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ABSTRACT 
This report presents the results of a collaborative effort under the Verification, Validation, and 
Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience 
Model (NAERM) program.  The goal of the effort described in this report was to integrate the 
Dakota software with the NAERM software framework to demonstrate sensitivity analysis of 
a co-simulation for NAERM.   
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ACRONYMS AND DEFINITIONS 
 

Abbreviation Definition 
SNL  Sandia National Laboratories 

PNNL Pacific Northwest National Laboratory 

LLNL Lawrence Livermore National Laboratory 

LANL Los Alamos National Laboratory 

DOE U.S. Department of Energy 

NAERM North American Energy Resilience Model 

VVUQ  Verification, Validation, and Uncertainty Quantification 

UQ Uncertainty Quantification 

SA  Sensitivity Analysis 

Dakota 
Software tool developed at SNL for UQ/SA/calibration/optimization/surrogate 
modeling, etc.  

HELICS 

Hierarchical Engine for Large-scale Infrastructure Co-Simulation.  Software 
developed at PNNL for running two or more simulations in a tightly integrated 
framework. 

BES Bulk Electric System 

WECC Western Electricity Coordination Council 

HPC High Performance Computing System 

MPI Message Passing Interface 

PGA Peak Ground Acceleration 

USGS  United States Geological Survey 
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1. INTRODUCTION 
This report summarizes work done under the Verification, Validation, and Uncertainty 
Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM) 
Program.   The specific task of interest described in this report is focused on integrating the Dakota 
software developed at Sandia National Laboratories with the NAERM co-simulation software 
framework.   To perform this task, Dakota was coupled with a sample NAERM co-simulation use 
case involving a BES model and threat model.  The focus of this task is to demonstrate the 
capability of a NAERM model such as a co-simulation to be run in “ensemble mode” where many 
instances of the co-simulation are able to be launched to perform a parameter study for sensitivity 
analysis.  The initial goal is to use Dakota as the sample generation framework and the NAERM 
software to drive the co-simulation.   

Dakota provides a suite of uncertainty quantification (UQ) and sensitivity analysis (SA) methods.   
The NAERM software framework is a series of microservices that work together to model, co-
simulate and analyze different aspects of integrated energy and other interdependent infrastructure 
systems.  Co-simulation refers to two or more simulations (e.g. BES and natural gas) which are 
synchronized and passing data bi-directionally.   HELICS is a framework for running “co-
simulations” leveraged by the NAERM software framework and allows multiple simulations to be 
coupled tightly.  Loose coupling would mean running one simulation (e.g. natural gas) to completion 
and feeding the results to the next simulation (e.g. BES).   Tight coupling refers to synchronizing the 
time stepping so that it is consistent between the simulations and running the simulations 
concurrently, passing information back and forth at each time step.  The goal is to demonstrate 
Dakota-NAERM integration by running a Dakota sampling study on a co-simulation, thus 
generating an “ensemble” or set of NAERM co-simulation runs.  

While this report focuses on a specific implementation, we want to emphasize that the goal is to 
provide an example of a capability that can be widely used in NAERM.  Dakota has many different 
SA and UQ algorithms.  The HELICS co-simulation core within NAERM can be used to couple 
various types of simulations although this example focuses on a BES and threat model to 
demonstrate the software coupling between Dakota and NAERM.  The goal here is to show a 
particular example that can be extended in different ways, depending on the NAERM models of 
interest.  

The report outline is as follows:  Section 2 provides an overview of the individual software tools 
Dakota and NAERM.  Section 3 provides an overview of the software coupling, including 
capabilities and scripts that were used.  Section 4 demonstrates a simple parameter study with 
Dakota and a NAERM co-simulation run using HELICS.  Section 5 provides a summary with ideas 
for next steps.  

 

  



 

8 

2. SOFTWARE 
This section describes the two software frameworks that were used in this analysis.  

2.1. Dakota 
Dakota is a suite of iterative mathematical and statistical methods that interface to computational 
simulations [Adams, 2020].  Dakota’s goal is to make parametric explorations of simulations 
practical for a computational design-analyze-test cycle. Dakota is an open-source software toolkit 
(https://dakota.sandia.gov) and has algorithms for optimization, uncertainty quantification (UQ), 
parameter studies, and model calibration.   

Dakota has been used for a wide variety of uncertainty quantification and sensitivity analysis studies, 
including of nuclear fuel performance [Gamble, 2016; Pastore, 2014]; computational fluid dynamics 
[Delchini, 2018], constitutive model material properties [Portone, 2019], and geologic repository 
performance assessment [Stein, 2019].   Of particular interest to NAERM is the extensive suite of 
uncertainty analysis methods in Dakota, including sampling methods (Monte Carlo, Latin 
Hypercube Sampling, quasi-Monte Carlo methods), design of experiments, fractional and full 
factorial designs, reliability methods, stochastic expansion methods such as polynomial chaos, 
epistemic uncertainty approaches including interval analysis and Dempster-Shafer evidence 
calculations, and Bayesian calibration methods including a wide variety of Markov Chain Monte 
Carlo methods).  These are summarized in [Swiler, Adams, Eldred 2015]. 

Dakota is a separate executable code from the simulation being analyzed.  Dakota communicates 
and runs a model many times, as shown in Figure 2-1.  The mechanics of how this is done can vary 
depending on which Dakota method is chosen (e.g. in a sampling study, the samples can be 
determined a priori and run concurrently but in an optimization study, subsequent evaluations will 
depend on prior evaluations in the optimization search), the platform on which the simulation is 
being run and if the simulation can run on multiple processors, etc.   

In a typical study, Dakota specifies the input parameters at which the model should be run.   The 
model is run with those parameter values and the resulting quantities of interest (QoIs) are returned 
to Dakota as shown in Figure 2-1.  Note that the “model” being driven by Dakota in the lower 
block in Figure 2-1 can be anything:  a simulation model, a surrogate model such as a polynomial 
regression or a neural network model, or more advanced models that we have in Dakota.  For the 
purposes of this report, the model is assumed to be a NAERM co-simulation model.  

To provide more detail about how Dakota actually runs the model in the case of a simulation:   
Dakota writes a parameters file that contains one value for each variable to be varied in the 
simulation.  In a typical use case, Dakota invokes an “interface script” which requires two command 
line arguments:  the filesystem path/names of the parameters file and the results file.  This interface 
script must be created by the Dakota user.  It performs three tasks:  

1. Pre-processing: Create the simulation input using values from the Dakota parameters file 

2. Run:  Run the simulation based on the input 

3. Post-processing: Extract scalar quantities of interest (responses) from simulation output and 
write them to the Dakota results file 
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Figure 2-1. Overview of Dakota and its interaction with a simulation model 
 

More detail about the specific interface script for HELICS is provided in Section 3.   

 

 

2.2. NAERM Co-simulation Framework 
The NAERM capability consists of a series of microservices which are coordinated to model, 
simulate and analyze the integrated energy system and other interdependent critical infrastructure at 
a national scale. A key component of this analysis is a co-simulation engine, which leverages 
HELICS. The Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) is a 
flexible and scalable open-source co-simulation framework designed to integrate simulators designed 
for separate domains to simulate regional and interconnection-scale power system behaviors.  
Websites:  https://helics.org, https://store.pnnl.gov/content/helics. In the context of the NAERM 
software, HELICS is used to couple various infrastructure models by wrapping domain simulators in 
“Federates,” which communicate at each timestep over the HELICS message bus. The Federates are 
each embedded in separate microservices which are launched upon co-simulation start. The 
HELICS co-simulation is kicked-off via a series of RESTful API requests to the relevant 
microservices. In addition to the Federate microservices, several other microservices are required, 
including one for the HELICS Broker (which coordinates between the Federates) and several 
modeling, analytical and database management services. 
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In a NAERM co-simulation, any number of models can be coordinated via HELICS, although for 
this simple proof-of-concept, only two models were used: one for the BES and a simple threat 
model. Because the entire NAERM framework was used for this example, it can be easily extended 
in the future for different use cases involving other models. For our simple use case, the threat 
model was used to publish generator outages to the BES model using HELICS and then the BES 
model uses PowerWorld to solve the BES base case with the generator outages applied and reports 
any bus voltage or line overload violations. 
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3. COUPLING DAKOTA AND NAERM CO-SIMULATIONS  
This section describes the interfacing and scripts used to couple Dakota and NAERM co-
simulations.   

3.1. Required capabilities for generating ensemble runs 
We first describe the capabilities necessary for generating an ensemble of runs with the NAERM 
software.  Note that this is a fairly generic list, not linked to Dakota.  

1. Capability to take a list of desired samples from an external code (e.g. Dakota, PSUADE, 
GPMSA, Matlab, R, etc.) and run a NAERM co-simulation model at each of the input sample 
points. 

a.  Note:  some SA/UQ approaches can generate the sample list a priori (e.g. with N samples) 
and then one can launch the N samples independently.  This is a “non-adaptive” mode.  
Other algorithms will require generating the samples “in-the-loop”, so that one sample is 
generated at a time, and based on the results of that sample(s), the algorithm decides what the 
next samples are.  This is an “adaptive” mode.  Examples are optimization, importance 
sampling, or surrogate model refinement methods where samples are placed adaptively in 
regions of interest.  For this report, we use non-adaptive mode. 

2. Develop a clean interface to pass parameters into the NAERM co-simulation and the relevant 
simulation models being coordinated with HELICS and extract the results.  

a.  Note:  this assumes that the “driving” application such as Dakota can generate samples 
over parameter sets for all models defined in the co-simulation (e.g. a natural gas and electric 
grid model).   

b.  In terms of the responses, we need the capability to obtain the results from the models 
involved in the co-simulation.  There may be the need to perform interpolation or 
aggregation so that the results are on the same timescales. Again, for this simple use case, 
results from only one of the models was used (the BES model). 

3. Framework: This relies on the Dakota workflow, but the steps are fairly generic.   For each 
sample of model parameters:  

a.  Create a working directory tagged with the sample number.  Copy or soft-link all relevant 
files (e.g. mesh files, executables, boundary conditions, etc.) to that directory.  

b.  Substitute the parameter values in the sample into the input decks for the relevant code.   

c.  After the input deck is created, it is necessary to launch a NAERM co-simulation in the 
working directory.  It would be helpful to have some error codes so that if a particular code 
fails with a given set of sample inputs, it can be identified and the codes don’t just hang.  

d.  After the co-simulation is run, it is necessary to postprocess the results and return the 
relevant quantities of interest to both simulations.  

 

3.2. Dakota generation of ensemble runs 
This section describes the generation of an ensemble of simulation runs using Dakota.  This is a 
particular instantiation of the requirements discussed in Section 3.1 above.  
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Figure 3-1 shows the outline of the Dakota-NAERM workflow for one sample.  In this figure, we 
see that Dakota itself requires a text input file.  This is a file which describes the variables and 
responses for the study, the Dakota method (e.g. sampling, parameter study, optimization method, 
etc.), and other configuration settings for Dakota.   

 

 

 

Figure 3-1. Dakota-NAERM workflow 
 

Once Dakota is run, it generates a parameters file for each simulation run as shown in yellow in 
Figure 3-1.  The parameters file contains the actual sample values for that particular run.  This 
parameter file is then called by an analysis_driver script.  This is a script that the Dakota user must 
create:  everything in the light blue box is orchestrated by the analysis_driver script.   

The analysis_driver script first must do some preprocessing to substitute the Dakota sampled 
parameter values into the input decks for the NAERM co-simulation.  This is typically done with a 
text processing script provided by Dakota called dprepro (Dakota PreProcessing).  The dprepro 
script takes a labeled parameter, e.g. my_param1, and substitutes into a template file if it is marked 
up with some delimiter.   Another way to extract Dakota-selected parameter values is to use a 
Python utility called “di” for Dakota input.   

 



 

13 

An example of the Dakota input file (called dakota_naerm_earthquake.in for this particular study) is 
given in Figure 3-2.  This would be invoked by running the command where “dakota” refers to 
the Dakota executable, -i specifies the Dakota input file name, and -o specifies the Dakota output 
file name. 

dakota -i dakota_naerm_earthquake.in -o dakota_naerm.out 

 

Figure 3-2.  Dakota input file:   dakota_naerm_earthquake.in 
 

The study shown in Figure 3-2 involves sampling two variables, an index to a fragility curve (there 
are four fragility curves) and a replication number (1-10).  The sampling is done as a 
multidimensional parameter study, specified in the Dakota method block as 
“multidim_parameter_study.”  This method involves specifying the number of partitions per 
variable (e.g. 3 partitions means four actual values are sampled between the lower and upper bound 
of the variables).   

environment 
method_pointer = 'PSTUDY' 
tabular_data 
tabular_data_file = 'naerm_cosim_earthquake.dat' 
 
method, 
id_method = 'PSTUDY' 
multidim_parameter_study 
partitions = 3 9 
 
 
variables, 
discrete_design_range = 2 
lower_bounds = 1 1 
upper_bounds = 4 10 
descriptor     'fragility_curve_option' 'replicate_num' 
 

interface, 
fork 
analysis_drivers = 'python.exe dakota_naerm_cosim.py' 
parameters_file = 'params.in' 
results_file = 'results.out' 
 

responses, 
num_objective_functions = 1 
no_gradients 
no_hessians 
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Each sample that Dakota generates will be processed by the “analysis_driver” in the interface block. 
These are the steps outlined in the blue dotted box in Figure 3-1.  For NAERM, a Python script 
called dakota_naerm_cosim.py will be executed.  This Python script is shown in Figure 3-3.  

Figure 3-3 lists the steps involved in the NAERM setup (steps 1-5) and results processing (steps 6-
8):  

1. Launch the Kubernetes pods for each co-simulation iteration 

2. Parse the Dakota input file with the Python di tool (see the di.read line and subsequent 
extraction of the Dakota parameter values) 

3. Use the fragility curve value to select the appropriate fragility curve and sample it to 
determine which generators will be turned off 

4. Update the Federate launch RESTful API requests to reflect the iteration name (for 
collecting the results later) and the outaged generators to be published by the threat model 

5. Send the Federate and Broker launch requests to kick-off the co-simulation 

6. Read in the results file listing voltage and current violations for the final co-simulation 
timestep 

7. Clean up files from the co-simulation iteration 

8. Return the number of violations to Dakota (as an example output of interest) 

 

For this particular use case, an additional shell script was used to run set-up steps that only need to 
occur once and not for each co-simulation iteration. This includes clearing any output from previous 
Dakota-NAERM runs, starting up a dummy data service, starting up the PowerWorld service, and 
then launching Dakota. 

A dummy data service was created for this Dakota-NAERM proof-of-concept, to avoid overloading 
the real NAERM database. It consists of a simple Python module which spins up an aiohttp service, 
redirects the output from the BES and threat model microservices to this service, and writes output 
to a format which can be used by the analysis_driver script described above. 
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 #!/usr/bin/env python 
# Dakota will execute this script as 
#  dakota_naerm_cosim.py params.in results.out 
#  The command line arguments will be extracted by dakota.interfacing automatically. 
 
import os 
import subprocess 
import sys 
import socket 
import time 
import json 
import numpy as np 
from http import HTTPStatus 
import dakota.interfacing as di 
from dakota_utils import query_case, send_post_requests 
import multiprocessing 
import pandas as pd 
import random 
 
 
ROOT_DIR = os.path.dirname(os.path.realpath(__file__)) 
PW_DIR = os.path.join(ROOT_DIR, '..', 'powerworld_service', 'src') 
 

if __name__ == "__main__": 
    # Required to allow query_case call to work in a process 
    multiprocessing.freeze_support() 
 
    # -------------------------- 
    # Start k8s pods 
    # -------------------------- 
    subprocess.call(['kubectl', 'apply', '-f', 'data/input/naermcosim_cr.yaml']) 
    time.sleep(60) 
 
    # ---------------------------- 
    # Parse Dakota parameters file 
    # ---------------------------- 
 
    params, results = di.read_parameters_file() 
    frac_curve_num = params['fragility_curve_option'] 
    replicate = params['replicate_num'] 
    print(f'\nRunning NAERM cosim with fragility curve: {frac_curve_num}, replicate {replicate}') 
 
    # ------------------------------- 
    # Convert and send to application 
    # ------------------------------- 
    # Sample generators to be outaged based on probabilities 
    frag_curves = pd.read_csv(os.path.join(ROOT_DIR, 'data', 'input', 
                                           'gens_with_failure_probs_wecc_san_andreas.csv')).fillna(0) 
    col_name = f'FOR_{frac_curve_num}' 
    frag_curves['gen_out'] = frag_curves.apply(lambda x: random.choices([1, 0], [x[col_name], 1-x[col_name]])[0],  
                                               axis=1) 
    gen_out_list = frag_curves.loc[frag_curves['gen_out'] == 1, 'Name'].to_list() 
 
    # Write list of outaged generators to file 
    with open(os.path.join('data', 'output', 'outaged_gens.dat'), 'a') as f: 
        f.write(f'curve: {col_name}, replicate: {replicate}, gens: {gen_out_list}\n') 
 
    # Read in launch json files and replace cosim_uuid, powerflow filename,  and outages 
    # Read in base launch json files 
    with open(os.path.join(ROOT_DIR, 'data', 'input', 'bes_base.json')) as f: 
        bes_json = json.load(f) 
    with open(os.path.join(ROOT_DIR, 'data', 'input', 'threat_base.json')) as f: 
        threat_json = json.load(f) 
    with open(os.path.join(ROOT_DIR, 'data', 'input', 'broker_base.json')) as f: 
        broker_json = json.load(f) 
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Figure 3-3.  Dakota_naerm_cosim.py file:  interface script between Dakota and the NAERM 
software framework execution  

    # Replace cosim uuids 
    cosim_uuid = 'dakota_test' 
    bes_json['cosim_uuid'] = cosim_uuid 
    threat_json['cosim_uuid'] = cosim_uuid 
    broker_json['cosim_uuid'] = cosim_uuid 
    bes_json['name'] = f'bes_{frac_curve_num}_{replicate}_outages' 
    threat_json['name'] = f'threat_{frac_curve_num}_{replicate}_outages' 
 
    # Replace powerflow file 
    bes_json['powerflow_options']['powerflow_file'] = os.path.join( 
        ROOT_DIR, 'data', 'input', 'power_flow_file.pwb') 
 
    # Replace outages 
    threat_json['outage_data']['wecc_bes'] += [ 
        {"id": gen_id, "asset_type": "generator", "time_step": 0} for gen_id in gen_out_list] 
 
    # Launch cosim via API requests 
    service_host = 'localhost' 
    response, service = send_post_requests(service_host, broker_json, bes_json, 
                                           threat_json) 
    if response.status != 200: 
        raise Exception(f'Could not send launch requests to federates, ' 
                        f'error for {service} > 'f'{response.data}') 
 
    # ---------------------------- 
    # Return the results to Dakota 
    # ---------------------------- 
    # Load output powerflow cases to get number of violations 
    time.sleep(2) 
    num_violations = None 
    data_dir = os.path.join(ROOT_DIR, 'data', 'output') 
    while num_violations is None: 
        violations_filename = os.path.join(data_dir, f'violations_{bes_json["simulation_duration"]}.0.json') 
        if os.path.exists(violations_filename): 
            # Read in violations file 
            time.sleep(1) 
            with open(violations_filename, 'r') as f: 
                output_json = json.load(f) 
            # Check if case converged 
            if output_json["converged"]: 
                # Count violations from each asset type 
                num_violations = 0 
                for assets in output_json['assets']: 
                    violations = pd.Series(assets['ViolationType']) 
                    num_violations += violations[violations != ''].count() 
            else: 
                num_violations = -1 
 
        time.sleep(5) 
 
    # Delete violations files 
    violations_files = [file for file in os.listdir(data_dir) if 'violations' in file] 
    for file in violations_files: 
        os.remove(os.path.join(data_dir, file)) 
 
    # Results.responses() yields the Response objects. 
    for i, r in enumerate(results.responses()): 
        if r.asv.function: 
            r.function = num_violations 
 
    results.write() 
    subprocess.call(['kubectl', 'delete', 'cosim', 'abc123']) 
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Once the co-simulations are run and the quantities of interest are extracted through whatever post-
processing is needed, they must be passed back to Dakota in a file called the results file (the green 
box in Figure 3-1).  This is a flat ASCII text file with a simple format:  one response per line.  Once 
Dakota obtains the results file for a particular sample, it will generate the next sample.  If the runs 
can be performed concurrently, Dakota has a wide variety of parallel options so that multiple 
batches of runs can be launched by Dakota concurrently.   This will depend on the platform on 
which the simulation is run, the job submission system if it is a high-performance computing 
platform (HPC), and if the simulation itself requires multiple processors and uses MPI.  For the 
purposes of this report, we assumed that the NAERM study requires multiple processors and MPI, 
but Dakota launches the samples serially.  
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4. RESULTS 
In this section, we present the results of a simple sensitivity analysis study to demonstrate the 
Dakota-NAERM integration.   The sensitivity analysis involved an earthquake threat to the WECC 
power grid.  We selected a sample earthquake from the USGS scenario catalog 
(https://earthquake.usgs.gov/scenarios/catalog/). Each event has simulated ground motion data for 
a hypothetical earthquake event. Here, we are using an event that occurs along the San Andreas fault 
line, namely, the San Andreas (Mojave S) event, with a magnitude of 7.38 and an epicenter located at 
34.51492 degrees latitude, -118.02401 degrees longitude. The earthquake threat model takes as input 
a number of fragility curves for different component types. Each curve maps a level of ground 
motion intensity (here, in the form of peak ground acceleration, or PGA) to the probability of failure 
for a specific component type. For example, we have different fragility curves depending on whether 
a generator is large or small, anchored or unanchored for seismic stability. We also have fragility 
curves to represent transmission tower failures, substation failures, and gas pipeline failures, but for 
our demonstration here, we are only dealing with generator failures in the WECC.   We performed a 
parameter study where we chose four different fragility curves and assigned that same curve to every 
generator in the system and varied the choice of fragility curve (curves 1-4 representing different 
failure probabilities based on PGA) to then use to assign failure probabilities to each individual 
generator.  From these probabilities, we can draw random samples to represent a single set of 
generator failures. We generate ten replicates per fragility curve because the sampling of outages 
based on the fragility curve is stochastic, so we get different component outages for each sample of 
a particular fragility curve.  This combination of fragility curves times replicates makes 40 total 
samples.  The sample design is shown below:  

 

Fragility Curve Replicates 

1 10 

2 10 

3 10 

4 10 
Table 4-1.  Sampling study over replicates of fragility curves 

 

This experimental design is simple, and the choice of fragility curves used here is not realistic but 
was instead chosen to show variability among levels of sensitivity. In a realistic application, each 
component would be assigned the proper fragility curve based on the asset type and construction. 
Here, the purpose of this study was to illustrate the Dakota-NAERM coupling and provide an 
example for the types of larger sampling studies that can be performed.  The results presented here 
are meant to be illustrative of sensitivity and uncertainty studies.   We caution against 
overinterpreting these results:  a larger, more inclusive study would need to be undertaken for a 
comprehensive analysis of earthquake threat to the power grid.  Again, this is a simple study meant 
to demonstrate the sampling capabilities.   

Figure 4-1 provides a map of a San Andreas earthquake peak ground acceleration values, together 
with the location of WECC generators (black dots). There are several assets that are exposed to the 
highest levels of PGA, with many others in a lower risk zone as indicated by low PGA values in 
yellow.  

https://earthquake.usgs.gov/scenarios/catalog/
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Figure 4-1.  Map of a San Andreas earthquake.  
 

The NAERM co-simulation use-case was run on all forty simulations of the WECC grid based on 
the sampling study defined in Table 4-1, using PowerWorld to solve the WECC powerflow case at 
each timestep of each simulation.   The number of violations resulting from the earthquake-induced 
generator outages and the number of generators which experienced outages in each of the forty runs 
were output.  Figure 4-2 shows a discrete histogram and smoothed density plot of the number of 
generators out for each fragility curve.  Due to the small number of replicates (10) for each fragility 
curve, the histograms are a bit sparse, so we recommend not overinterpreting the density of the 
number of generators out.  However, this type of analysis shows what can be performed given 
realistic earthquake scenarios and a larger number of replicates, which will better represent the range 
of expected outcomes.  
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Figure 4-2.  Histogram of number of generators out (left plot) per each fragility curve and 
corresponding smoothed probability density function (right plot) for the sampling study 

performed. 
 

Figure 4-3 shows a scatterplot of the number of generators out vs. number of violations, colored by 
fragility curve.   Note that the overall correlation between number of generators out and number of 
violations was not that high:  0.48.  Figure 4-3 shows that Fragility curve 3 had the most outages and 
the most violations:  it was the most extreme scenario.  

 

 

Figure 4-3.  Number of generators out vs. Number of violations 
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Figure 4-4 shows a main effects analysis.  In a main effects analysis, one is interested in looking at 
differences in mean values of the output (in this case, the number of generators out or number of 
violations) per treatment level (fragility curve).   

  

Figure 4-4.  Main effects analysis for generators out (left panel) and number of violations (right 
panel). 

 

Figure 4-4 shows that fragility curve 3 results in the largest number of the average generators out 
(52.9) and also the largest number of mean violations (7.9).  This is consistent with Figure 4-3.  
Further, one can use a main effects analysis to identify if the differences in the mean number of 
generators out or mean number of violations are statistically significant across fragility curves.  Table 
4-2 shows that fragility curves 1 and 3 result in a different mean number of generator failures but 
fragility curves 2 and 4 have a mean number of generators out that cannot be distinguished from 
each other.  This is shown by the letters grouping together the means that cannot be distinguished 
according to the Tukey test.  That is, although fragility curve 2 has an average of 22.1 generators out 
and fragility curve 4 has an average of 28.2 generators out, the variance in these estimates is not 
small enough to identify them from separate populations.  For number of violations, the analysis 
shows a different result:  Fragility curve 3 and 4 cannot be considered to have a different number of 
mean violations, but we also see that fragility curves 1, 2, and 4 cannot be clearly distinguished in 
terms of their mean number of violations.   This is due to a relatively large variance in the mean 
estimates of number of violations as shown in Figure 4-3 (the variance of the mean contributes to 
the 95% confidence intervals shown).   

 
Number of generator outages:  Tukey test 

Grouping Information Using the Tukey Method and 95% Confidence 

Fragility 
Curve N Mean Grouping 
3 10 52.90 A 

  

1 10 35.20 
 

B 
 

4 10 28.20 
  

C 

2 10 22.10 
  

C 

Means that do not share a letter are significantly different. 
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Number of violations:  Tukey test 
Grouping Information Using the Tukey Method and 95% Confidence 

Fragility 
Curve N Mean Grouping 

3 10 7.900 A 
 

4 10 7.300 A B 

1 10 6.900 
 

B 

2 10 6.800 
 

B 
Means that do not share a letter are significantly different. 

Table 4-2.  Main effects analysis for number of generators out and number of violations 
 

We now examine the number of violations and generators out for each of the fragility curves in 
more detail.  Figure 4-5 shows a scatterplot of the violations and generators out for each replicate.  

  

 

Figure 4-5.  Number of violations (left panel) and generators out (right panel) for each of the 
fragility curves.  

 

Figure 4-5 shows an important finding:  although each stochastic replicate of a fragility curve 
resulted in a unique number of generators out (right panel of Figure 4-5), these generator outages 
mapped to only a few instances of violations.  For example, the generator outages for fragility curves 
2 and 4 both mapped to only two unique number of violations (e.g. fragility curve 2 led to 6 or 7 
violations).  Further analysis shows that of the ten replicates for fragility curve 2, eight of the 
replicates had 7 violations and two had 6 violations, resulting in a mean outage of 6.8 for fragility 
curve 2 as shown in the main effects table in Table 4-2.  Similarly, seven of the ten replicates of 
fragility curve 4 had 7 violations and only three had 8 violations.  Fragility curve 3 had the widest 
range of number of violations.  
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Finally, we examined the actual generators that failed.  As expected, the generators that had higher 
failure probabilities according to the fragility curves had a larger number of failures in the ten 
replicates, as shown in Table 4-3.  

 

Generator Fragility 1 Fragility 2 Fragility 3 Fragility 4
Gen. 29454 Probability of failure 0.251 0.164 0.378 0.158

Number failed (out of 10) 3 2 4 1
Gen. 29490 Probability of failure 0.021 0.011 0.032 0.027

Number failed (out of 10) 0 0 0 1  

Table 4-3.  Example generators with respective failure probabilities for the four fragility curves and 
corresponding number of failures in ten replicates.  

 

As mentioned previously, the four distinct fragility curves used here were chosen to demonstrate the 
type of analysis possible when coupling Dakota with the NAERM co-simulation platform. In a 
realistic earthquake scenario, each component in the system would be assigned the fragility curve 
most appropriate for it, instead of using the same curve for all assets across the board. Thus, the 
main takeaway should focus on the type of questions that can be answered with this sensitivity 
analysis and sampling capability. The results shown here surrounding specific generators and 
violations will not be representative of an actual earthquake event.  
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5. SUMMARY 
This report summarizes work done under the VVUQ Thrust of the NAERM program to integrate 
the Dakota software with the NAERM co-simulation software framework.    As documented in this 
report, Dakota was coupled with a sample NAERM co-simulation use case involving a BES model 
and threat model to perform sensitivity analysis.  The demonstration of sensitivity analysis involved 
an earthquake threat to the WECC power grid, where replicates from different fragility curves were 
sampled to generate failures of different components based on the failure probabilities defined by 
the fragility curve and the ground motion intensity.  

The sensitivity analysis showed the range of outcomes (numbers of generators out and number of 
violations) based on the sampling of the fragility curves.  Statistical analyses such as main effects 
analysis were performed, demonstrating that there are significant differences in the number of 
generator outages and the number of violations for different fragility curves.  There also was a 
moderate correlation between the number of generator outages and the number of violations.  We 
emphasize that this is simply an illustrative study: the four distinct fragility curves used here were 
chosen to demonstrate sensitivity analyses made possible when coupling Dakota with the NAERM 
co-simulation platform. The results shown here surrounding specific generators and violations will 
not be representative of an actual earthquake event.  In a realistic earthquake scenario, each 
component in the system would be assigned the fragility curve most appropriate for it, instead of 
using the same curve for all assets across the board.   

However, this analysis shows the potential for using these capabilities to address questions of 
interest to infrastructure planners and operators. For example, we can assess the range of expected 
grid impacts to answer questions about not only the worst-case scenario, but the most statistically 
likely scenarios. We can expand the scope to consider multiple earthquake events within a given 
region to assess the most vulnerable areas for seismic hazards when it comes to grid impacts. 
Additionally, we can use different fragility curves to study possible hardening investment decision-
making, comparing failure rates and grid impacts if generators and other assets are designed to the 
highest seismic standards or not. Combined with identification of the most vulnerable areas for an 
earthquake event, this can be used to select the optimal set of investments to minimize adverse 
impacts to the grid, should an earthquake occur. By targeting investments to the most critical 
components, grid planners can minimize their costs while ensuring overall system resilience in the 
face of earthquake hazards.  

This capability could be used to inform optimal planning across multiple hazards. We could, for 
example, simulate the expected failures due to both earthquakes and wildfires in a region, studying 
any joint vulnerabilities and therefore co-optimizing resilient investment strategies across hazard 
types. With advanced threat models and long-term hazard projections, planning decisions can 
accurately take these coupled vulnerabilities (and coupled uncertainties) into account.  

Lastly, when considering shorter planning timescales where major infrastructure upgrades may not 
be viable, this type of analysis could be used to inform operational planning. By varying the implicit 
dispatch and operational decisions in the power flow model and/or including corrective actions in 
the modeling, this type of statistical analysis could inform how the grid is operated to mitigate 
impact in the event of a major event.  

As a final note:  the sensitivity analysis here focused on an earthquake scenario.  Other threats and 
different questions can be addressed with the Dakota-NAERM coupling:  Dakota has several 
uncertainty analysis and optimization capabilities that can be used, depending on the question of 
interest.  We anticipate that the Dakota-NAERM framework will enable future studies involving the 
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generation of ensembles of models to address questions about probabilities of various outcomes, 
worst case scenarios, and effects of mitigations in a variety of settings.  
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