889

B7 building 3150 -75.15040 39.94884

G4 grass 15300 -75.15080 39.94869

R6 road 1970 -75.14905 39.94844

G3 grass 25000 -75.14960 39.94829

R7 road 1810 -75.15050 39.94834

B8 building 2700 -75.15090 39.94819

Region node table:

Edge table:
edge_id node_1 node_2

E1 B1 R1

E2 R1 OP1

E3 OP1 G1

E4 G1 R2

E5 G1 B2

E6 R2 B3

E7 R3 B1

E8 OP1 R4

E9 R4 G1

.

.

.

.

.

.

.

.

.

id Name Address Latitude Longitude

P1 Consulate of Italy 150 S. Independent Mall West #1026 -75.14895 39.94884

P2 Congress Hall 41 N 6th Street -75.14920 39.94899

P3 Independence Hall 520 Chestnut Street -75.15000 39.94889

P4 Graduate School USA 150 S. Independence Mall West #674 -75.15090 39.94819

Point node table:

Google©2014/SNL
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Representing Change Over Time

▪ Encode change:

▪ Node attributes include duration seen.

▪ Only construct new nodes for changes.

▪ “Changed-to” arcs encode time evolution.

▪ Graph complexity focuses on change areas.

t=1

t=2

t=3

UUR SAND 2018-2803 PE
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Signature Search

▪ A signature encodes a desired question.

▪ Example: “Where are buildings with nearby grass, pavement, and dirt?

Building

Grass

Pavement

Dirt

Query Template

t=1

t=2

t=3

Search Results

UUR SAND 2018-2803 PE
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Landcover 1 Aux 2 Table’ A Aux 3

Data Sources Table A

Landcover 2 Landcover 3

LIDAR GISEO

Preprocess

LIDAR GISEO LIDAR GISEO

Preprocess PreprocessSetup
(Manual)

Match 5Match 1 Match 2 Match 3 Match 4

SearchGraph

GeoSearch

Analyst GeoQuestion

StoredGraph

AddToStoredGraph

Primary Data Flow

UUR SAND 2018-2803 PE
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Graph Search

Initial implementation [Watson 2010]:

▪ Subgraph isomporhism.

▪ NP-complete!  [Cook 1971, Ullmann 1976]

Current approach:

▪ Identify relevant portion of StoredGraph.

▪ Lazy constraint, distance edge evaluation, with caching.

▪ Simple graph search algorithms:
▪ Star graph.
▪ Connected component.
▪ Interrupted star, using transitive closure.

▪ Postprocessing calculations.

[Cook 1971] S. A. Cook, "The Complexity of Theorem-Proving Procedures," 3rd ACM Symposium on Theory of Computing, pp. 151–158, 1971.

[Ullmann 1976] J. R. Ullmann, "An Algorithm for Subgraph Isomorphism," Journal of the ACM 23(1), pp. 31–42, 1976.

 Watson 2 1   J. P. Watson, “Complex Signature Detection Using Geospatial/Temporal Semantic Graphs,” Simulations, Algorithms, and Modeling 
Program Review Meeting (SAM2010), April 2010.
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Match Ambiguity
Example high school search:

UUR SAND 2018-2803 PE

Classroom

Gymnasium Parking

Football

Classroom

Gymnasium

Parking

Football

Classroom

Classroom

Gymnasium

Gymnasium Parking

Football

11,000 m2

10,000 m2

10,000 m2

9,500 m2

d ≤
 100 m

d ≤ 400 m

1 m
 ≤ d ≤ 200 m

Gymnasium
Data: Building
4,000 m2 ≤ A ≤  20,000 m2

n Î [0, ∞]  (optional)

Football Field
Data: Grass/Shrub
8,000 m2  ≤ A ≤  10,000 m2

n Î [1, ∞]

Parking Lot
Data: Other Paved
1,000 m2 ≤ A ≤  50,000 m2

n Î [1, ∞]

Classroom Building
Data: Building
6,000 m2 ≤ A ≤  35,000 m2

HUB

StoredGraph:

SearchGraph:

Matches:

Match grouping provides 

a practical solution.
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Land Cover

5 km0

Optical Image

5 km0

LiDAR nDSM

Philadelphia 2008
Primary input:

Pixel size 0.1 m
307,531 × 330,033 pixels

(101.5 Gpix)
7,669 MB

Pixel size 0.3 m
89,540 × 100,294 pixels

(9.0 Gpix)
2,084 MB

Pixel size 0.3 m
89,548 × 100,303 pixels

(9.0 Gpix)
8,775 MB

Image data provided by the University of Vermont. UUR SAND 2018-2803 PE

UVM

UVM
UVM
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Washington, DCPhiladelphia, PAAnne Arundel County, MD

5 km05 km05 km0

Three Data Regions
Largest input images:

2,067
135 billion
3.6 million

km2 total area
Pixels
Features

Total:

Total file size was about 88 GB.

Image data provided by the University of Vermont. UUR SAND 2018-2803 PE

UVM
UVM

UVM
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Large Refinery Search
SearchGraph, before heterogeneous complex search:

Processing Tower (magenta)
Tank (red)

4,909
371

Image data provided by UVM.

Processing Tower
Data: Building
Not circular
20 m2 ≤ A ≤  5,000 m2

hmax ≥ 15 m

≤ 200 m

n Î [10, ∞]

≤ 200 m ≤ 200 m

Tank
Data: Building
Circular
150 m2 ≤ A ≤  3,000 m2

n Î [10, ∞]

Slightly different template than 

above (an earlier version).

UUR SAND 2018-2803 PEUVM/SNL
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Large Refinery Search

Raw data points/pixels

Land cover pixels

Regions

Graph nodes

Buildings

Medium size buildings

Tank candidates

Tank complexes

Large refineries

101,495,378,523

8,981,933,044

1,133,822

1,133,822

154,062

87,170

371

28

2

0
0

False positives
False negatives

Image data provided by UVM.

Graph search result:

Processing Tower
Data: Building
Not circular
20 m2 ≤ A ≤  5,000 m2

hmax ≥ 15 m

≤ 200 m

n Î [10, ∞]

≤ 200 m ≤ 200 m

Tank
Data: Building
Circular
150 m2 ≤ A ≤  3,000 m2

n Î [10, ∞]

Slightly different template than 

above (an earlier version).

UUR SAND 2018-2803 PEUVM/SNL
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Recap
We have demonstrated:

▪ Imagery + LiDAR + GIS  Land cover  O’Neil-Dunne 2012].

▪ Sequence  Geospatial-temporal graph.

▪ Spatial search: power plants, refineries, high schools…

▪ Spatial-temporal search: change, construction complexes…

▪ Over a wide area (2,067 km2, 135 billion pixels, 3.6 million graph nodes).

▪ Multi-modality.

▪ Quality scoring.

 O’Neil-Dunne 2 12  O’Neil-Dunne, et al, An object-based system for LiDAR data fusion and feature extraction, Geocarto (28), pp. 227–242, 2012.

We have NOT shown:

▪ Continent-scale robust image supply and pre-processing.

▪ Recognition scope.

▪ Complex temporal analysis.

▪ Open issues:  
Multiple hypotheses, match ambiguity, scale.
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