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Additive Manufacturing Produces Inherent Variability
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For AM metal structures, we manufacture the materials at the

same time we manufacture the structure.

We have inherent variability, in addition to traditional sources of
(fine-scale) variability, that drives uncertainty in structural
response.
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3 I Objectives of This Work

* Develop understanding of what defects in what combinations matter.
* Develop understanding of the level of fidelity necessary to make “qualifying” statements.

* Develop a validated, predictive modeling capability to readily compute metal additive
manufactured (AM) matetial/structural performance and reliability for component qualification,

* Develop a collaborative experimental-computational project that enables agile response to
customer needs for metal AM materials/structures.
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Accurately estimating margins requires a capability to first
characterize, then propagate the inherent variability.




4 I Outline

Hierarchical Multiscale Approach

Low Fidelity Model Description

High Fidelity Model Description

Application to Tensile Specimens

Ongoing work: Validation in hollow tubes with intentional defects

Conclusions



5 Hierarchical Approach
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6 ‘ Low Fidelity Model — Porosity Overlay

* Account for the observed porosity with a damage

state variable (void-volume fraction) 50.20

* Allows for statistical approach to predict behavior _g, 0.15
when CT data is unavailable. z

* We used the approach for the 3 Sandia Fracture ;5 ik
&

Challenge:

* Porosity seed indicated by s number, i.e. s123 is a

different realization than s127517 0.00-

* For the same calibration number (Cal 1), a different
porosity seed yields a different crack path
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—— MLE fit
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7 ‘ High Fidelity Model

* Explicitly include large pores in geometry and mesh models

* Can use tetrahedral or hexahedral elements (Sculpt)

*We use an unstructured tetrahedral mesh
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Variability and uncertainty in pore geometry

A Tale of Two CT's
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I If you think CT eliminates (some of the) uncertainty, be careful!

High Fidelity Model
(1.5e6 elements)



8 Available Data for Characterization and Validation

Three AlSi10Mg plates

° Laser power varies from 100% (optimal), 75%, and 50%
° Cortesponds w/ 0.47%, 0.66%, and 5.12% potosity, respectively

One SS 316 plate printed at Sandia

)

Quartercrack 2 mm Through 0-5> mm Internal
hole (1 wall) void

No flaws

Components- pristine & 3 flaw types
Powder obelisk
Density cube
Tensile bars (multiple sizes)
Fracture samples
Metallography/Charpy samples
Fracture toughness AlSi10Mg,
K, = 40 MPavm




9 I Measurements to Develop the Method — Tensile Specimens
Tensile test stress-strain data

* A rack of (25) Imm x 1mm cross-section AlSi10Mg LPBF tensile
bars i

* CT images for each specimen before loading provide
° Surface geometry
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* Tensile response — Stress-strain 100

* Optical characterization of the resulting fracture surface |
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Boyce et al., Advanced
Engineering Materials 2017
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Calibration to Tensile Specimens

Voce hardening model with power-law breakdown
strain rate multiplier on hardening

Decaying exponential on equivalent plastic strain
saturates

Power law breakdown hardening rate multiplier helps
capture gradual softening after early peak load

Strain rate data taken from literature (Rosenthal et al.
2017)
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Void Nucleation

Fine scale voids (< 1um) indicate nucleation
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Analysis of the CT and optical data

It is impractical to consider all the pores.

Which pores are important?
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V curotr applied to sample 8
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Lofi
Mesh 0

Lofi
Mesh 4

7.5e-01
0.7
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0.2
0.1
1.0e-04
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Low Fidelity and High Fidelity Models (x-section at midplane)
I

Spherical pores Ellip pores
(1.5 million elements)
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Low Fidelity vs. High Fidelity Predictions (x-section at midplane)
V curotr applied to sample 8

Lofi Mesh O Lofi Mesh 1 Lofi Mesh 2 Spherical pores Ellip po

vm_1




15 I Low Fidelity vs. High Fidelity Predictions (x-section at midplane)

V curotr applied to sample 8

Lofi Mesh O Lofi Mesh 1 Experiment Spherical pores Ellip pores™




Multiscale Model: High Fidelity Mesh in Hotspot Concurrently Coupled

16 I With Surrounding Low Fidelity Mesh

Focusing on the
neck as predicted
from Lofi Mesh 1

Coupled Lofi/Hifi Mesh
via Multi-Point
Constraints
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— 1.8e+8
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Coupled Response
with Higher
Accuracy in Hotspot
~520k elements,
100 cpus

High Fidelity Results
1.5M elements, 360
cpus
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Multiscale Model Response Differs Slightly from Full Fidelity Model

Eng. Stress (MPa)

* Need to apply individual calibrations for both low fidelity (larger hex elements) and high
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18 I Ongoing effort: the alternating Scwharz method for concurrent multiscale

Colleagues at Sandia (A. Mota, I. Tezaur, and C. Alleman) have developed and implemented the
Schwarz alternating method for concurrent multiscale analysts.

Initialize:
> Solve PDE by any method on €2, using an initial guess for Dirichlet BCs on I';.

Iterate until convergence:

° Solve PDE by any method (can be different than for €);) on Q, using Dirichlet
BCs on I'; that are the values just obtained for €.

° Solve PDE by any method (can be different than for €),) on € using Dirichlet
BCs on I'; that are the values just obtained for €2,.




19 I Ongoing Effort: Validation Tubes with Intentional Defects

AlSi10Mg Plate A

3 SS 316L
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We have collected validation data for
two different alloys and the four
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Low Fidelity Results Show Different Hotspot Locations for High Fidelity
20 I Mesh to be Applied
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21 I Pore Distributions on Low Fidelity Tube Mesh
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Pore Distributions on Low Fidelity Tube Mesh Lead to

Crack Initiation
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53 | Conclusions

* AM Materials often have significant material variability

« Different defect structures affect crack initiation and propagation
« Low fidelity model is fast and accurate in initial simulations

« High fidelity model more accurately reflects pore geometry

« Hierarchical approach has potential to be efficient simulation method for qualification
modeling

Future Work

« Perform coupled multiscale simulations on tube geometries
« Perform coupled simulations using Schwarz alternating method

» Apply residual stress predictions as initial conditions
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Questions?
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