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ABSTRACT

This report presents the results of a collaborative effort under the Verification, Validation, and
Uncertainty Quantification (VVUQ) thrust area of the North American Energy Resilience
Model NAERM) program. The goal of the effort described in this report was to integrate the
Dakota software with the NAERM software framework to demonstrate sensitivity analysis of
a co-simulation for NAERM.
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ACRONYMS AND DEFINITIONS

Abbreviation Definition
SNL Sandia National Laboratories
PNNL Pacific Northwest National Laboratory
LLNL Lawrence Livermore National Laboratory
LANL Los Alamos National Laboratory
DOE U.S. Department of Energy
NAERM North American Energy Resilience Model
vvuQ Verification, Validation, and Uncertainty Quantification
uQ Uncertainty Quantification
SA Sensitivity Analysis
Software tool developed at SNL for UQ/SA/calibration/optimization/surrogate
Dakota modeling, etc.
Hierarchical Engine for Large-scale Infrastructure Co-Simulation. Software
developed at PNNL for running two or more simulations in a tightly integrated
HELICS framework.
BES Bulk Electric System
WECC Western Electricity Coordination Council
HPC High Performance Computing System
MPI Message Passing Interface
PGA Peak Ground Acceleration
USGS United States Geological Survey




1. INTRODUCTION

This report summarizes work done under the Verification, Validation, and Uncertainty
Quantification (VVUQ) thrust area of the North American Energy Resilience Model (NAERM)
Program. The specific task of interest described in this report is focused on integrating the Dakota
software developed at Sandia National Laboratories with the NAERM co-simulation software
framework. To perform this task, Dakota was coupled with a sample NAERM co-simulation use
case involving a BES model and threat model. The focus of this task is to demonstrate the
capability of a NAERM model such as a co-simulation to be run in “ensemble mode” where many
instances of the co-simulation are able to be launched to perform a parameter study for sensitivity
analysis. The initial goal is to use Dakota as the sample generation framework and the NAERM
software to drive the co-simulation.

Dakota provides a suite of uncertainty quantification (UQ) and sensitivity analysis (SA) methods.
The NAERM software framework is a series of microservices that work together to model, co-
simulate and analyze different aspects of integrated energy and other interdependent infrastructure
systems. Co-simulation refers to two or more simulations (e.g. BES and natural gas) which are
synchronized and passing data bi-directionally. HELICS is a framework for running “co-
simulations” leveraged by the NAERM software framework and allows multiple simulations to be
coupled tightly. Loose coupling would mean running one simulation (e.g. natural gas) to completion
and feeding the results to the next simulation (e.g. BES). Tight coupling refers to synchronizing the
time stepping so that it is consistent between the simulations and running the simulations
concurrently, passing information back and forth at each time step. The goal is to demonstrate
Dakota-NAERM integration by running a Dakota sampling study on a co-simulation, thus
generating an “ensemble” or set of NAERM co-simulation runs.

While this report focuses on a specific implementation, we want to emphasize that the goal is to
provide an example of a capability that can be widely used in NAERM. Dakota has many different
SA and UQ algorithms. The HELICS co-simulation core within NAERM can be used to couple
various types of simulations although this example focuses on a BES and threat model to
demonstrate the software coupling between Dakota and NAERM. The goal here is to show a
particular example that can be extended in different ways, depending on the NAERM models of
interest.

The report outline is as follows: Section 2 provides an overview of the individual software tools
Dakota and NAERM. Section 3 provides an overview of the software coupling, including
capabilities and scripts that were used. Section 4 demonstrates a simple parameter study with
Dakota and a NAERM co-simulation run using HELICS. Section 5 provides a summary with ideas
for next steps.



2. SOFTWARE

This section describes the two software frameworks that were used in this analysis.

21. Dakota

Dakota is a suite of iterative mathematical and statistical methods that interface to computational
simulations [Adams, 2020]. Dakota’s goal is to make parametric explorations of simulations
practical for a computational design-analyze-test cycle. Dakota is an open-source software toolkit
(https://dakota.sandia.gov) and has algorithms for optimization, uncertainty quantification (UQ),
parameter studies, and model calibration.

Dakota has been used for a wide variety of uncertainty quantification and sensitivity analysis studies,
including of nuclear fuel performance [Gamble, 2016; Pastore, 2014]; computational fluid dynamics
[Delchini, 2018], constitutive model material properties [Portone, 2019], and geologic repository
performance assessment [Stein, 2019].  Of particular interest to NAERM is the extensive suite of
uncertainty analysis methods in Dakota, including sampling methods (Monte Carlo, Latin
Hypercube Sampling, quasi-Monte Carlo methods), design of experiments, fractional and full
factorial designs, reliability methods, stochastic expansion methods such as polynomial chaos,
epistemic uncertainty approaches including interval analysis and Dempster-Shafer evidence
calculations, and Bayesian calibration methods including a wide variety of Markov Chain Monte
Carlo methods). These are summarized in [Swiler, Adams, Eldred 2015].

Dakota is a separate executable code from the simulation being analyzed. Dakota communicates
and runs a model many times, as shown in Figure 2-1. The mechanics of how this is done can vary
depending on which Dakota method is chosen (e.g. in a sampling study, the samples can be
determined a priori and run concurrently but in an optimization study, subsequent evaluations will
depend on prior evaluations in the optimization search), the platform on which the simulation is
being run and if the simulation can run on multiple processors, etc.

In a typical study, Dakota specifies the input parameters at which the model should be run. The
model is run with those parameter values and the resulting quantities of interest (Qols) are returned
to Dakota as shown in Figure 2-1. Note that the “model” being driven by Dakota in the lower
block in Figure 2-1 can be anything: a simulation model, a surrogate model such as a polynomial
regression or a neural network model, or more advanced models that we have in Dakota. For the
purposes of this report, the model is assumed to be a NAERM co-simulation model.

To provide more detail about how Dakota actually runs the model in the case of a simulation:
Dakota writes a parameters file that contains one value for each variable to be varied in the
simulation. In a typical use case, Dakota invokes an “interface script” which requires two command
line arguments: the filesystem path/names of the parameters file and the results file. This interface
script must be created by the Dakota user. It performs three tasks:

1. Pre-processing: Create the simulation input using values from the Dakota parameters file

2. Run: Run the simulation based on the input

3. Post-processing: Extract scalar quantities of interest (responses) from simulation output and
write them to the Dakota results file
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Figure 2-1. Overview of Dakota and its interaction with a simulation model

More detail about the specific interface script for HELICS is provided in Section 3.

2.2. NAERM Co-simulation Framework

The NAERM capability consists of a series of microservices which are coordinated to model,
simulate and analyze the integrated energy system and other interdependent critical infrastructure at
a national scale. A key component of this analysis is a co-simulation engine, which leverages
HELICS. The Hierarchical Engine for Large-scale Infrastructure Co-Simulation (HELICS) is a
flexible and scalable open-source co-simulation framework designed to integrate simulators designed
for separate domains to simulate regional and interconnection-scale power system behaviors.
Websites: https://helics.org, https://store.pnnl.gov/content/helics. In the context of the NAERM
software, HELICS is used to couple various infrastructure models by wrapping domain simulators in
“Federates,” which communicate at each timestep over the HELICS message bus. The Federates are
each embedded in separate microservices which are launched upon co-simulation start. The
HELICS co-simulation is kicked-off via a series of RESTful API requests to the relevant
microservices. In addition to the Federate microservices, several other microservices are required,
including one for the HELICS Broker (which coordinates between the Federates) and several
modeling, analytical and database management services.



https://store.pnnl.gov/content/helics

In a NAERM co-simulation, any number of models can be coordinated via HELICS, although for
this simple proof-of-concept, only two models were used: one for the BES and a simple threat
model. Because the entire NAERM framework was used for this example, it can be easily extended
in the future for different use cases involving other models. For our simple use case, the threat
model was used to publish generator outages to the BES model using HELICS and then the BES
model uses PowerWorld to solve the BES base case with the generator outages applied and reports
any bus voltage or line overload violations.
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3.

COUPLING DAKOTA AND NAERM CO-SIMULATIONS

This section describes the interfacing and scripts used to couple Dakota and NAERM co-
simulations.

3.1.

Required capabilities for generating ensemble runs

We first describe the capabilities necessary for generating an ensemble of runs with the NAERM
software. Note that this is a fairly generic list, not linked to Dakota.

1.

3.2.

Capability to take a list of desired samples from an external code (e.g. Dakota, PSUADE,
GPMSA, Matlab, R, etc.) and run a NAERM co-simulation model at each of the input sample
points.

a. Note: some SA/UQ approaches can generate the sample list a priori (e.g. with N samples)
and then one can launch the N samples independently. This is a “non-adaptive” mode.
Other algorithms will require generating the samples “in-the-loop”, so that one sample is
generated at a time, and based on the results of that sample(s), the algorithm decides what the
next samples are. This is an “adaptive” mode. Examples are optimization, importance
sampling, or surrogate model refinement methods where samples are placed adaptively in
regions of interest. For this report, we use non-adaptive mode.

Develop a clean interface to pass parameters into the NAERM co-simulation and the relevant
simulation models being coordinated with HELICS and extract the results.

a. Note: this assumes that the “driving” application such as Dakota can generate samples
over parameter sets for all models defined in the co-simulation (e.g. a natural gas and electric
grid model).

b. In terms of the responses, we need the capability to obtain the results from the models
involved in the co-simulation. There may be the need to perform interpolation or
aggregation so that the results are on the same timescales. Again, for this simple use case,
results from only one of the models was used (the BES model).

Framework: This relies on the Dakota workflow, but the steps are fairly generic. For each
sample of model parameters:

a. Create a working directory tagged with the sample number. Copy or soft-link all relevant
files (e.g. mesh files, executables, boundary conditions, etc.) to that directory.

b. Substitute the parameter values in the sample into the input decks for the relevant code.

c. After the input deck is created, it is necessary to launch a NAERM co-simulation in the
working directory. It would be helpful to have some error codes so that if a particular code
fails with a given set of sample inputs, it can be identified and the codes don’t just hang.

d. After the co-simulation is run, it is necessary to postprocess the results and return the
relevant quantities of interest to both simulations.

Dakota generation of ensemble runs

This section describes the generation of an ensemble of simulation runs using Dakota. This is a
particular instantiation of the requirements discussed in Section 3.1 above.
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Figure 3-1 shows the outline of the Dakota-NAERM workflow for one sample. In this figure, we
see that Dakota itself requires a text input file. This is a file which describes the variables and
responses for the study, the Dakota method (e.g. sampling, parameter study, optimization method,
etc.), and other configuration settings for Dakota.

DAKOTA Text Input - DAKOTA X DAKOTA Output:
File ) Executable | Text and Tabular Data
DAKOTA Parameters
File
1
I v

h 4 1
Pre-processing - Post-processing
Code Code
Input Output

0 3 e Data Services

Federate Services Simulator Services HELICS Broker Service

Figure 3-1. Dakota-NAERM workflow

Once Dakota is run, it generates a parameters file for each simulation run as shown in yellow in
Figure 3-1. The parameters file contains the actual sample values for that particular run. This
parameter file is then called by an analysis_driver script. This is a script that the Dakota user must
create: everything in the light blue box is orchestrated by the analysis_driver script.

The analysis_driver script first must do some preprocessing to substitute the Dakota sampled
parameter values into the input decks for the NAERM co-simulation. This is typically done with a
text processing script provided by Dakota called dprepro (Dakota PreProcessing). The dprepro
script takes a labeled parameter, e.g. my_param1, and substitutes into a template file if it is marked
up with some delimiter. Another way to extract Dakota-selected parameter values is to use a
Python utility called “di” for Dakota input.



An example of the Dakota input file (called dakota_naerm_earthquake.in for this particular study) is
given in Figure 3-2. This would be invoked by running the command where “dakota” refers to
the Dakota executable, -i specifies the Dakota input file name, and -o specifies the Dakota output
file name.

dakota -i dakota naerm earthquake.in -o dakota naerm.out

environment

method pointer = 'PSTUDY'

tabular data

tabular data file = 'naerm cosim earthquake.dat'

method,

id method = 'PSTUDY'
multidim parameter study
partitions = 3 9

variables,

discrete design range = 2

lower bounds =1 1

upper bounds = 4 10

descriptor 'fragility curve option' 'replicate num'

interface,

fork

analysis drivers = 'python.exe dakota naerm cosim.py'
parameters file = 'params.in'

results file = 'results.out'

responses,

num objective functions =1
no gradients

no hessians

Figure 3-2. Dakota input file: dakota_naerm_earthquake.in

The study shown in Figure 3-2 involves sampling two variables, an index to a fragility curve (there
are four fragility curves) and a replication number (1-10). The sampling is done as a
multidimensional parameter study, specified in the Dakota method block as
“multidim_parameter_study.” This method involves specifying the number of partitions per
variable (e.g. 3 partitions means four actual values are sampled between the lower and upper bound
of the variables).
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Each sample that Dakota generates will be processed by the “analysis_driver” in the interface block.
These are the steps outlined in the blue dotted box in Figure 3-1. For NAERM, a Python script
called dakota_naerm_cosim.py will be executed. This Python script is shown in Figure 3-3.

Figure 3-3 lists the steps involved in the NAERM setup (steps 1-5) and results processing (steps 6-
8):

1. Launch the Kubernetes pods for each co-simulation iteration

2. Parse the Dakota input file with the Python di tool (see the di.read line and subsequent
extraction of the Dakota parameter values)

3. Use the fragility curve value to select the appropriate fragility curve and sample it to
determine which generators will be turned off

4. Update the Federate launch RESTful API requests to reflect the iteration name (for
collecting the results later) and the outaged generators to be published by the threat model

5. Send the Federate and Broker launch requests to kick-off the co-simulation

6. Read in the results file listing voltage and current violations for the final co-simulation
timestep

7. Clean up files from the co-simulation iteration

8. Return the number of violations to Dakota (as an example output of interest)

For this particular use case, an additional shell script was used to run set-up steps that only need to
occur once and not for each co-simulation iteration. This includes clearing any output from previous
Dakota-NAERM runs, starting up a dummy data service, starting up the PowerWorld service, and
then launching Dakota.

A dummy data service was created for this Dakota-NAERM proof-of-concept, to avoid overloading
the real NAERM database. It consists of a simple Python module which spins up an aiohttp service,
redirects the output from the BES and threat model microservices to this service, and writes output

to a format which can be used by the analysis_driver script described above.

14



#!/ust/bin/env python

# Dakota will execute this script as

# dakota_naerm_cosim.py params.in results.out

# The command line atguments will be extracted by dakota.interfacing automatically.

import os

import subprocess

import sys

import socket

import time

import json

import numpy as np

from http import HTTPStatus
import dakota.interfacing as di
from dakota_utils import query_case, send_post_requests
import multiprocessing
import pandas as pd

import random

ROOT_DIR = os.path.dirname(os.path.realpath(__file_ ))
PW_DIR = os.path.join(ROOT_DIR, ., 'powerworld_service', 'src')

__main__ "

if __name___
# Required to allow query_case call to work in a process
multiprocessing.freeze_support()

subprocess.call(['’kubectl', 'apply', '-f', 'data/input/naermcosim_cr.yaml'])
time.sleep(60)

params, results = di.read_parameters_file()

frac_curve_num = params|['fragility_curve_option']

replicate = params|'teplicate_num']

print(f\nRunning NAERM cosim with fragility curve: {frac_curve_num}, replicate {replicate}")

#

# Convert and send to application

#

# Sample generators to be outaged based on probabilities

frag_curves = pd.read_csv(os.path.,join(ROOT_DIR, 'data, 'input’,
'gens_with_failure_probs_wecc_san_andreas.csv')).fillna(0)

col_name = fFOR_{frac_curve_num}'

frag_cutves|'gen_out'| = frag_curves.apply(lambda x: random.choices([1, 0], [x[col_name], 1-x[col_name]])[0],

axis=1)
gen_out_list = frag_curves.loc[frag_curves|'gen_out'] == 1, 'Name'].to_list()

# Wirite list of outaged generators to file
with open(os.path.join('data’, 'output, 'outaged_gens.dat'), 'a") as :
fowrite(f'curve: {col_name}, replicate: {replicate}, gens: {gen_out_list} \n')

# Read in launch json files and replace cosim_uuid, powetflow filename, and outages

# Read in base launch json files

with open(os.path.join(ROOT_DIR, 'data’, 'input’, 'bes_base.json")) as f:
bes_json = json.load(f)

with open(os.path.join(ROOT_DIR, 'data’, 'input’, 'threat_base.json")) as f:
threat_json = json.load(f)

with open(os.path.join(ROOT_DIR, 'data’, 'input’, 'broker_base.json')) as f:
broker_json = json.load(f)
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# Replace cosim uuids

cosim_uuid = 'dakota_test'

bes_json['cosim_uuid'] = cosim_uuid

threat_json['cosim_uuid'] = cosim_uuid

broker_json['cosim_uuid'| = cosim_uuid

bes_json['name'] = f'bes_{frac_curve_num}_{replicate}_outages'
threat_json['name'] = f'threat_{frac_curve_num}_{replicate}_outages'

# Replace powerflow file
bes_json['powerflow_options'] [ powerflow_file'| = os.path.join(
ROOT_DIR, 'data', 'input', 'power_flow_file.pwb')

# Replace outages
threat_json['outage_data'|['wecc_bes'] += |

{"id": gen_id, "asset_type": "generator", "time_step": 0} for gen_id in gen_out_list]
# Launch cosim via API requests
service_host = "localhost'
response, service = send_post_tequests(service_host, broker_json, bes_json,

threat_json)

if response.status 1= 200:

raise Exception(f'Could not send launch requests to federates, '

flerror for {service} > 'f'{response.data}")

# Load output powerflow cases to get number of violations
time.sleep(2)
num_violations = None
data_dir = os.path.join(ROOT_DIR, 'data', 'output’)
while num_violations is None:
violations_filename = os.path.join(data_dir, f'violations_ {bes_json["simulation_duration"]}.0.json")
if os.path.exists(violations_filename):
# Read in violations file
time.sleep(1)
with open(violations_filename, 't') as f:
output_json = json.load(f)
# Check if case converged
if output_json["converged"]:
# Count violations from each asset type
num_violations = 0
for assets in output_json['assets']:
violations = pd.Seties(assets['ViolationType'])
num_violations += violations|violations = "].count()
else:
num_violations = -1

time.sleep(5)

# Delete violations files
violations_files = [file for file in os.listdir(data_dir) if 'violations' in file]
for file in violations_files:

os.remove(os.path.join(data_dir, file))

# Results.responses() yields the Response objects.
for i, r in enumerate(results.responses()):
if r.asv.function:
r.function = num_violations

results.write()
subprocess.call(['kubectl', 'delete’, 'cosim', 'abc123'])

Figure 3-3. Dakota_naerm_cosim.py file: interface script between Dakota and the NAERM
software framework execution
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Once the co-simulations are run and the quantities of interest are extracted through whatever post-
processing is needed, they must be passed back to Dakota in a file called the results file (the green
box in Figure 3-1). This is a flat ASCII text file with a simple format: one response per line. Once
Dakota obtains the results file for a particular sample, it will generate the next sample. If the runs
can be performed concurrently, Dakota has a wide variety of parallel options so that multiple
batches of runs can be launched by Dakota concurrently. This will depend on the platform on
which the simulation is run, the job submission system if it is a high-performance computing
platform (HPC), and if the simulation itself requires multiple processors and uses MPI. For the
purposes of this report, we assumed that the NAERM study requires multiple processors and MPI,
but Dakota launches the samples serially.
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4, RESULTS

In this section, we present the results of a simple sensitivity analysis study to demonstrate the
Dakota-NAERM integration. The sensitivity analysis involved an earthquake threat to the WECC
power grid. We selected a sample earthquake from the USGS scenario catalog
(https://earthquake.usgs.gov/scenarios/catalog/). Each event has simulated ground motion data for
a hypothetical earthquake event. Here, we are using an event that occurs along the San Andreas fault
line, namely, the San Andreas (Mojave S) event, with a magnitude of 7.38 and an epicenter located at
34.51492 degrees latitude, -118.02401 degrees longitude. The earthquake threat model takes as input
a number of fragility curves for different component types. Each curve maps a level of ground
motion intensity (here, in the form of peak ground acceleration, or PGA) to the probability of failure
for a specific component type. For example, we have different fragility curves depending on whether
a generator is large or small, anchored or unanchored for seismic stability. We also have fragility
curves to represent transmission tower failures, substation failures, and gas pipeline failures, but for
our demonstration here, we are only dealing with generator failures in the WECC. We performed a
parameter study where we chose four different fragility curves and assigned that same curve to every
generator in the system and varied the choice of fragility curve (curves 1-4 representing different
failure probabilities based on PGA) to then use to assign failure probabilities to each individual
generator. From these probabilities, we can draw random samples to represent a single set of
generator failures. We generate ten replicates per fragility curve because the sampling of outages
based on the fragility curve is stochastic, so we get different component outages for each sample of
a particular fragility curve. This combination of fragility curves times replicates makes 40 total
samples. The sample design is shown below:

Fragility Curve Replicates
1 10
2 10
3 10
4 10

Table 4-1. Sampling study over replicates of fragility curves

This experimental design is simple, and the choice of fragility curves used here is not realistic but
was instead chosen to show variability among levels of sensitivity. In a realistic application, each
component would be assigned the proper fragility curve based on the asset type and construction.
Here, the purpose of this study was to illustrate the Dakota-NAERM coupling and provide an
example for the types of larger sampling studies that can be performed. The results presented here
are meant to be illustrative of sensitivity and uncertainty studies. We caution against
overinterpreting these results: a larger, more inclusive study would need to be undertaken for a
comprehensive analysis of earthquake threat to the power grid. Again, this is a simple study meant
to demonstrate the sampling capabilities.

Figure 4-1 provides a map of a San Andreas earthquake peak ground acceleration values, together
with the location of WECC generators (black dots). There are several assets that are exposed to the
highest levels of PGA, with many others in a lower risk zone as indicated by low PGA values in
yellow.
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Figure 4-1. Map of a San Andreas earthquake.

The NAERM co-simulation use-case was run on all forty simulations of the WECC grid based on
the sampling study defined in Table 4-1, using PowerWorld to solve the WECC powerflow case at
each timestep of each simulation. The number of violations resulting from the earthquake-induced
generator outages and the number of generators which experienced outages in each of the forty runs
were output. Figure 4-2 shows a discrete histogram and smoothed density plot of the number of
generators out for each fragility curve. Due to the small number of replicates (10) for each fragility
curve, the histograms are a bit sparse, so we recommend not overinterpreting the density of the
number of generators out. However, this type of analysis shows what can be performed given
realistic earthquake scenarios and a larger number of replicates, which will better represent the range
of expected outcomes.
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Figure 4-2. Histogram of number of generators out (left plot) per each fragility curve and
corresponding smoothed probability density function (right plot) for the sampling study
performed.

Figure 4-3 shows a scatterplot of the number of generators out vs. number of violations, colored by
tragility curve. Note that the overall correlation between number of generators out and number of
violations was not that high: 0.48. Figure 4-3 shows that Fragility curve 3 had the most outages and

the most violations: it was the most extreme scenatio.
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Figure 4-3. Number of generators out vs. Number of violations
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Figure 4-4 shows a main effects analysis. In a main effects analysis, one is interested in looking at
differences in mean values of the output (in this case, the number of generators out or number of
violations) per treatment level (fragility curve).
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95% Cl for the Mean 95% Cl for the Mean
60 85
+ 50 w 80
<
S g
0 ]
2 o
f) S 75
5 %
S ]
e}
) £ 70
= z
65
20
1 2 3 4 1 2 3 4
Fragility Curve Fragility Curve
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Figure 4-4. Main effects analysis for generators out (left panel) and number of violations (right
panel).

Figure 4-4 shows that fragility curve 3 results in the largest number of the average generators out
(52.9) and also the largest number of mean violations (7.9). This is consistent with Figure 4-3.
Further, one can use a main effects analysis to identify if the differences in the mean number of
generators out or mean number of violations are statistically significant across fragility curves. Table
4-2 shows that fragility curves 1 and 3 result in a different mean number of generator failures but
fragility curves 2 and 4 have a mean number of generators out that cannot be distinguished from
each other. This is shown by the letters grouping together the means that cannot be distinguished
according to the Tukey test. That is, although fragility curve 2 has an average of 22.1 generators out
and fragility curve 4 has an average of 28.2 generators out, the variance in these estimates is not
small enough to identify them from separate populations. For number of violations, the analysis
shows a different result: Fragility curve 3 and 4 cannot be considered to have a different number of
mean violations, but we also see that fragility curves 1, 2, and 4 cannot be clearly distinguished in
terms of their mean number of violations. This is due to a relatively large variance in the mean
estimates of number of violations as shown in Figure 4-3 (the variance of the mean contributes to
the 95% confidence intervals shown).

Number of generator outages: Tukey test
Grouping Information Using the Tukey Method and 95% Confidence

Fragility

Curve N Mean Grouping
3 10 5290 A

1 10 35.20 B

4 10 28.20 C
2 10 22.10 C

Means that do not share a letter are significantly different.
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Number of violations: Tukey test
Grouping Information Using the Tukey Method and 95% Confidence

Fragility

Curve N Mean Grouping
3 10 7.900 A

4 10 7300 A B

1 10 6.900 B

2 10 6.800 B

Means that do not share a letter are significantly different.

Table 4-2. Main effects analysis for number of generators out and number of violations

We now examine the number of violations and generators out for each of the fragility curves in
more detail. Figure 4-5 shows a scatterplot of the violations and generators out for each replicate.
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Figure 4-5. Number of violations (left panel) and generators out (right panel) for each of the
fragility curves.

Figure 4-5 shows an important finding: although each stochastic replicate of a fragility curve
resulted in a unique number of generators out (right panel of Figure 4-5), these generator outages
mapped to only a few instances of violations. For example, the generator outages for fragility curves
2 and 4 both mapped to only two unique number of violations (e.g. fragility curve 2 led to 6 or 7
violations). Further analysis shows that of the ten replicates for fragility curve 2, eight of the
replicates had 7 violations and two had 6 violations, resulting in a mean outage of 6.8 for fragility
curve 2 as shown in the main effects table in Table 4-2. Similarly, seven of the ten replicates of
fragility curve 4 had 7 violations and only three had 8 violations. Fragility curve 3 had the widest
range of number of violations.
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Finally, we examined the actual generators that failed. As expected, the generators that had higher

failure probabilities according to the fragility curves had a larger number of failures in the ten
replicates, as shown in Table 4-3.

Generator Fragility 1 Fragility 2 Fragility 3 | Fragility4

Gen. 29454  |Probability of failure 0.251 0.164 0.378 0.158
Number failed (out of 10) 3 2 4 1

Gen. 29490 Probability of failure 0.021 0.011 0.032 0.027
Number failed (out of 10) 0 0 0 1

Table 4-3. Example generators with respective failure probabilities for the four fragility curves and
corresponding number of failures in ten replicates.

As mentioned previously, the four distinct fragility curves used here were chosen to demonstrate the
type of analysis possible when coupling Dakota with the NAERM co-simulation platform. In a
realistic earthquake scenario, each component in the system would be assigned the fragility curve
most appropriate for it, instead of using the same curve for all assets across the board. Thus, the
main takeaway should focus on the type of questions that can be answered with this sensitivity
analysis and sampling capability. The results shown here surrounding specific generators and
violations will not be representative of an actual earthquake event.
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5. SUMMARY

This report summarizes work done under the VVUQ Thrust of the NAERM program to integrate
the Dakota software with the NAERM co-simulation software framework. As documented in this
report, Dakota was coupled with a sample NAERM co-simulation use case involving a BES model
and threat model to perform sensitivity analysis. The demonstration of sensitivity analysis involved
an earthquake threat to the WECC power grid, where replicates from different fragility curves were
sampled to generate failures of different components based on the failure probabilities defined by
the fragility curve and the ground motion intensity.

The sensitivity analysis showed the range of outcomes (numbers of generators out and number of
violations) based on the sampling of the fragility curves. Statistical analyses such as main effects
analysis were performed, demonstrating that there are significant differences in the number of
generator outages and the number of violations for different fragility curves. There also was a
moderate correlation between the number of generator outages and the number of violations. We
emphasize that this is simply an illustrative study: the four distinct fragility curves used here were
chosen to demonstrate sensitivity analyses made possible when coupling Dakota with the NAERM
co-simulation platform. The results shown here surrounding specific generators and violations will
not be representative of an actual earthquake event. In a realistic earthquake scenario, each
component in the system would be assigned the fragility curve most appropriate for it, instead of
using the same curve for all assets across the board.

However, this analysis shows the potential for using these capabilities to address questions of
interest to infrastructure planners and operators. For example, we can assess the range of expected
grid impacts to answer questions about not only the worst-case scenario, but the most statistically
likely scenarios. We can expand the scope to consider multiple earthquake events within a given
region to assess the most vulnerable areas for seismic hazards when it comes to grid impacts.
Additionally, we can use different fragility curves to study possible hardening investment decision-
making, comparing failure rates and grid impacts if generators and other assets are designed to the
highest seismic standards or not. Combined with identification of the most vulnerable areas for an
earthquake event, this can be used to select the optimal set of investments to minimize adverse
impacts to the grid, should an earthquake occur. By targeting investments to the most critical
components, grid planners can minimize their costs while ensuring overall system resilience in the
face of earthquake hazards.

This capability could be used to inform optimal planning across multiple hazards. We could, for
example, simulate the expected failures due to both earthquakes and wildfires in a region, studying
any joint vulnerabilities and therefore co-optimizing resilient investment strategies across hazard
types. With advanced threat models and long-term hazard projections, planning decisions can
accurately take these coupled vulnerabilities (and coupled uncertainties) into account.

Lastly, when considering shorter planning timescales where major infrastructure upgrades may not
be viable, this type of analysis could be used to inform operational planning. By varying the implicit
dispatch and operational decisions in the power flow model and/or including corrective actions in
the modeling, this type of statistical analysis could inform how the grid is operated to mitigate
impact in the event of a major event.

As a final note: the sensitivity analysis here focused on an earthquake scenario. Other threats and
different questions can be addressed with the Dakota-NAERM coupling: Dakota has several
uncertainty analysis and optimization capabilities that can be used, depending on the question of
interest. We anticipate that the Dakota-NAERM framework will enable future studies involving the
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generation of ensembles of models to address questions about probabilities of various outcomes,
worst case scenarios, and effects of mitigations in a variety of settings.
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