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ABSTRACT

Programmable accelerators have become commonplace in modern computing systems. Advances
in programming models and the availability of unprecedented amounts of data have created a
space for massively parallel accelerators capable of maintaining context for thousands of concur-
rent threads resident on-chip. These threads are grouped and interleaved on a cycle-by-cycle basis
among several massively parallel computing cores. One path for the design of future supercom-
puters relies on an ability to model the performance of these massively parallel cores at scale.

The SST framework has been proven to scale up to run simulations containing tens of thousands
of nodes. A previous report described the initial integration of the open-source, execution-driven
GPU simulator, GPGPU-Sim, into the SST framework. This report discusses the results of the
integration and how to use the new GPU component in SST. It also provides examples of what it
can be used to analyze and a correlation study showing how closely the execution matches that of
a Nvidia V100 GPU when running kernels and mini-apps.
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1. INTRODUCTION

As the architectures of high-performance computing (HPC) evolves, there is a growing need to
understand and quantify the performance and design benefits of emerging technologies. To com-
plicate the design space, the rise of General-Purpose Graphics Processing Units (GPGPUs) and
other compute accelerators, which are needed to handle the growing demands of compute-heavy
workloads, have become a necessary component in both high-performance supercomputers and
datacenter-scale systems. That the first exascale machines will leverage the massively parallel
compute capabilities of GPUs [11, 10, 14] is indicative of the growing necessity of accelerator-
based node architectures to obtain high compute throughputs. As the software stack and program-
ming model of GPUs and their peer accelerators continue to improve, there is every indication
that this trend of accelerator integration will continue, leading to a diverse ecosystem of technolo-
gies. GPUs are likely to continue to play a role as discrete accelerators or integrated as a part
of an SOC. As a result, architects who wish to study the design of large-scale systems will need
to evaluate system and software designs using a GPU model. However, the focus of all publicly
available cycle-level simulators (e.g. GPGPU-Sim [3]) to date has been on single-node perfor-
mance. In order to truly study the problem at scale, and to permit larger workloads to be evaluated,
a parallelizable, multi-node GPU simulator is necessary.

The Structural Simulation Toolkit (SST) [13] is a parallel discrete event-driven simulation frame-
work that provides an infrastructure capable of modeling a variety of high performance computing
systems at many different scales. Currently used by a wide variety of government agencies and
computer manufacturers to design and simulate HPC architectures, and, supported by a Python and
C++ code base with a large array of customization options, SST offers the HPC community pow-
erful, highly customizable, tools to create and integrate models for evaluating current and future
HPC node architectures and interconnect networks. What has been lacking, up to this point, has
been a method to integrate accelerators into a node model in SST. This report builds upon previ-
ous work [9], providing more details on our efforts to integrate an open-source GPGPU simulator,
GPGPU-Sim, into SST. This integration effort will provide SST users the ability to run GPGPU-
based simulations using the Balar GPU component and will serve as a model for future accelerator
integration studies.



2. GPGPU-SIM INTEGRATION WITH SST

The latest version of GPGPU-Sim is a (mostly) object-oriented design written in C++ with a sharp
delineation between the functional and timing models of the system. A high-level overview of the
organization is shown in Figure 2-1. The SIMT blocks can be thought of as NVIDIA-like Stream-
ing Multiprocessors (SMs) or AMD-like Compute Units (CUs). The interconnect is currently a
modified version of BookSim [12], which can model a variety of topologies, and the memory par-
tition is a custom model. The remainder of this section describes the integration of GPGPU-Sim
with SST.

Kernel Launch
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Figure 2-1. Overall GPGPU-Sim Architecture [3]

2.1, SCHEDULER

The first step in integrating GPGPU-Sim into SST is to handle the interaction with an SST CPU
component. Since GPUs today function solely as co-processors, functionally executing GPU-
enabled binaries requires the CPU to initialize and launch kernels of work to the GPU. In our
model, the GPU is constructed out of two types of discrete SST components —a CTA scheduler and
SM groups [2]. When CUDA functions are called from the CPU component, they are intercepted
and translated into messages that are sent over SST links to the GPU (along with the associated
parameters). Table 2-1 enumerates the CUDA API calls currently intercepted and sent to the GPU
components. These calls are enough to enable the execution of a number of CUDA SDK kernels,
DoE proxy apps as well as a collection of Kokkos Unit tests. Table 3-2 lists the number of Kokkos
unit tests that pass with our current implementation of SST-GPU, which is about 50%. There is
ongoing work with the PTX parser to increase the number of running kernels.
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Table 2-1. CUDA API Calls Forwarded to the GPU components. Sched
and SM represent CUDA calls sent to the scheduler or the SM groups.

CUDACall Sched | SM
__cudaRegisterFatBinary Yes | Yes
__cudaRegisterFunction Yes | Yes
cudaMalloc Yes No
cudaMemcpy Yes | No
cudaMemset Yes No
cudaConfigureCall Yes | Yes
cudaSetupArgument Yes | Yes
cudaFree Yes | No
cudaLaunch Yes | Yes
cudaGetLastError Yes No
cudaFuncSetCacheConfig Yes No
cudaSetDevice Yes | No
cudaGetDeviceCount Yes | No
cudaGetDeviceProperties Yes | No
_ cudaRegisterVar Yes | Yes
cudaOccupancyMaxActiveBlocksPerMultiprocessorWithFlags | Yes | No

Aside from the basic functional model provided by GPU-SST, an initial performance model has
also been developed. Figure 2-2 details the overall architecture. A CPU component (Ariel in the
initial implementation) is connected via SST links to 2 types of GPU components: a centralized
kernel and CTA scheduler (GPUSched) and SM Groups, which implement the timing and func-
tional model for the GPU cores. When CUDA calls are intercepted from the CPU, API commands
are sent to the CTA scheduler. When the scheduler launches a CTA for a kernel, CTA commands
are sent to the corresponding SM groups to execute. CUDA calls related to queuing kernels and
memory operations are handled by the scheduler, while execution related CUDA calls are redirect
to SM groups, since the functional model for executing the GPU CTAs lives inside the SM groups.
Table 2-1 shows where CUDA calls send to.

( SM Group
SM Group

GPUSched

API
command

CTA
command

SM SM | pppes——— SM

Figure 2-2. SST component architecture for CTA scheduler and SM groups

As CTAs complete on the SMs, commands are sent back to the GPU scheduler component, which
pushes new work to the SMs from enqueued kernels as needed. Memory copies from the CPU to
GPU address space are handled on a configurable page-size granularity, similar to how conven-
tional CUDA unified memory handles the transfer of data from CPU to GPU memories.

The centralized GPU scheduler receives kernel launch commands from the CPU, then issues CTA
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Figure 2-3. Centralized GPU scheduler component

launch commands to the SMs. The scheduler also receives notifications from the SMs when the
CTAs finish. The reception of kernel launch and CTA complete notifications are independent
Therefore we designed a different handler for each type of message. Figure 2-3 shows the design
of the centralized kernel and CTA Scheduler. The kernel handler listens to calls from a CPU com-
ponent and pushes kernel launch information to the kernel queue when it receives kernel configure
and launch commands. The SM launch table contains CTA slots for each of the SMs, which is
reserved when starting a CTA and released when a message indicating that a CTA has finished is
received from the SMs. The scheduler clock ticks trigger CTA launches to SMs, when space is
available and there is a pending kernel. On every cycle, the scheduler issues a CTA launch com-
mand for currently unfinished kernels if any CTA slot is available or tries to fetch a new kernel
launch from kernel queue. The CTA handler also waits for SMs to reply to the CTA finish message
so that CTA slots in the SM launch table can be freed.

2.2. STREAMING-MULTIPROCESSOR GROUPS

To support the GPGPU-Sim functional model, a number of the simulator’s overloaded CUDA
Runtime API calls were updated. Several functions that originally assumed the application and
simulator were within the same address space now support them being decoupled. Initialization
functions, such as __cudaRegisterFatBinary, now take paths to the original application to ob-
tain the PTX assembly of CUDA kernels.

Supporting the functional model of GPGPU-Sim also requires transferring values from the CPU
application to the GPU memory system. This is solved by leveraging the link between CPU/GPU
and memory hierarchy from SST, as shown in 2-4. Before actually storing values to memory,
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Figure 2-4. Data transfer flow for functional simulation

appropriate CPU memory and GPU memory spaces need to be allocated. As a matter of fact,
both CPU memory and GPU memory are physically pre-allocated, and their sizes are set in the
configuration file. Therefore, the rest of "allocation" just needs to avoid collision. A simple way to
do this is keeping a pointer to the current boundry of heap but at the cost of unable to free memory
chunks. CPU memory allocation is done by Ariel in the CPU simulation — an option argument
is set inside configuration file to intercept memory allocation, but other load/store instructions are
ignored to reduce simulation time. malloc is sent from application to Ariel and the MMU of
Ariel takes over to settle page allocation; while GPU memory allocation is completed by the GPU
Scheduler. Unlike the Ariel, there’s no MMU inside the GPU so the only thing cudaMalloc needs
to do is to move the pointer.

Data are transferred from the application to Ariel through inter-process communication tunnels
when cudaMemcpy is called. Ariel then communicates with the GPU scheduler through the CPU
memory. The GPU scheduler then writes the data to the GPU memory. When an SM requests
a piece of data, the SM accesses the GPU memory for it. The tunnels utilize 4KiB size as the
granularity, while the CPU and the GPU Scheduler employ larger size non-cacheable requests to
access to the CPU memory. When it comes to GPU memory, some particular attention needs to
be paid. The GPU Scheduler communicates with the GPU memory in partition size because only
one partition can be accessed at a single time. The SM transfers data to/from the GPU memory
in cache line size because store/load instructions manipulate data in cache line granularity (more
details in next paragraph).

To model GPU performance, the memory system of the public GPGPU-Sim is completely re-
moved. Instead, all accesses to GPU memory are sent though SST links to the MemHierarchy
interface. As Figure 2-5 shows, a multi-level cache hierarchy is simulated with the shared L2
sliced between different memory partitions, each with its own memory controller. Several backend
timing models have been configured and tested, including SimpleMem, SimpleDRAM, Timing-
DRAM, and CramSim [6]; CramSim will be used to model the HBM stacks in the more detailed
performance models. We have created an initial model for the GPU system similar to that found in
an Nvidia Volta. The configuration for the GPU, CramSim and Network components is shown in
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Listing 2.1.

Listing 2.1 Sample SST-GPGPU Configuration

[CPU]

clock: 2660MHz
num_cores: 1
application: ariel
max_reqgs_cycle: 3

[ariel]
executable: ./vectorAdd
gpu_mode: 2

[Memory]

clock: 200MHz
network_bw: 96GB/s
capacity: 16384MiB

[Network]
latency: 300ps
bandwidth: 96GB/s
flit size: 8B

[GPU]

clock: 1200MHz

gpu_cores: 80
gpu_l2_parts: 32
gpu_l2_capacity: 192KiB
gpu_cpu_latency: 23840ps
gpu_cpu_bandwidth: 16GB/s
num_sm_blobs: 1

[GPUMemory]
clock: 1GHz
network_bw: 32GB/s
capacity: 16384MiB
memControllers: 2
hbmStacks: 4
hbmChan: 4
hbmRows: 16384

[GPUNetwork]

latency: 750ps
bandwidth: 4800GB/s
linkbandwidth: 37.5GB/s
flit _size: 40B

14



2.3. GPGPU-SIM AS A LIBRARY

We use GPGPU-Sim simulator as a library to provide CTA scheduling and GPU core functionality.
GPU Scheduler and SM Group components invoke on GPGPU-Sim library (libcudart.so) with
internal API calls.

To support SST-GPU to run on one thread, on multiple threads, or on multiple processes on one
node or multiple nodes, we refactor GPGPU-Sim simulator to avoid static and global variables.
Instead, GPU components construct a GPU context data structure before using GPGPU-Sim library
so that each component can keep an individual context. Moreover, we design an option inside the
context data structure to manage the library in scheduler mode or SM mode. GPGPU-Sim library
works as a CTA scheduler to issue CTAs in scheduler mode and works as a group of GPU cores in
SM mode.

GPGPU-Sim simulator separates functional model with performance model, so the instruction
operations are simulated on the issue pipeline stage. However, the load-store unit (LSU) sends out
memory requests to the GPU memory hierarchy on the execution stage. This design breaks if SM
groups need to access GPU memory components. Therefore, we replay the memory instruction
operations after the data returned to LSU in SM mode.

The SST-GPU components call to GPGPU-Sim library for functionality, while GPGPU-Sim library
calls back to the GPU components for CTA command and memory accesses to GPU memory hi-
erarchy. However, we separate the compilation of GPGPU-Sim simulator and SST components so
that GPGPU-Sim can be compatible with the mainstream. To achieve the independent compila-
tion, we design the parent classes for scheduler and memory interface, so that the components can
rewrite to utilize the SST infrastructure.

( SM Group
SM Group
CPU API GPUSched CTA SM SM | SM
L command command
: T~ ] ] ' A
L1 L1 PCI L1 L1 L1 L1

L‘Z LZ‘PCI \ l l !
T Router
— — I

Router
L L2 L2 L2
DC
! 1 1 1
MEM MEM MEM MEM

CPU memory Y, L GPU memory

Figure 2-5. Timing and memory model for SMs component
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2.4, SST PARALLEL SIMULATION PERFORMANCE

To show the parallel simulation performance with SST-GPU, we split the V100 Volta GPU model
into 1, 2, and 4 SM groups and put each SM group in a single thread. To show the advantages
provided by parallel simulation, we use a modified version of the Vector Addition application from
the CUDA SDK and accumulate the input vector elements 2000 times to its output elements. Thus,
each thread spends more time computing instead of streaming through memory. To ensure there is
at least one CTA per SM, we launch 84 CTAs each with 256 threads.

Figure 2-6 shows the total time to run Vector Addition with the different numbers of SM groups.
We assign the host CPU and its memory to one thread and each of the SM group and its memory
hierarchy to a separate thread. The GPU scheduler is attached to the first SM group thread. We
achieve on average 5% speedup with 2 SM groups. Note that a significant amount of time is spent
due to initialization, configuration, and memory copies.
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Figure 2-6. SST-GPU total execution time with the different numbers of SM groups
for V100 Volta GPU, averaged over five runs and showing as well as the maximum
and minimum execution time
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3. PERFORMANCE ANALYSIS

This chapter is devoted to an analysis of the functional and timing models in SST when using the
GPU component as a part of a generalized compute node. Since GPUs in HPC function solely
as co-processors, functionally executing GPU-enabled binaries requires the CPU to initialize and
launch kernels of work to the GPU. Figure 2-5 shows the general simulation model used for the
evaluation. The command and data links serve as the transport mechanism for the CPU (host) to
launch and coordinate work with the GPU (device). The other components in each model can be
tailored to fit any host and device that one wishes to model.

3.1. FUNCTIONAL TESTING

The functional correctness of the model was validated using the unit tests from
the Kokkos Kernels suite [15]. The wunit tests were compiled using these pa-
rameters: KOKKOSKERNELS SCALARS=double, KOKKOSKERNELS LAYOUTS=left,
KOKKOSKERNELS_ORDINALS=int, KOKKOSKERNELS_OFFSETS=int, KOKKOSKER-
NELS_DEVICES=Cuda, and KOKKOS_ARCH=Pascal60. The target node architecture was as-
sumed to be an Intel Broadwell attached to an NVIDIA Pascal GPUs. This target architecture was
chosen based on hardware availability, specifically Sandia’s Doom cluster, which is based on the
CTS-1 procurement. The SST model is derived from Figure 2-5 using the model parameters in
Table 3-1 to represent an NVIDIA P100 SXM?2 [1].

Table 3-1. Broadwell/P100 Model Parameters

(a) CPU (b) GPU

Clock 1200MHz Clock 1328MHz

DDR Clock 2400 SMs 56

DDR Capactiy 16384MiB L2 Slices 8

Mesh Frequency 800MHz L2 Capactiy 512KiB per slice

Mesh Input Ports 1 HBM Capacity 16384MiB

Mesh Output Ports 1 HBM Stacks 4

Data Link Latency 23840ps Crossbar Frequency 1000MHz

Command Link Latency | 23840ps Crossbar Input Ports 2
Crossbar Output Ports 1

Table 3-2 shows the Kokkos Kernels unit tests that were run. With the current implementation
of SST-GPU, 46 out of 94 tests run to completion and pass. The passing tests are highlighted in
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green. Of the remaining tests, red tests fail in both SST-GPGPU and GPGPU-Sim due to a wrong
value produced during gpu funcitonal simulation, the cause of which is still unknown. The tests in
pink fail because the PTX parser cannot locate a post-dominator. There are plans to work with the
Kokkos Kernels developers to find a solution. The tests in yellow fail nondeterministically because
of a bug in the SST that randomly causes double free. The SST developers are working to isolate
the problem. The tests in blue did not exist in previous reports but now fail because the current
SST implemenation of the GPU model does not support the cudaCreateTextureObject function.
The three remaining tests, in purple, run to completion and pass in GPGPU-Sim but have run for
more than 7 days without completion in SST. It is believed that they would complete successfully
if given more run time.

Table 3-2. Kokkos Kernels Unit Test Results

1 | abs_double 48 | batched_scalar_serial_gemm_nt_t_double_double

2 | abs_mv_double 49 | batched_scalar_serial_gemm_t_t_double_double

3 | asum_double 50 | batched_scalar_serial_trsm_l_I_nt_u_double_double

4 | axpby_double batched_scalar_serial_trsm_I_I_nt_n_double_double

5 | axpby_mv_double 52 | batched_scalar_serial_trsm_l_u_nt_u_double_double

6 | axpy_double batched_scalar_serial_trsm_1_u_nt_n_double_double

7 | axpy_mv_double 54 | batched_scalar_serial_trsm_r_u_nt_u_double_double

8 | dot_double batched_scalar_serial_trsm_r_u_nt_n_double_double

9 | dot_mv_double batched_scalar_serial_trsm_I_I_t_u_double_double

10 | mult_double batched_scalar_serial_trsm_l_l_t_n_double_double

11 | mult_mv_double batched_scalar_serial_trsm_1_u_t_u_double_double

12 | nrm1_double batched_scalar_serial_trsm_1_u_t_n_double_double

13 | nrm1_mv_double 60 | batched_scalar_serial_gemv_nt_double_double

14 | nrm2_double 61 | batched_scalar_serial_gemv_t_double_double

15 | nrm2_mv_double 62 | batched_scalar_serial_trsv_l_nt_u_double_double

16 | nrm2_squared_double batched_scalar_serial_trsv_I_nt_n_double_double

17 | nrm2_squared_mv_double 64 | batched_scalar_serial_trsv_u_nt_u_double_double
nrminf_double batched_scalar_serial_trsv_u_nt_n_double_double
nrminf_mv_double batched_scalar_team_set_double_double
reciprocal_double 67 | batched_scalar_team_scale_double_double
reciprocal_mv_double 68 | batched_scalar_team_gemm_nt_nt_double_double

22 | scal_double 69 | batched_scalar_team_gemm_t_nt_double_double

23 | scal_mv_double 70 | batched_scalar_team_gemm_nt_t_double_double

24 | sum_double 71 | batched_scalar_team_gemm_t_t_double_double

25 | sum_mv_double 72 | batched_scalar_team_trsm_l_l_nt_u_double_double

26 | update_double 73 | batched_scalar_team_trsm_l_l_nt_n_double_double

27 | update_mv_double 74 | batched_scalar_team_trsm_l_u_nt_u_double_double

28 | gemv_double batched_scalar_team_trsm_l_u_nt_n_double_double

29 | gemm_double 76 | batched_scalar_team_trsm_r_u_nt_u_double_double
sparse_spgemm_double_int_int_TestExecSpace batched_scalar_team_trsm_r_u_nt_n_double_double
sparse_spadd_double_int_int_TestExecSpace batched_scalar_team_trsm_l_1_t_u_double_double
sparse_gauss_seidel_double_int_int_TestExecSpace batched_scalar_team_trsm_l_l_t_n_double_double
sparse_block_gauss_seidel_double_int_int_TestExecSpace batched_scalar_team_trsm_l_u_t_u_double_double
sparse_crsmatrix_double_int_int_TestExecSpace batched_scalar_team_trsm_I_u_t_n_double_double
sparse_blkcrsmatrix_double_int_int_TestExecSpace 82 | batched_scalar_team_gemv_nt_double_double
sparse_replaceSumIntoLonger_double_int_int_TestExecSpace 83 | batched_scalar_team_gemv_t_double_double
sparse_replaceSumInto_double_int_int_TestExecSpace 84 | batched_scalar_serial_lu_double
graph_graph_color_double_int_int_TestExecSpace batched_scalar_serial_inverselu_double
graph_graph_color_deterministic_double_int_int_TestExecSpace batched_scalar_serial_solvelu_double
graph_graph_color_d2_double_int_int_TestExecSpace 87 | batched_scalar_team_lu_double
common_ArithTraits batched_scalar_team_inverselu_double

42 | common_set_bit_count batched_scalar_team_solvelu_double

43 | common_ffs sparse_spmv_double_int_int_TestExecSpace

- batched_scalar_serial_set_double_double sparse_spmv_mv_double_int_int_LayoutLeft TestExecSpace

45 | batched_scalar_serial_scale_double_double sparse_spmv_mv_double_int_int_LayoutRight_TestExecSpace

46 | batched_scalar_serial_gemm_nt_nt_double_double sparse_trsv_mv_double_int_int_LayoutLeft_TestExecSpace

47 | batched_scalar_serial_gemm_t_nt_double_double sparse_trsv_mv_double_int_int_LayoutRight_TestExecSpace
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3.2. CORRELATION WITH VOLTA

A validation sweep was run using two kernels and a mini-app. The three applications were run
using an SST model that approximates a Nvidia V100 attached to a CPU. The simulation parame-
ters are shown in Table 3-3. The overall kernel runtime was compared with the results of running
the three applications through nvprof on Sandia’s Waterman testbed, which is comprised of IBM
Power9 CPUs and Nvidia Volta GPUs. Table 3-4 shows the total number cycles that each appli-
cation took on the SST-GPU model and on the native V100. Note that this is only cycles where
a kernel was running and does not include host execution time. There are challenges isolating
the cause of the performance gaps. This is one of the largest, if not the largest, node simulation
that has been run with 139 unique components and 906 links (the statistics output contains nearly
20k unique entries). The complex model interactions and scale make it difficult to pinpoint where
models are lacking in detail or are incorrect. Turning on debug for even a small run can produce
multi-terabyte output files. That being said, the authors do have some intuition into why there are
gaps and how to close them.

Table 3-3. CPU/V100 Model Parameters

(a) CPU (b) GPU

Clock 2660MHz Clock 1312MHz
DDR Clock 2666 SMs 84

DDR Capactiy 16384MiB L2 Slices 32

Mesh Frequency 800MHz L2 Capactiy 192KiB per slice
Mesh Input Ports 1 HBM Capacity 16384MiB
Mesh Output Ports 1 HBM Stacks 4

Data Link Latency 23840ps Crossbar Frequency 1200MHz
Command Link Latency | 23840ps Crossbar Input Ports 2

Crossbar Output Ports 1

Table 3-4. SST-GPGPU Correlation

P9/V100 | SST-GPGPU | Error
vectorAdd 5271 5751 9.09
lud 494519 605685 | 22.48
lulesh 12454750 11896477 4.48

3.2.1. Vector Addition

The vectorAdd application is from the Cuda SDK with error checking removed. It implements
element by element vector addition using an array with 163840 elements.

vectorAdd contains a single kernel with a single invocation that, essentially, streams through mem-
ory performing integer operations. It was expected that this would have a higher correlation, but
the fact that there are so many memory dependencies and memory operations make the results
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highly dependent on the model for the backing store. A number of models were tried and flaws
were found in all of them. With the exception of Cramsim, all of the models are derived from
simple DRAM models and are unable to accurately replicate the behavior of HBM. It is believed
that there is an issue in the memory controller that Cramsim uses and that when this is solved, it
will serve as a good model for HBM2. However, the timingDRAM model clearly provides enough
detail for kernels that are not bottle-necked by memory bandwidth.

3.2.2. LU Decomposition

The lud application is from the Rodinia benchmark suite [4][5] and implements the LU decompo-
sition algorithm to solve a set of linear equations using a 256x256 element matrix.

The lud application from Rodinia contains 3 kernels with 46 total kernel launches. lud has the
worst correlation. The perimeter and diagonal kernels occupy the majority of the compute time
— diagonal has 16 invocations and consumes 63% of the time; perimeter has 15 invocations
and consumes 22% of the time; internal has 15 invocations and consumes 14% of the time.
perimeter and diagonal spend 50% and 80% of their time inactive, respectively, due to the
number of divergences. Given that LULESH has a much greater diversity of instructions, including
FP64, and the previously reported issues determining control flow, it’s unlikely that the problem
lies in the ALU models and more likely that the issues stem from how the GPU model handles
divergences or complex issues exposed by the differences in using PTX verses SASS.

3.2.3. LULESH

LULESH is one of the most widely used mini-applications developed by the US Department of
Energy. The code was originally developed by Lawrence Livermore National Laboratory to rep-
resent challenging hydrodynamics algorithms that are performed over unstructured meshes [7][8].
Such algorithms are common in many high-performance computing centers and are particularly
prevalent within the NNSA laboratories. In the original LULESH specification, the authors state
that such algorithms routinely count in the top ten application codes in terms of CPU hours uti-
lized [7].

The unstructured nature of LULESH presents challenges for the design of memory subsystems,
not least because operands are gathered from a fairly limited locale but are done so sparsely. This
makes efficient streaming and vectorization of the data operations difficult and places additional
pressure on the memory subsystem (typically the L2 caches) to provide operands quickly.

For this experiment, the problem size was set to 22 with 50 iterations, leading to an application
that contains 26 kernels with 1400 total invocations. The top three kernels, in terms of execution
time, provided a good mix of operations, shown in Table 3-5. The diversity of operations in
lulesh, compared to the other too applications, obfuscates the areas where the simulation is lacking,
leading to higher correlation with the V100 target platform.

It’s clear that a more detailed study is needed to isolate the weaknesses in the models.

20



Table 3-5. LULESH Instruction Count Percentages (nvprof)

FP32 | FP64 | INT | CTRL | L/S | MISC | INACTIVE
CalcFBHourglassForceForElems 1 10 11 10 12 31 23
CalcPressureForElems 5 17 27 2 19 16 15
CalcHourglassControlForElems 0 25 21 3 38 9 1

3.3. LULESH PERFORMANCE STUDY

A parameter sweep was performed using LULESH, described in Section 3.2.3. The device clock
was varied from SO00MHz to 1312MHz to 1800MHz. The memory clock was varied from 877MHz
to 1200MHz to 1600MHz. Figure 3-1 shows the results, where lower runtime time is better.

As expected, changing the frequency of the backing store has little effect on LULESH for this
problem size because it is not memory bandwidth bound. The most improvement is seen at the
low device clock frequency, but at this frequency the speedup is still small at 1.04x. However, in-
creasing the frequency of the SMs does improve the performance noticeably. Going from 5S00MHz
to 1312MHz shows a 2.5x speedup; going from 1312MHz to 1800MHz shows a further 1.3x

speedup.

Although this was a small study, one can imagine being able to run a more complete parameter
sweep over any of the Balar parameters.

HBM Frequency (MHz)

W 877 W 1200 M Kernel Runtime (ms)

—— ——

Kernel Runtime (ms)

D —_—

e e e

500

1312

SM Clock Frequency (MHz)

Figure 3-1. GPU Parameter Sweep Using LULESH
(Baseline was 1312MHz/877MHz)
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4. CONCLUSION

This report describes the final integration of the SST-GPU project. Functional validation against
the Kokkos Kernels unit tests shows that the GPU component can successfully run more than
48.9% of the tests. Correlation with the Waterman V100 testbed is excellent, showing 4.5-22.5%
error in the runtime for the applications considered. The final phase of the project has involved
parallelizing the scheduler and groups of SMs, dubbed SM Groups, using multiple threads. Initial
performance results demonstrate good scalability using default scheduling policies with additional
opportunities to improve parallel scheduling performance.
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