

Physically rigorous reduced-order flow models of fractured subsurface environments without explosive computational cost

G. Didem Beskardes (PI), Kyle Jones (PM)

Chester J Weiss

Kyung Won Chang

Bart van Bloemen Waanders

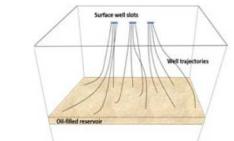
Objective

To develop a computational capability to model fluid flow in large-scale geologic environments that possess geometrically-complex fractures and man-made infrastructures without explosive computational cost.

Multiple spatial scales of the models

mm-scale fractures
cm-scale infrastructures
km-scale field of interest

Fine mesh


Extensive computational resources

Fractured media

<https://www.earthimgallery.com>

Complex well geometries

<https://drillinggalleries.wordpress.com>

Other man-made structures

<http://www.codmagazineng.com>

How to model all in one simulation?

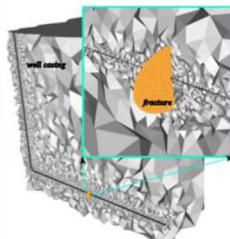
How to optimize the multi-scale domain?

Optimize the computational efficiency and realism for fluid flow models incorporating both **realistic, explicit** fracture and infrastructure **geometries**

by

- embracing full-physics of fluid flow
- preserving model size and geometry
- retaining surrounding rock
- maintaining affordable computational costs

Science questions to be addressed in this work


Better understand the **limits of homogenization** and test how microstructures in transport phenomena upscale to the observable field scale.

At what point can simplified flow models be acceptable?

What is the response of the fully realistic model?

Approach

Hierarchical Finite Element Method (HiFEM)

Novel parametrization of physical properties

Material properties can be defined for each dimensional component of the volumetric finite element (3D tetrahedron

3D tetrahedron 2D facet 1D edge 2D facets
1 σ_x $\hat{\sigma}_1$ $\hat{\sigma}_2$ 1
1 σ_y $\hat{\sigma}_3$ $\hat{\sigma}_4$ 1
1 σ_z $\hat{\sigma}_5$ $\hat{\sigma}_6$ 1

$\sigma_e \text{diag}(1,1,1)_e$ $\hat{\sigma}_1 \text{diag}(1,1,1)_e$ $\hat{\sigma}_2 \text{diag}(0,1,1)_e$ $\hat{\sigma}_3 \text{diag}(0,1,1)_e$ $\hat{\sigma}_4 \text{diag}(1,0,0)_e$ $\hat{\sigma}_5 \text{diag}(1,0,0)_e$ $\hat{\sigma}_6 \text{diag}(0,0,1)_e$

Weiss, Geophysics 2017; USPTO application 15/871,282

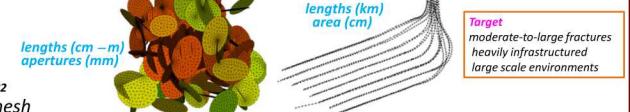
Geometric hierarchy within unstructured tetrahedral mesh

fractures \longrightarrow 2D planes

aperture (h)
conductivity (σ)

$\xrightarrow{\text{Hi-FEM}}$

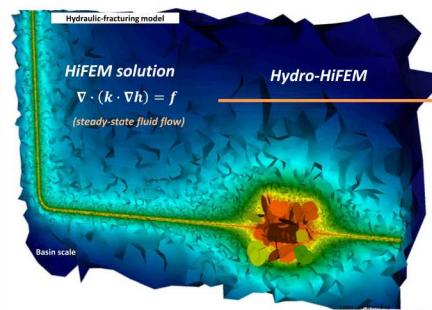
conductance ($\Delta\sigma, h$)


wellbores \longrightarrow 1D lines

Area (A)
conductivity (σ)

$\xrightarrow{\text{Hi-FEM}}$

lengths (km)
conductivity \cdot cross-sectional area


Reduces insignificant dimensions
mesh refinement
computational cost

lengths (cm \cdot m)
apertures (mm)

Target
moderate-to-large fractures
heavily infrastructured
large scale environments

Research Outline

Hydraulic-fracturing model

HiFEM solution

$\nabla \cdot (k \cdot \nabla h) = f$
(steady-state fluid flow)

Hydro-HiFEM

Basin scale

Solve the transient flow in frequency domain

$\nabla \cdot (\kappa \cdot \nabla h) = S_e \frac{\partial h}{\partial t} \longrightarrow \nabla \cdot (\kappa \cdot \nabla \bar{h}) = q \bar{h}$

Milestones

Completion of Hydro-HiFEM code for transient flow

Expand Hydro-HiFEM code for other flow processes (advection, diffusion etc.)

Develop Hi-FEM based optimization (inversion, least squares, design)

Many energy and national security related engineering applications require **high fidelity, realistic** and **computationally efficient** modeling.

Applications in **Global Security, Nuclear Deterrence, Energy and Homeland Security**

- Nuclear waste isolation
- CO₂ sequestration
- environmental protection
- groundwater and solute management
- geothermal reservoir enhancement
- hydrocarbon reservoir management
- Underground facility characterization
- Engineered material monitoring and corrosion
- Engineered fracture system monitoring
- Suspected nuclear tests

Exceptional
service
in the
national
interest

Sandia
National
Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-0744D

Built on
LDRD
Laboratory Directed Research
and Development

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND2020-0744D

U.S. DEPARTMENT OF
ENERGY

NNSA
National Nuclear Security Administration