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Problem

Parameters inferred from inversion
of geoscience data rarely have

uncertainties attached, or simplifying

assumptions, such as Gaussian
uncertainties, are made.

This is generally due to the
computational complexity of many
geomodels.

Objective

Use stochastic methods to more
efficiently propagate uncertainty
through geo-inversion models.

Research Plan

* Year 1: Apply the method to simple

linear problem, i.e., full waveform
seismic moment tensor inversion
and compare results with baseline
methods.

* Year 2: Using what we learned in

Year 1, apply the method to the full
waveform structural inversion
problem (nonlinear).

Uncertainty quantification of pressure waves
through uncertain acoustic model
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Results

Linear moment tensor inversion: d = GS,
where d is observed data, G is the matrix
of green’s functions, and S is the source
term, all in the frequency domain. Model
uncertainty is computationally expensive.
Classical inversion (assumes Gaussian
noise): S = (GTC™1G)"1GTC~1d, where
C is the data and/or model covariance
matrix.

Bayesian inversion: P(S|d) «
P(d|S)P(S), where the likelihood, P(d|S)
is a function of d — GS

Pure Chaos Polynomials with only data
uncertainty: Chaos polynomials compactly
describe probability distributions.
Decompose d and S into chaos
polynomials, e.g., d = Y. d;;(6), where
Y;(0) is a chaos polynomial basis function
of the random variable 8 and d; is the
coefficient of that basis. One can solve for
the coefficients, which solves the
complete stochastic problem, obtaining:
d; = GS;, i.e., each coefficient is
independent of the others.

Pure Chaos Polynomials with model
uncertainty: Decompose d, G, and S into
chaos polynomials. One can then solve
the stochastic problem via: d;, =

2 Z EL]kG S where El]k <lp ¢]¢k>
i.e, alarge Ilnear system must be solved
for each coefficient.

Improved Chaos Polynomial expansion:
Build computationally efficient surrogate
model (e.g., collocation, regression) and
only solve for subset of coefficients.
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