

Uncertainty Quantification of Geophysical Inversion Using Stochastic Partial Differential Equations

PI: Leigh Preston, Team Members: Christian Poppeliers and Eric Phipps, PM: Kyle Jones

Problem

- Parameters inferred from inversion of geoscience data rarely have uncertainties attached, or simplifying assumptions, such as Gaussian uncertainties, are made.
- This is generally due to the computational complexity of many geomodels.

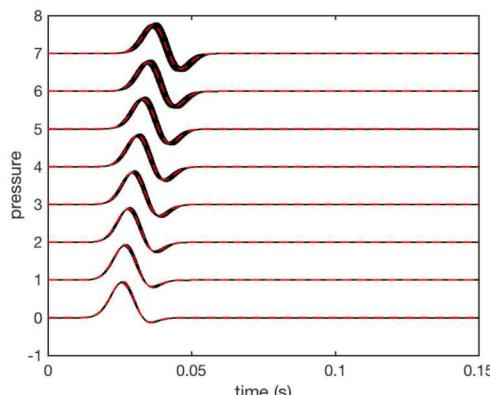
Objective

- Use stochastic methods to more efficiently propagate uncertainty through geo-inversion models.

Research Plan

- Year 1:** Apply the method to simple linear problem, i.e., full waveform seismic moment tensor inversion and compare results with baseline methods.
- Year 2:** Using what we learned in Year 1, apply the method to the full waveform structural inversion problem (nonlinear).

Uncertainty quantification of pressure waves through uncertain acoustic model



Results

- Linear moment tensor inversion:** $d = GS$, where d is observed data, G is the matrix of green's functions, and S is the source term, all in the frequency domain. Model uncertainty is computationally expensive.
- Classical inversion** (assumes Gaussian noise): $S = (G^T C^{-1} G)^{-1} G^T C^{-1} d$, where C is the data and/or model covariance matrix.
- Bayesian inversion:** $P(S|d) \propto P(d|S)P(S)$, where the likelihood, $P(d|S)$ is a function of $d - GS$
- Pure Chaos Polynomials with only data uncertainty:** Chaos polynomials compactly describe probability distributions. Decompose d and S into chaos polynomials, e.g., $d = \sum d_i \psi_i(\theta)$, where $\psi_i(\theta)$ is a chaos polynomial basis function of the random variable θ and d_i is the coefficient of that basis. One can solve for the coefficients, which solves the complete stochastic problem, obtaining: $d_i = GS_i$, i.e., each coefficient is independent of the others.
- Pure Chaos Polynomials with model uncertainty:** Decompose d , G , and S into chaos polynomials. One can then solve the stochastic problem via: $d_k = \sum_i \sum_j \epsilon_{ijk} G_i S_j$ where $\epsilon_{ijk} = \langle \psi_i \psi_j \psi_k \rangle$, i.e, a large linear system must be solved for each coefficient.
- Improved Chaos Polynomial expansion:** Build computationally efficient surrogate model (e.g., collocation, regression) and only solve for subset of coefficients.

Exceptional service in the national interest

Sandia National Laboratories

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2020-0731D

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525. SAND 2020-0731D

