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2 Additive Manufacturing Produces Inherent Variability
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For AM metal structures, we manufacture the materials at the
same time we manufacture the structure.

We have inherent variability, in addition to traditional sources of
(fine-scale) variability, that drives uncertainty in structural
response.
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3  Objectives of This Work

• Develop understanding of what defects in what combinations matter.

• Develop understanding of the level of fidelity necessary to make "qualifying' statements.

• Develop a validated, predictive modeling capability to readily compute metal additive
manufactured (AM) material/structural performance and reliability for component qualification.

• Develop a collaborative experimental-computational project that enables agile response to
customer needs for metal AM materials/structures.
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Accurately estimating margins requires a capability to first
characterize, then propagate the inherent variability.



4 I Outline

• Hierarchical Multiscale Approach

• Low Fidelity Model Description

• High Fidelity Model Description

• Application to Tensile Specimens

• Ongoing work: Validation in hollow tubes with intentional defects

• Conclusions



5 I Hierarchical Approach
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6 I Low Fidelity Model — Porosity Overlay

• Account for the observed porosity with a damage
state variable (void-volume fraction)

• Allows for statistical approach to predict behavior
when CT data is unavailable.

• We used the approach for the 3rd Sandia Fracture
Challenge:
• Porosity seed indicated by s number, i.e. s123 is a

different realization than s127517
• For the same calibration number (Cal 1), a different

porosity seed yields a different crack path
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7 High Fidelity Model

Explicitly include large pores in geometry and mesh models

• Can use tetrahedral or hexahedral elements (Sculpt)

• We use an unstructured tetrahedral mesh
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I8 Available Data for Characterization and Validation

Three AlSi101\4g plates
0 Laser power varies from 100% (optimal), 75%, and 50%
0 Corresponds w/ 0.47%, 0.66%, and 5.12% porosity, respectively

One SS 316 plate printed at Sandia
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9 I Measurements to Develop the Method —Tensile Specimens
Tensile test stress-strain data

• A rack of (25) lmm x lmm cross-section AlSi10Mg LPBF tensile
bars

CT images for each specimen before loading provide
Surface geometry

Internal porosity

Tensile response — Stress-strain

Optical characterization of the resulting fracture surface

Surface features
(CT)
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10 I Calibration to Tensile Specimens

Voce hardening model with power-law breakdown
strain rate multiplier on hardening

Decaying exponential on equivalent plastic strain
saturates

Power law breakdown hardening rate multiplier helps
capture gradual softening after early peak load

Strain rate data taken from literature (Rosenthal et al.
2017)
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11 Damage Model Accounts for Growth of Existing Pores and Pore Nucleation
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12 I Analysis of the CT and optical data
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It is impractical to consider all the pores.

Which pores are important?
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1 3 I Low Fidelity and High Fidelity Models (x-section at midplane)

Vcutoff applied to sample 8
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14 I Low Fidelity vs. High Fidelity Predictions (x-section at midplane
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15 1 Low Fidelity vs. High Fidelity Predictions (x-section at midplane
Vcutoff applied to sample 8
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Multiscale Model: High Fidelity Mesh in Hotspot Concurrently Coupled
1 6 With Surrounding Low Fidelity Mesh
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17 I Multiscale Model Response Differs Slightly from Full Fidelity Model
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• Need to apply individual calibrations for both low fidelity (larger hex elements) and high
fidelity (finer tet elements) sections



18 I Ongoing effort: the alternating Scwharz method for concurrent multiscale

Colleagues at Sandia (A. Mota, I. Tezaur, and C. Alleman) have developed and implemented the
Schwarz alternating method for concurrent multiscale analysis.

Initialize:
. Solve PDE by any method on C21 using an initial guess for Dirichlet BCs on Fl.

Iterate until convergence:
- Solve PDE by any method (can be different than for Qi) on S22 using Dirichlet
BCs on F2 that are the values just obtained for C2i.

o Solve PDE by any method (can be different than for Q2) on f-21 using Dirichlet
BCs on Fl that are the values just obtained for C22.



19 Ongoing Effort: Validation Tubes with Intentional Defects
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Low Fidelity Results Show Different Hotspot Locations for High Fidelity
20 Mesh to be Applied
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21 Pore Distributions on Low Fidelity Tube Mesh
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22 Pore Distributions on Low Fidelity Tube Mesh Lead to Crack Initiation
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23 Conclusions

• AM Materials often have significant material variability

• Different defect structures affect crack initiation and propagation

• Low fidelity model is fast and accurate in initial simulations

• High fidelity model more accurately reflects pore geometry

• Hierarchical approach has potential to be efficient simulation method for qualification
modeling

Future Work

• Perform coupled multiscale simulations on tube geometries

• Perform coupled simulations using Schwarz alternating method

• Apply residual stress predictions as initial conditions
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