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ABSTRACT

Due to the sheer volume of data it is typically impractical to an-
alyze the detailed performance of an HPC application running
at-scale. While conventional small-scale benchmarking and scaling
studies are often sufficient for simple applications, many modern
workflow-based applications couple multiple elements with compet-
ing resource demands and complex inter-communication patterns
for which performance cannot easily be studied in isolation and at
small scale. This work discusses Chimbuko, a performance analysis
framework that provides real-time, in situ anomaly detection. By fo-
cusing specifically on performance anomalies and their origin (aka
provenance), data volumes are dramatically reduced without losing
necessary details. To the best of our knowledge, Chimbuko is the
first online, distributed, and scalable workflow-level performance
trace analysis framework. We demonstrate the tool’s usefulness on
Oak Ridge National Laboratory’s Summit system.
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1 INTRODUCTION

Many modern HPC applications comprise multiple tightly-coupled
components executing concurrently that exchange information and
compete for hardware resources [4]. These workflows are becoming
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more prevalent due to the growing disparity between computa-
tional power and I/O capability, which often necessitates some
form of in situ data analysis and reduction. Due to the complex
intercommunication patterns and resource contention, assessing
performance and identifying possible bottlenecks in large-scale jobs
requires the development of novel tools capable of capturing this in-
teraction and coping with the tremendous data volumes generated
by tracing multiple applications, while simultaneously preserving
salient features and avoiding impacts on application performance.
The Chimbuko performance analysis tool seeks to address these
problems by performing in situ analysis of trace data generated
by the TAU tracing and profiling tool [7], focusing specifically on
performance anomalies. By capturing only the anomalous events
and sufficient information for a root cause analysis (provenance)
the amount of data is reduced dramatically to a level that can be
more easily stored and analyzed by the application developer.
Chimbuko differs from existing tools by its ability to integrate
with and perform scalable, trace-level, realtime performance analy-
sis on complex workflows, allowing for the identification of bottle-
necks stemming, for example, from inefficient communication pat-
terns or resource contention. The novel, distributed design allows
this analysis to be performed in real-time with minimal overhead.
Detailed anomaly provenance is stored in a database for offline
analysis and an online visualization component enables monitoring
and analyzing performance anomalies as the application is running.
We demonstrate the capabilities of our tool using a workflow
based on the NWChem computational chemistry code [10] running
at large scale on the Summit supercomputer. Chimbuko is an open
source project and the code is freely available on GitHub [14].

2 CHIMBUKO ARCHITECTURE

Our goal is to provide a tool for performance trace analysis that can
diagnose workflow-level performance anomalies and is scalable to
thousands of nodes and tens of thousands of concurrent processes.
The application comprises four components: the TAU tracing tool,
the online anomaly detection module (AD), the provenance data-
base, and the visualization module. These components are laid out
according to the architecture described in Figure 1.

At the lowest level the TAU-instrumented application communi-
cates trace information in real-time to the AD instances (one per
rank and process) that perform the in situ trace analysis, filtering
out anomalous events and gathering provenance information that
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is subsequently stored in the centralized provenance database, thus
avoiding the need for aggregating trace data across the workflow.

In order to perform reliable judgements on the anomaly status
of trace events, the AD instances synchronize the parameters of the
anomaly detection algorithm with a centralized parameter server
(PS) which forms the second component of the AD module. The
PS also aggregates statistics on performance (i.e. profile data) and
anomalies that are passed to the visualization module.

The visualization module produces real-time displays of statisti-
cal information gathered by the parameter server and also allows for
online interaction with the data stored in the provenance database.

While designed primarily on online analysis, offline analysis
is also supported allowing the analysis to be performed remotely.
In the following sections, we detail the implementation of these
components.

Chimbuko
| Database
Online AD Parameter Server
L . 2 [ 2 LK 2 LI 2
Online AD Online AD Online AD Online AD
- T TAU T TAU T TAU T TAU
MPI Rank 1 MPI Rank k -—@;—— MPI Rank 1 MPI Rank k
Application 1 (i.e. NWChemEx) Application 2 (i.e. OAS)

Figure 1: Chimbuko architecture diagram describing the lay-
out of the major components: TAU, the online AD mod-
ule, provenance database and visualization. The image illus-
trates two concurrently running applications.

2.1 TAU

The TAU Performance System [7] is a portable profiling and tracing
toolkit capable of supporting parallel programs written in Fortran,
C/C++, Python and other languages as well as GPU codes written
in CUDA, OpenACC and other APIs.

For our purposes TAU is configured to capture trace data of
running processes including MPI communications, I/O actions and
GPU kernel activity, which are passed to Chimbuko by means of
TAU’s ADIOS2 plugin. For online analysis we utilize the ADIOS2
Sustainable Staging Transport (SST) engine which provides step-
based communication whereby trace data is aggregated over a
configurable time period (typically 1 second) and sent via DMA
to the receiver AD process. Offline analysis can be performed by
storing the trace using the alternative, BPFile (binary) engine.

TAU provides Chimbuko with three classes of data: metadata
regarding the system characteristics; counters, which are instanta-
neous measurements of system and performance parameters such
as memory usage, GPU temperature, etc; and timers which contain
the trace data for function executions and MPI communications.

2.2 Online AD module

Instances of the AD module are spawned alongside each running
process and perform in situ analysis of the timer trace data provided
by TAU. Using these data Chimbuko forms a continuous snapshot
of the execution stack for each thread and accelerator device, from
which function execution objects are generated that contain the
execution time, links to parent and child executions as well as all
associated communication events and counters that describe the
event provenance. The set of function execution objects is updated
on each ADIOS2 I/O step, discarding those from the previous step
to maintain a small memory footprint.

The anomaly detection algorithm is applied as a filter to the
function execution list. As execution time imbalances are a major
source of workflow performance variability, our current algorithm
focuses on this metric. We model the function execution times as a
unimodal distribution and maintain for each function the computed
moments of the distribution (mean, variance, skewness, etc). Func-
tion executions are tagged as anomalous if they have extraordinary
execution times, i.e. if the execution time deviates from the mean
by more than a standard deviations, where « is a tunable parameter
that is set to 6 for our present studies.

The moments of the function distributions are computed on-
the-fly per Ref. [6] such that the algorithm becomes more reliable
as the run progresses, although Chimbuko also supports import-
ing of previously computed function statistics if available. Robust
statistics are obtained rapidly by taking advantage of the native par-
allel nature of the applications: each AD instance synchronizes and
merges its parameters with a globally aggregated set of statistics
maintained on the PS. By performing this global update our experi-
ments show that we achieve only a minor reduction in accuracy
relative to a run with predetermined parameters.

The final role of the AD is to collect prescriptive provenance
information on the detected anomalies. We collect all associated
counters and metadata, including the full function stack and, for
GPU kernel events, information about the device and the parent
CPU function. We also collect a "window" snapshot of some number
(5 in our present studies) of function executions occurring before
and after the anomalous execution on the same thread/device, from
which contextual information can be obtained. The provenance data
is communicated directly from each AD instance to the provenance
database component. For comparison a small number of normal
(non-anomalous) executions are also send to the database. Statistics
on function anomalies and execution times are also sent to the PS.

2.3 Online AD Parameter Server

The online AD Parameter Server (PS) fulfils two distinct roles:
it maintains the globally aggregated parameters of the anomaly
detection algorithm, and acts as a server for information provided to
the visualization component. A single instance of the PS is typically
placed on the head node of the job allocation.

Communication with the AD modules is performed using the
ZeroMQ library with the PS acting as a simple RPC service provider.
A threaded master/worker model is used to service multiple simul-
taneous requests and prevent bottlenecks.

On each I/O step the AD modules send function execution sta-
tistics measured on that step. The PS combines these data with the
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current global state and returns the updated statistics to the AD
module. After selecting anomalous events the AD modules return
statistics on the number of anomalies (total and by function) and
on various counters. The PS forwards these statistics, aggregated
over multiple steps, to the visualization module periodically using
the TCP/IP protocol via libcurl providing to the user an overview
of the performance trace analysis results in real-time.

2.4 Provenance Database

The provenance database maintains detailed provenance informa-
tion on each anomaly provided by the AD instances. A single in-
stance of this component is typically placed on the head node.

The provenance database component is implemented using the
Mochi Sonata framework which connects a serverless document-
store (JSON) UnQLite database to an RPC engine capable of han-
dling database storage and query from many connected clients.
Database queries of arbitrary complexity can be formulated in the
jx9 query language. A subset of queries can be submitted dynam-
ically via the visualization module, and a database query tool is
provided to allow for more detailed offline analysis.

2.5 Visualization Module

The visualization module provides a real-time inspection of the
identified anomalous behaviors. Dynamic performance statistics are
displayed and deeper investigation can be performed by selecting
a specific time interval or function.

The real-time performance statistics are provided periodically
by the parameter server and detailed anomaly data are stored in the
provenance database. Therefore, the visualization module has three
major roles: 1) receiving and processing the streaming statistics
from parameter server, 2) querying the provenance database and
processing the queried data, and 3) visualizing the processed data to
users and responding to the user interactions. The goal is to provide
a scalable server that is able to digest requests asynchronously with
minimal latency or memory overhead, and can handle concurrent
requests or long running tasks of the connected clients.

To meet these requirements, the visualization server has been
redesigned from previous works[12][13] to have two levels of scala-
bility [5]. At the first level, uWSGI [9] is adopted to handle multiple
concurrent connections. At the second level, the requests are dis-
tributed to celery workers [2] and handled asynchronously for
both short and long running tasks. Finally, streaming (or broadcast-
ing) data to the connected users is completed by using Websocket
technology with socket IO library [8].

Below we discuss two frontend visualizations by which we
present data in a “overview first, zoom and filter, then details on-
demand" mechanism [1].

e Dynamic Statistics Visualization Streaming data from the
PS is processed into a number of anomaly statistics including the
average, standard deviation, maximum, minimum and the total
number of anomalous function executions. Users can select a statis-
tic along with the number of ranks for which it is visualized. A
dynamic “ranking dashboard" of the most problematic MPI ranks
with rank-level granularity is provided.

Selecting corresponding ranks activates the visualization server
to broadcast the number of anomalies per time frame (e.g., per
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Table 1: Chimbuko overhead over NWChem execution time

# MPI | 80 | 160 | 320 | 640 | 1280 | 2560
without Chimbuko | 1.85 | 2.60 | 5.13 [ 6.92 | 8.54 | 18.27
with Chimbuko | 1.31 | 2.13 | 5.53 | 6.85 | 16.67 | 24.56

second) of these ranks to the connected users while performance
traced applications are running. This streaming scatter plot serves
as a time frame-level granularity by showing the dynamic changes
of anomaly amount of a MPI rank within a time frame.

e Detailed Functions Visualization This visualization is de-
signed to retrieve data from the provenance database and show
the function execution details. It consists of two parts: a function
view and a call stack view. In the function view, it visualizes the
distribution of functions executed within a selected time interval.
The distribution can be controlled by selecting the X- and Y-axis
among different function properties.

In the call stack view, users can more closely investigate a se-
lected function execution in details. The invocation relationships
among functions and their communications over other ranks are
presented for users to interpret the potential cause of the anomalous
behavior. An example will be illustrated in Sec3.

3 EXPERIMENT AND RESULTS

In this work, we adopt the NWChemEx exascale computing project
for the demonstratation. NWChemEx targets a range of compu-
tational chemistry methods, from molecular dynamics (MD) to
high-order many-body methods. It performs MD simulations of
about one million atoms on O(1 ps) timescales, taking roughly
one billion time steps to complete [3]. The resulting time sequence
comprises a large volume of data, and in situ, concurrent analysis
is necessary to target the dynamics of interest. This workflow is an
ideal target for Chimbuko due to the potential impacts on scalability
of the complex interaction between the analysis and simulation
components. Of particular interest are performance issues related
to intra- and inter-node communications arising from resource
contention or load imbalance.

As NWChemEx is under development we have instead modified
NWChem [10] to include an in situ analysis component that com-
municates with the simulation using ADIOS2. We consider a system
comparable in scale (1.2 million atoms) and complexity to those that
are targeted for running under NWChemEx on next-generation
systems. The simulations were performed on the Summit [11] super-
computer at the Oak Ridge Leadership Computing Facility (OLCF).

We utilize TAU’s native filtering capability to remove from the
trace functions that are unlikely to result in performance bottle-
necks. Below we measure the impact of this filtering upon the
trace data volume. Note that the recently introduced provenance
database component was not included in these tests.

We focus initially on the overhead of the application, comparing
the native runtime to that with TAU instrumentation but without
Chimbuko, and with both TAU and Chimbuko. In Tab. 1 we show
the overhead of these two cases as defined by the relative increase in
runtime, as a function of the number of MPI ranks, computed as the
average over 15 independent runs. For less than 1000 MPI processes
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Chimbuko results in negligible additional overhead compared to
running with TAU alone. Beyond this point the overhead becomes
more significant, roughly 8%, and we are investigating the cause
of this jump. Nevertheless this increase in cost is likely acceptable
given the data reduction volumes we demonstrate below.

In Fig. 2 we plot the volume of trace data as a function of the
number of MPI ranks for NWChem/TAU running with and without
Chimbuko. We also compare those with and without the initial
filtering of the trace data described above. We achieved averages of
14x and 95x reductions in data volume for filtered and unfiltered
(full) data, respectively; for the largest job we achieved 21x and
148x data reduction, respectively, reducing 2,300 GB of raw data to
15.5 GB in the unfiltered case, and 117.5 GB to 5.5 GB in the filtered,
at only a 6% runtime increase.

Despite the reduction in data volume, Chimbuko was able to
provide significant insights into the origin of the detected perfor-
mance anomalies. We illustrate this in the form of a short case study
that serves also to highlight the features of the online visualization
module: The scientist was specifically interested in finding anom-
alies in one of the major simulation functions, “MD_NEWTON". By
first visualizing the top 5 anomalous ranks, Rank 1164 was selected
and the dynamic scatter plot for the step-wise anomaly status was
tracked. A number of consecutive steps reported normal execution
for this function such as step 70 shown in upper pane of Fig. 3.
However, one execution was identified as anomalous in step 86,
shown in the bottom pane of that figure, taking almost 3x longer
to execute than is typical. By comparing the event window plots
the scientist was able to associate the decreased performance to a
delay in the launch of the child function “MD_FORCES".

4 CONCLUSION

In this work we presented Chimbuko, a performance analysis frame-
work for real-time, distributed streaming anomaly detection and
visualization designed to support complex workflows running at
the exascale. Through in situ analysis of trace data, the volume
of performance data can be reduced by two orders of magnitude
with only a small additional overhead as we have demonstrated
in a study of the NWChem application running on Summit. This
data reduction is achieved while retaining important contextual

NWChem + TAU + Chimbuko (Filtered) NWChem + TAU + Chimbuko (Full)
[ NWChem + TAU (Filtered) [ NWChem + TAU (Full)
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Figure 2: Trace data size over MPI processes.
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Figure 3: The call stack views of the NWChemEx application
showing the function delay.

provenance information that can be used to diagnose performance
abnormalities. A dynamic visualization component allows the user
to monitor and find details on anomalous executions in real time.

In future work we will continue to improve the overall perfor-
mance to further minimize overheads, and also aim to improve
the anomaly detection capability with a more advanced algorithm.
Additional features will be added to the visualization module to
allow greater insight into the application performance.
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