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2 1 A Need for Grid-Scale Energy Storage
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Renewable/Remote Energy Grid Reliability National Defense

Emergency id

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile
grid system, we are developing new battery technology characterized by:

* Inherent Safety
« Long, Reliable Cycle Life

« Functional Energy Density
(voltage, capacity)

* Low to Intermediate Temperature
Operation

* Low Cost and Scalability
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Emergency Aid

Renewable/Remote Energy Grid Reliability National Defense

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile
grid system, we are developing new battery technology characterized by:

— Terminals (+)
[ I_ TT:minaIs (=}

- Inherent Safety Sodium-based batteries
* 6th most abundant element on earth.

« Long, Reliable Cycle Life

 5X the annual production of aluminum. - Sodium
* Functional Energy Density * Proven technology base with NGK Sodium/Sulfur
(voltage, capacity) (NaS) and FzSoNick ZEBRA (Na-NiCl,) systems.

i Beta
= alumina
" ceramics

Sulfur
(5)

» Utilize zero-crossover solid state separators.

* Low to Intermediate Temperature - Favorable battery voltages (>2V).

Operation

* Low Cost and Scalability Na-S (E ., ~ 2V) Na-NiCl, (E ., ~ 2.6V)
2Na + 4S € Na,S, 2Na + NiCl, € 2Na* + 2CI- + Ni(s)




4 1 Sodium Batteries

Renewable/Remote Energy

Grid Reliability National Defense
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Emergency Aid

As part of the DOE Office of Electricity efforts to create a modern, resilient, reliable, and agile

grid system, we are developing new battery technology characterized by:

* Inherent Safety
« Long, Reliable Cycle Life

« Functional Energy Density
(voltage, capacity)

* Low to Intermediate Temperature
Operation

* Low Cost and Scalability

Sodium-based batteries

r— Terminals (+)
[ l_ TTrminais (=) |

» 6th most abundant element on earth.

« 5X the annual production of aluminum.

* Proven technology base with NGK Sodium/Sulfur
(NaS) and FzSoNick ZEBRA (Na-NiCl,) systems.

» Utilize zero-crossover solid state separators.

» Favorable battery voltages (>2V).

e ~ 300°C Operation!

2N a* + 2CI + Ni(s)

— Sodium
(MNa)

N Beta
=— alumina
ceramics

Sulfur
(5)
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Lowering Battery Operating Temperature to Drive Down Cost
. . . Installed Cost Estimat
Our Objective: A safe, reliable, molten Na- R e
based battery that operates at drastically $400.00 il
reduced temperatures (near 100°C). £ yanom ol
s mPCS Install
R g g $200.00 oPCS
» Improved Lifetime © m Battery Install
« Reduced material degradation $100.00 " Sekiery Fept
» Decreased reagent volatility .00
* Fewer side reactions ' Original Na$ LowTemp Na$
» Lower material cost and processing Gao Liu, et al. A Storage Revolution.” 12-Feb-2015 (online):
https://ei.haas.berkeley.edu/education/c2m/docs/Sulfur%20and
« Seals %20Sodium%20Metal%20Battery.pdf
« Separators
* Cell body Low T
ow Temperature
* Polymer components? lon Conducting

Ceramic

» Reduced operating costs
Low T°C
Molten Salt

GEtholyit |l —

» Simplified heat management costs
» QOperation
* Freeze-Thaw

100°C



6 1 Low Temperature Molten Sodium (Na-Nal) Batteries

Realizing a new, low temperature molten Na battery requires new battery
materials and chemistries.

Ingredients for Success

NaSICON Cathode
{solid electrolyte) Catholyte Current Collector

~

. Molten Na anode

. 25 mol% Nal in AlX; catholyte

. Highly Na*-conductive, zero-crossover
separator (e.g., NaSICON)

Molten
Sodium

Na-Nal battery:

Na = Na*+e E9=0QV
I, +2e > 31" E0=3.24

2Na +1; > 2Na*+ 3 EO_, = 3.24V

Martha Gross
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Desired Virtues of a Low Temperature Solid State Separator

What we want:

» High ionic conductivity at low temperatures

« Chemically compatible with anode and catholyte
« [Lero-crossover

* Mechanically robust

» Cost-effective to produce at scale

A Promising Candidate: NaSICON
* Na;Zr,PSi,0,,
« High Na-ion conductivity (>10-3 S/cm at 25°C)

« Chemical Compatibility with Molten Na and
Halide salts

 Zero-crossover

Small and Spoerke, et al. J. Power Sources. 360. 569-574.

Ln Sigma-T (S/cm-K)

" NaSICON

&= _ * B Alumina

25 3
1000/T (K1)



s 1 Methods for NaSICON Synthesis

» Solid State Synthesis from Oxides
* Sol-Gel Chemistry

» Spark-plasma Sintering

Challenges with NaSICON Synthesis: It’s Never a Single Phase

* Na-volatility

« Densification

» Secondary Phase Formation
» Grain Size

Small and Spoerke, et al. J.
Power Sources. 360. 569-
574.




9 I Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSi0, + Na;PO, - Na,Zr,PSi,0,,

» Mill powders
» Press powders at 10-20 kSI
« Fire at 1200°C in air

What thermal profile should
we follow?

https://modernfarmer.com/2014/12/lets-stop-mean-donkeys-parties/



10 I Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na;Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases

g

g
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11 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27ZrSi0O, + Na;PO, - Na;Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

600 1400 — NaSICON + 5% Excess Na;PO,
1200 NaSICON
2 w00 £ 1000
=]
é £ 800 _.)J'\.
- Fn
£ G 600
=
Ezoo £ 400
200

10 15 20 25 30 35 40 10 15 20 25

20 (deg) 26 (deg)

30 35 40

B s s B



12 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)

27rSi0, + Na,PO, > Na,Zr,PSi,0,,

Milled powders pressed and fired at 1200°C in air

X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

Conductivities reasonable, but slightly less than “commercial” NaSICON

600
3
o

= 2
E 400 . o
° ¥
[>] > 1 °
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13 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na;Zr,PSi,0,,

Milled powders pressed and fired at 1200°C in air

X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

Conductivities reasonable, but slightly less than “commercial” NaSICON

Density ~ 92-95% theoretical (3.2 g/cc)




14 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSiO, + Na;PO, - Na,Zr,PSi,0,,

* Milled powders pressed and fired at 1200°C in air

« X-ray diffraction confirms NaSICON synthesis with ZrO, and ZrSiO, secondary phases
* Secondary phases can degrade conductivity
«  “Na” and “PO,” volatility during sintering can lead to secondary phases
« 5% Excess Na;PO, showed diminished secondary phases

* Conductivities reasonable, but slightly less than “commercial” NaSICON

« Density ~ 92-95% theoretical (3.2 g/cc)

Unless it’s raining...

Densities dropped to 70-80% during monsoon season.

Hygroscopic Na;PO, likely a problem...

BUY THIS WITHOUT WATERMARKS AT VECTORTOONS £5M [




15 I Thermal Analyses to Address Humidity H F

Differential Thermal Analysis and
Thermogravimetric Analysis

Exo |
102 NaSICON 0.2
conversion .

100 . 0.15 _
o1 B
Pl 0.05 S
d =
£ % 0 2
-0.05 &
94 a

-0.1

7 -0.15

0 200 400 600 800 1000 1200 1400
Temp °C

—Mass % —DTA (uV/mg)

DTA/TGA show water removed from precursor
powder by ~250°C.

NaSICON conversion reaction evident between
1150-1230 °C.

Variable Temperature X-Ray
Diffraction

1200

1060 °C
/

NaSICON
peak

Zircon (200)
Zircon (211)

Cubic Nas(PO.)

Temperature (°C)
Cubic Na,(POa)

=
o
o
=
[y
©
2
=
3
o

Nag(PO,),(H,0)

Zircon (101)

VTXRD shows conversion of Zircon and cubic Na;(PO,)
to NaSICON starting near 1100°C

Hydrate form of Na;(PO,) up to 120°C, converts to cubic



16 1 Calcining Powder Improves NaSICON Synthesis

XRD confirms that calcining
precursor powder to at least
250°C eliminates sodium
phosphate hydrates in precursor.

Density measurements, though,
show that higher calcining
temperature (600°C) leads to still
higher sintered ceramic density.

Calcining also results in improved ionic conductivity, likely

due to improved density.

94% dense

89% dense

Intensity ((:gunts}

84% dense

10 15 20 25 30 35 40




17 1 Our “Simple” Initial Synthetic Approach

Solid State Ceramic Synthesis (“Shake ‘n Bake”)
27rSi0, + Na;PO, - Na,Zr,PSi,0,,

» Mill powders
» Press powders at 10-20 kSI
« Fire at 1200°C in air

What thermal profile should
we follow?

https://modernfarmer.com/2014/12/lets-stop-mean-ae



18 1 Thermal Analyses to Inform Solid State Reaction Conditions H F

Differential Thermal Analysis and
Thermogravimetric Analysis

Exo |

102 NaSICON 0.2

conversion .
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DTA/TGA show water removed from precursor
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NaSICON conversion reaction evident between
1150-1230 °C.

Variable Temperature X-Ray
Diffraction
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VTXRD shows conversion of Zircon and cubic Na;(PO,)
to NaSICON starting near 1100°C

Hydrate form of Na;(PO,) up to 120°C, converts to cubic



Sintering Temperature Affects NaSICON Conversion and
19 I Structure

— 1250°C
—1230°C
L IS0 NaPO, zsio, _ﬁﬁﬁ .
i 100°C powder

Melted NaSICON sintered
at 1250°C

10 15 20 25 30 35 40
20 (deg.)

» Reaction at 1100°C leads to incomplete conversion and poor
densification.

» Sintering above 1230°C produces poorly formed, “melted”
NaSICON.

+ NaSICON calcined at 600°C, sintered at 1230°C, yields >94% e e
bulk density, good phase purity, and >0.2 mS/cm at 25°C.




Sintering Temperature Affects NaSICON Conversion and

20 1 Structure

—1250°C
—1230°C
—1200°C

zsio,
Al 1100°C powder

Na,PO, ZI’S@@ N

Melted NaSICON sintered

10 15 20 25 30 35 40
20 (deg.)

» Reaction at 1100°C leads to incomplete conversion and poor
densification.

» Sintering above 1230°C produces poorly formed, “melted”
NaSICON.

« NaSICON calcined at 600°C, sintered at 1230°C, yields >94%
bulk density, good phase purity, and >0.2 mS/cm at 25°C.

at 1250°C

Molten Na Battery Cell Set-Up



21 1 NaSICON Failures Reveal Inhomogeneities in Ceramic

“Speckles” and voids in NaSICON appear to be variations in density,
texture, and composition that are susceptible to attack by molten
halide salts.
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Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.

Very slight improvement in NaSICON synthesis.
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Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.
Very slight improvement in NaSICON synthesis.
Solution 2: Increasing pressing force from 10 ksi to 20 ksi

Slightly bigger improvement in NaSICON synthesis.



24 1 Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.
Very slight improvement in NaSICON synthesis.

Solution 2: Increasing pressing force from 10 ksi to 20 ksi
Slightly bigger improvement in NaSICON synthesis.

Solution 3: Add polymeric binder to “lubricate” compacting particles
during pressing

Significant improvement in NaSICON synthesis!
Density 94-96%
Acceptable phase purity
Conductivity increased to > 0.4 mS/cm



25 | Refining NaSICON Synthesis

Possible Problem: Poor particle packing during pressing leads to void formation
and poor diffusion needed for NaSICON conversion.

Solution 1: Eliminate coarse aggregates from precursor powder.

Very slight improvement in NaSICON synthesis.

Solution 2: Increasing pressing force from 10 ksi to 20 ksi

Slightly bigger improvement in NaSICON synthesis.

Solution 3: Add polymeric binder to “lubricate” compacting particles
during pressing

Significant improvement in NaSICON synthesis!
Density 94-96%
Acceptable phase purity
Conductivity increased to > 0.4 mS/cm
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Low Temperature Molten Sodium (Na-Nal) Batteries

Realizing a new, low temperature molten Na battery requ:res new battery

materials and chemistries.

NaSICON

ﬂlwﬁ%@rﬁdw Cathglyte Cunrent Collector

2e —>
Ingredients for Success nngge _
: Molten Na anode -
. Highly Na*-conductive, zero-crossover "
separator (e.g., NaSICON) )
« 25 mol% Nal in AlX; catholyte i

2Na*

.

Na'—

No complications from solid state
electrodes!

Na-Nal battery:

Na = Na*+e E9=0QV
I, +2e > 31" E0=3.24

2Na +1; > 2Na*+ 3 EO_, = 3.24V

/

Cathode

Martha Gross
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Follow the Bouncing...Sodium!

Poor sodium wetting on NaSICON
is a problem.

Improper
Na-wetting
of NaSICON.

Red arrows pointing to shorts

Improper wetting Shorted NaSICON
leads to current
constriction
through small
active areas of
NaSICON
eventually forming

shorts.

Martha Gross, Stephen Percival



28 1 Follow the Bouncing...Sodium!

Poor sodium wetting on NaSICON is a problem.

4.5 Improper
Walle ] (] Na-wetting
4 - A/ of NaSICON.
>
~ 3.5 -
)
=11]
o
° 37
> — |4 | -~ H P L Red arrows pointing to shorts
2.5 1  110°C Improper wetting Shorted NaSICON
100°C leads to current
2 : , , : constriction
0 20 40 60 80 100 through small
Time / Hr active areas of
NaSICON
eventually forming
shorts.

Stephen Percival



29 1 Modification of Electrolytes for Improved Wetting Il

Polishing NaSICON surface significantly improves
Na-wetting at 110°C.

Unpolished Polished




30 1 Separator Treatment Affects Cell Performance

Removing “rough” NaSICON surface with a surface polish allowed
higher operating current density and lower overpotentials.

5

——Not Polished

/ —Polished

g
f = un
I I

Voltage / V
w
wn

w
]

M
)

0 5 10 15 20 25 30 35 40
Time / Hr

* Unpolished NaSICON battery operated at + 0.299 mA current C/12 1% DOD
» Polished NaSICON battery operated at +0.897mA C/4 1% DOD



31 1 Separator Treatment Affects Cell Performance

First, clearing roughening the NaSICON surface with a surface polish allowed
higher operating current density and lower overpotentials.

5
1 ——Not Polished
4.5 - / —Polished
S |
~ 4 -
Q
(Y.} i
£ 3.5
S
3 -
2-5 T 1 1 1 T 1 T 1 T T T 1 T 1
0 5 10 15 20 25 30 35
Time / Hr

Polished NaSICON alone still shows relatively
rapid performance fade.

40

Valtage /¥

5.5

g
o ow
|

w
w s

100 -
80 -
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40 |
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™
[ BT |
L1
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12 1 Modification of Electrolytes for Improved Wetting?

150°C 175°C 200°C

Sessile EV:8 =

Treatment of p”-Al,0,

drop
with lead oxide leads to
" Nathinfiim improved wetting...at
Top View . & higher temperatures!

Mushroom drop

Cassie drop Q Wenzel drop ——* Sunny-side-up drop

g / \ Na penetration film -

U Na wetting in “sunny-side-up” shape is responsible for high battery performances

iy G. Li, 2018 DOE OE Peer Review
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At reduced temperatures, sodium wetting on NaSICON is not adequate.

Heated at
100-200°C for
30 minutes




34 1 Modification of Electrolytes for Improved Wetting 1l

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated at Heated above
100-200°C for 380°C for 30
30 minutes minutes




35 1 Modification of Electrolytes for Improved Wetting lil

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated at Heated above
100-200°C for 380°C for 30
30 minutes minutes

Based on treatments applied to
NaSICON in a solid-state system, the
change in pellet surface is believed

due to formation of an amorphous, @ /\ =
reduced NaSICON surface. i | l| “rw,,

1% 10 2 30 40 50 60

W. Zhou, et al. ACS Cent. Sci. (2017) 3, 52-57. | “Going rorgy e ) Theis




3 I Separator Treatment Affects Cell Performance

A high temperature soak of Na metal on the NaSICON modifies interfacial wetting.

Heated below
200°C for 30
minutes

Heated above
380°C for 30
minutes

Na-treated NaSICON shows lower overpotentials on battery cycling.

4.3 ——Polished NaSICON ( / 100 -

4-05 1 —nNa Baked NaSICON /((( Battery CyCling E 80: "‘:::::::::::......
z 28 f at 110°C! £ _
w e -g 60 -
¥ 3.55 = !

: . HEEET T o o
: 25 mol% Nal-AlBr; & |
3.05 with NaSICON ~ & 20 | ©NaBakedNasICON
I Ll il e "I . nl ﬂl,- I, ; ;. separator. . olPoIislheleaSIICONl -
0 20 40 60 80 100 120 140 160 0 4 8 12 16 20
Time / Hours Cycle #

» Polished NaSICON battery operated at +0.897 mA C/4 1% DOD
« Na Baked NaSICON battery operated at +0.894 mA C/4 1% DOD




Is this “Good Enough?”



NaSICON Coated with Sn-Based Coating Shows Drastically
Improved Adhesion!

Martha Gross



39 1 An Improved Na Interface

I
Current Density
mMmA ~rm-2
Symmetric cell cycling (Na on both 15 (mh o
sides) shows that the Sn-based . \
coating improves wetting on 10 - \
NaSICON and drastically reduces g .
overpotentials on cycling! o
zZ 05 g |
This improved interface is critical to 0 |
- : > 0.0
realizing effective battery S il
performance. el 1
3,-0.5 - [
Untreated With Sn-Based b ] il ‘
NaSICON Coating g 10 - Bare WUN .‘,J
~140 — 200 nm Sn Coating I
a -1 5 T T T T T T T T T T T T T T
e 0 10 20 30 40 50 60 70
Time (h)
Martha Gross [



20 | Low Temperature Molten Sodium (Na-Nal) Batteries | |

Realizing a new, low temperature molten Na battery requires new battery
materials and chemistries.

Ingredients for Success 20 > ||
. Molten Na anode i NeCON o Cathodo
Highly Na*-conductive, zero-crossover ‘ e
separator (e.g., NaSICON) oNa*
25 mol% Nal in AlX; catholyte Molten
Sodium /
*  No complications from solid state -
electrodes! h 7 [
Na' =1 >
Na-Nal battery: Na'—H 1>
Na > Na*+e- E0=0V |

2Na + 1y > 2Na* + 31" E0 = 3.24V

|57 + 2e" > 3I FO =3.24 |
Martha Gross M



21 1 This Year’s “Really Cool” Hurrah!

Full Cell Cycling, 110°C

Battery frozen

|&thawed
S5 |
D 4 -
S eI
S s
82 L ¥ ! i ' 1 ! ! v T f
0 100 200 300 400 500 600

Time (h)

» Integration of Sn-based coating and activated CF enables long-term battery cycling:
Battery achieved 200 cycles!
 Even after freeze/thaw, interfaces remain intact with uninterrupted cycling!

Martha Gross



2 1 Summary

Project Objective: Synthesis of a NaSICON-based solid state ion conducting separator for use in a
novel ”"low temperature” molten sodium battery.

. Solid State NaSICON can be successfully synthesized with high density and reasonable conductivity

. Humidity and secondary phase formation can affect NaSICON ceramic properties (can be managed
through synthetic modifications?)

. Incomplete pressing can lead to inhomogeneous NaSICON synthesis
. Improved ”green” densification can improve NaSICON uniformity and performance.

. Surface preparation of NaSICON will affect battery performance
. Cleaning/polishing
. High temperature Na-treatment
. Sn-based coating

NaSICON-based solid electrolytes have the potential to impact a wide range of battery technologies
as highly conductive, zero-crossover separators!
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Evaluating Potential Hazards of “Failed” Na-Nal Batteries

A

* Inherent Safety

Long, Reliable Cycle Life

Functional Energy Density
(voltage, capacity)

Low to Intermediate
Temperature Operation

Low Cost and Scalable

—NMC Li-lon
—Na/Nal-AICI3
—Na/Nal-AlBr3

175 275 375
Temperature (C)

P ~in N /] Q Discharge Process
\J " "
Molten Sodiun% Gt V@ten Halide Salt
2Na* > 2Nal
;:&,.‘#,E “E 3 a:e 3:5

t t i
@@Wwﬁﬂfgﬂ (B i iyie) Y hgulid Elacieonlyte) Callestor

Accelerating rate calorimetry
reveals that Na-Nal/AlX; mixtures
exhibit:
1) no significant exothermic
behavior
2) no significant gas
generation of
pressurization

Simulating separator failure,
metallic Na and Nal/AlX; were
combined and heated.

Byproducts of reaction are
aluminum metal and harmless
sodium halide salts.

B s s B
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A

* Inherent Safety
* Long, Reliable Cycle Life

* Functional Energy Density
(voltage, capacity)

* Low to Intermediate
Temperature Operation

 Low Cost and Scalable

[y

co

o
|

—NMC Li-lon
—Na/Nal-AICI3
—Na/Nal-AlBr3

175 275 375
Temperature (C)

2er ~—»

P

Molten Sodium— V@ten Halide Salt

2Na* 2Nal
1 f 1 NI
m (S Bty lguid Efestooliyte) Cuientor

Accelerating rate calorimetry
reveals that Na-Nal/AlX; mixtures
exhibit:
1) no significant exothermic
behavior
2) no significant gas
generation of
pressurization

Failed separator led to termination of
battery, but no significant hazardous
conditions.

Evaluating Potential Hazards of “Failed” Na-Nal Batteries

combined and heated.

Byproducts of reaction are
aluminum metal and harmless

Simulating separator failure, |
sodium halide salts. |

metallic Na and Nal/AlX; were




4 | Where Does Our Energy Come From?

OCEAN
50-100 millicn years ago

A g

108 years
cycle

P

100 millian yoars age

e Bl o e P |

Coal mined in china
3000 years ago

Rocks & Dirt

Oil extraction
began 170 years
+ ago

DCEAN
300-400 million years ago I

e

Ol & Gas Deposits

1 year
Cycle

Hydro power N
Energyﬁ Storage /.\

I 1 day I
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Image shameless stolen from Sanjoy Banerjee, CCNY
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47 1 Where Does Our Energy Come From?

OCEAM

e e yean 20 108 years
| ‘ cycle

How do we store
energy on a 1-day

100 MIl?ﬂMIHW Scale?
el Rt Coal mined in china
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