
August 2018

The Upcoming Storm: The Implications
of Increasing Core Count on Scalable

System Software

Matthew G. E DOSANJH a'l, Ryan E. GRANT a,b, Nathan HJELM C, Scott LEVY a
and Whit SCHONBEIN a,b

a Sandia National Laboratories
b University of New Mexico

c Los Alamos National Laboratories

Abstract. As clock speeds have stagnated, the number of cores in a node has
been drastically increased to improve processor throughput. Most scalable sys-
tem software was designed and developed for single-threaded environments. Multi-
threaded environments become increasingly prominent as application developers
optimize their codes to leverage the full performance of the processor; however,
these environments are incompatible with a number of assumptions that have driven
scalable system software development.

This paper will highlight a case study of this mismatch focusing on MPI mes-
sage matching. MPI message matching has been designed and optimized for tradi-
tional serial execution. The reduced determinism in the order of MPI calls can sig-
nificantly reduce the performance of MPI message matching, potentially overtak-
ing time-per-iteration targets of many applications. Different proposed techniques
attempt to address these issues and enable multithreaded MPI usage. These ap-
proaches highlight a number of tradeoffs that make adapting IVIPI message match-
ing complex. This case study and its proposed solutions highlight a number of gen-
eral concepts that need to be leveraged in the design of next generation scaleable
system software.

Keywords. Message Passing, multithreading, concurrent coimnunications, MPI,
communication middleware

I. Introduction

Processor core counts have been increasing for many years. Along with these increas-
ing core counts, use of thread level parallelism is increasing to adapt code for modern
architectures. For some architectures, including alternative architectures like many-core
accelerators and ARM-based HPC solutions, leveraging multiple threads is key to lever-
aging the available performance of the processor. Consequently, interest in using multi-
threaded communication is also on the rise.

1Corresponding Author: Matthew G. E Dosanjh, Center for Computing Research, Sandia National
Laboratories, Albuquerque, New Mexico, USA; E-mail:mdosanj@sandia.gov

SAND2019-7222B

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

September2018

Several architectures in use today provide large numbers of hardware threads per
node. For example, as of mid-2018, 4 of the 10 top supercomputers in the world provide
more than 200 hardware threads per node. 5 of the remaining 10 systems use GPUs,
which is also a highly "threader environment but these execution environments are
treated as computational accelerators and are not conducive to using a many-threaded
communication solution.

With high thread-count hardware, leveraging all of the compute power can require
the use of threads. As threading models have become increasingly used in applications,
thread-safe middleware has become a highly requested feature as it allows application
developers to utilize these services without requiring serialization. Providing functional
multithreaded access to middleware is not straightforward as it involves the use of com-
mon techniques to enforce serialized access to middleware such as locks. Middleware
can also be designed to be more concurrency friendly than simple serialization. How-
ever, this can prove difficult for communication middleware as network adapters have
fundamental limits to their concurrent operations/commands.

Providing functional multithreaded middleware is an engineering exercise, and the
mechanics of concurrency are well-studied. However, the impact on application work-
flows of multithreaded communication are not well understood. The ordering and con-
tention impacts of applications that use a multithreaded model for communication is a
new topic that has only recently begun to be explored. This article will focus on the im-
pacts of multithreading on communication middleware for HPC, examining the issues
relating to introducing concurrency, as well as the current and upcoming solutions to the
problems encountered in emerging research.

Message passing, as represented by the Message Passing Interface (MPI), is the
dominant communication model in HPC. Contemporary scientific codes typically adopt
a 'hybrid' model with respect to multithreading and communication through MPI: com-
putational work is multithreaded (e.g., through OpenMP), but communication remains
single-threaded. However, a recent survey of application developers involved in the US
Department of Energy's Exascale Computing project found a strong majority of devel-
opers (86%) want to extend multithreading to communication by having multiple threads
concurrently engage in message passing [1].

Unfortunately, engaging in multithreaded communication can cause communication
to become the dominant bottleneck. For instance, when multithreaded communication
is enabled in MiniFE (a mini-application representative of finite-element codes), com-
munication time begins to overwhelm increased solver efficiency (Figure 1). In short,
increased core counts bring increased thread counts, and as application developers incor-
porate a multithreaded communication model leveraging these threads, the result may be
an unfortunate degradation in message passing — and hence application — performance.

In this article, we begin by providing more detail regarding the potential per-
formance implications of multithreaded communication under the message passing
paradigm (section 2), and then survey some of the steps currently being taken to ensure
this potential storm is avoided as we move towards exascale.

2. The Coming Storm

In this section we introduce the problem of multithreaded message matching. Section 2.1
provides a background on MPI message matching. Section 2.2 addresses the current state

September2018

1.0

0.8

o

0.6

2
(11

E
E
o

0.4

0.2

- - - Comm time

- - - Solve time

 Ratio
_

0.0 ,
2"

••
•

- - -r ---- 7 -
21 22 23 24 25

Threads
2 6 27

35

30

25

10

5

28°

Figure 1. Increasing Communication Requirements for MiniFE with Increasing Thread Count

of MPI message matching for applications that create a serial region to communicate.

Finally, Section 2.3 presents the impact multithreaded communication will have on MPI

message matching

2.1. A Brief Overview of MPI Message Matching

MPI groups distinct processing elements of a parallel application into communicators,

and the processes comprising a communicator are each assigned a unique logical address
or rank. Furthermore, individual messages can be given user-specified tags. This tuple

of communicator, rank, and tag enables processes within an application to distinguish

between incoming messages so that their payloads can be processed correctly. In other
words, to handle incoming data, a process in an application must match arriving messages

against some record of those it is expecting.
Traditionally, implementations of MPI meet this requirement by creating a pair of

linked lists: a posted receive queue (PRQ) to store records of messages the process is

expecting, and an unexpected message queue (UMQ) to handle those it is not. The pro-
cess of matching MPI messages is illustrated in Figure 2. When a message arrives at a

process, the MPI matching engine searches the PRQ to determine if a request with the
same communicator, rank, and tag has already been posted. If such a request is found, it

is removed from the list and the incoming payload is processed. Otherwise, the message

is unexpected and is added to the UMQ. Likewise, when the process posts a receive, the
UMQ is traversed to determine whether there is a message with the same communicator,

rank, and tag that has already arrived but has not yet been matched to a request. If not,

the new receive request is added to the tail of the PRQ.

September2018

UMQ PRQ

Figure 2. The processes of traditional MPI matching.

2.2. State of the Practice: Single-threaded determinism

Multithreaded MPI is a rarity in current HPC applications. In cases where computation
is threaded (e.g., using OpenMP or qthreads pp, calls to the MPI library are typically
made from a single thread context (e.g., by ensuring that MPI functions are called from
a serial region or by 'funneling' requests from multiple worker threads to a single com-
munication thread).

Application Description

LAMMPS

Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). A classical molecu-
lar dynamics simulator from Sandia National Laboratories [3,4]. The data presented in this pa-
per are from experiments that use the Lennard-Jones (LAMMPS-1j) potential that is included
with the LAMMPS distribution.

Livermore Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). A proxy ap-
plication from the Department of Energy Exascale Co-Design Center for Materials in Extreme

LULESH Environments (ExMatEx). LULESH approximates the hydrodynamics equations discretely by
partitioning the spatial problem domain into a collection of volumetric elements defined by a
mesh [5].

HPCG
symmetric Gauss-Seidel preconditioned conjugate gradient method [6].
A benchmark that generates and solves a synthetic 3D sparse linear system using a local

A multi-material, large deformation, strong shock wave, solid mechanics code [7,8] developed
CTH at Sandia National Laboratories. The data presented in this paper are from experiments that use

an input that describes the simulation of the detonation of a conical explosive charge (CTH-st).

MILC
A large scale numerical simulation to study quantum chromodynamics (QCD), the theory of
the strong interactions of subatomic physics [9].

miniFE
A proxy application that captures the key behaviors of unstructured implicit finite element
codes [10].

Table 1. Descriptions of the workloads used for evaluating MPI match ng performance.

September2018

2

1111 1
LAMM PS-Ij HPCG

- 27/32 processes

MI 64/64 processes

- 125/128 processes

- 216/256 processes

il 1111 1111

8

6

0

- 27/32 processes

64/64 processes

- 125/128 processes

- 216/256 processes

loiIAMMPS-I 1HPCG111 MILC CTH-st111

(a) PRQ (b) UMQ

Figure 3. Average search depth of current HPC workloads. The height of each bar represents the mean search
depth over all processes. The error bars extend from the smallest per-process average search depth to the largest
per-process average search depth.

When a single thread controls access to the MPI library, programmers can exploit
determinism in process communication to ensure that searches of the PRQ and UMQ
remain short, even when those queues grow long. As a simple example, if each process
first posts receives expecting messages from their neighbors to the north, east, south,
and west, then they can issue sends to the south, west, north, and east; in this way, the
order of messages arriving corresponds to the order the requests appear in the PRQ, and
search depths can be kept small, assuming the application is reasonably synchronized.
By adopting strategies such as this, current scientific workloads experience short average
search depths and the performance impact of MPI message matching is kept modest [11].

Figure 3 shows average PRQ and UMQ search depths for six workloads that rep-
resent important categories of scientific applications. Details about these workloads are
provided in Table 1. To generate this figure, we strong-scaled each workload and col-
lected a trace of its MPI operations. With the exception of LULESH, we scaled each
workload from 32 to 256 processes. LULESH requires the number of processes to be a
perfect cube and so it is scaled from 27 to 216 processes. The data shown in these figures
were then collected using a simulator that is based on LogGOPSim [12]. LogGOPSim is
a trace-based, discrete-event simulator for simulating the execution of MPI programs.
For the experiments discussed in this section, we configured LogGOPSim to use network
parameters that correspond to a Cray XC40 [13]. By executing a trace of each of these
workloads, the simulator can maintain a detailed record of their MPI matching behavior.
Collecting these data using simulation has distinct advantages over using instrumentation
provided by existing MPI libraries. MPI libraries are commonly highly-optimized to take
advantage of the hardware capabilities of specific machines. These optimizations have
the potential to interfere with the accuracy and interpret-ability of MPI message match-
ing statistics [14]. In contrast, the simulator has a simple MPI matching engine that al-
lows us understand how applications use MPI without the confounding influence of hard-
ware optimizations. However, the simulator only allows us to study message matching
for single-threaded MPI mode.

As shown in Figure 3, the average PRQ and UMQ search depths are quite short for
all six of the workloads. Even the largest per-process average search depths are less than
ten. Moreover, the scaling behavior for these applications demonstrate that the average

September2018

search depth does not grow dramatically with increasing scale. The average PRQ search
depth for LAMMPS-lj, MILC, and CTH-st are nearly constant as scale increases. The
growth rate of the average PRQ search depth for HPCG and LULESH is a logarithmic
function of the number of processes. The average PRQ search depth of miniFE appears
to be growing more slowly than the logarithm of the number of processes. With respect
to the UMQ, the average search depths for LAMMPS-kj and CTH-st are nearly constant.
The average UMQ search depth of MILC decreases with scale. HPCG, miniFE, and
LULESH appear to exhibit logarithmic growth in their average UMQ search depths.

Overall, this figure demonstrates that the average search depths of current workloads
are short and are not growing rapidly as the number of processes increases.2 As a result,
the performance impact of MPI matching when operating in single threaded mode is ex-
pected to remain modest unless or until application behavior changes or the per-element
cost of match queue searches increases significantly, cf. [11]. However, recent surveys
indicate that the number of applications that will use MPI multithreaded mode in the
future is going to rise [1].

2.3. The Impact of Multithreaded Non-determinism

While search depths in current applications remain low, the MPI standard allows for mul-
tithreaded access to the communication library (through MPI_THREAD_MULTIPLE). This
has the potential to disrupt determinism in message ordering: contention between threads
for control of message matching data structures can result in a pseudo-random insertion
of requests in the MPI library [15]. While some higher-level order may be introduced by
applications themselves (e.g., have all threads post receives for the north before those for
the east), the ordering of individual requests is not something the developer can control.

The non-determinism problem is aggravated by having a larger volume of messages
with multithreaded code. While some message aggregation is possible, a logical solution
for multithreaded communication code is to send at least one message per thread per par-
allel communication region. This means the volume of messages per process expands as
a multiple of the number of threads. The combination of pseudo-random insertion order
and increase in message volume thus has the potential to create a 'message matching
storm', stressing the MPI message matching engine and expanding matching overheads.

To explore the impact of non-determinism on message matching in detail, we devel-
oped a benchmark [15] that emulates a multithreaded version of a common communi-
cation pattern, the halo exchange. In this benchmark, one multithreaded MPI process is
designated as the receiver, and a second emulates the group of surrounding sending MPI
processes participating in a halo exchange. Following the standard bulk synchronous
processing model, the threads of the receiving process concurrently post their receive
requests, after which the threads of the sending process compete to issue their sends.
This benchmark aims to create a realistic thread level decomposition of a halo exchange,
where threads compute on a subdomain of the process's problem space and only commu-
nicates along the intra-process edges the subdomain is in contact with. A version of MPI
was instrumented to record the average search depths required to match each incoming
message, and the total time elapsed during processing of the queue. The benchmark was

2Additional details on the match queue performance of current scientific workloads are available from Fer-
reira et al. [13].

September2018

7pt stencil

27pt stencil

103

T, io'

io. -

lon

103

100

10°

- 7pt stencil

- 27pt stencil

z=1
(1)

z=2
(2)

z=4
(4)

z=8
(8)

z=16
(16)

z=32
(32)

z=64
(64)

z=128
(128)

z=256
(256)

z=1
(1)

z=2
(2)

z=4
14)

z=8
(8)

z=16
(16)

z=32
(32)

z=64
(64)

z=128
1128)

z=256
(256)

Decomposition (Receiving Threads)

(a) Average search depth

Decomposition (Receiving Threads)

(b) Average queue drain time

Figure 4. Impact of multithreading (1 x 1 x z decomposition).

then executed using different decompositions (2- and 3-dimensional) and stencils (5, 7,
9, and 27 points).

Figures 4(a) and 4(b) show results for 1 x 1 x z decompositions for increasing values
of z and two 3-dimensional stencils, executed on an Intel Xeon Phi Knight's Landing
system. Even with a modest number of threads participating in inter-process communi-
cation, average search depths can inflate by multiple orders of magnitude in comparison
to the single-threaded cases described above. Perhaps more striking is the time to process
the queue. For instance, molecular dynamics (MD) codes use halo exchanges, and are run
at some of the largest scales of any scientific applications. MD codes simulate individual
timesteps, typically in the femtosecond range per step. To be productive, an MD code
should be able to calculate many microseconds of simulated time per real-world day of
execution [16,17]. These requirements enforce a real-world deadline on completing each
simulated time step, including both computations and communication (e.g., 1.728µs per
step to reach 50µs of simulated time per day). The grey region in figure 4(b) shows the
point at which queue processing times require a microsecond or more. The issue, then, is
under some decompositions and stencils, communication time may consume the entire
MD timestep budget currently allocated for both computation and communication. This
possibility is troublesome.

To summarize, current scientific applications keep search depths shallow at least
in part by exploiting determinism in message ordering. However, while a semblance of
this ordering can be retained under multithreaded communication, scheduling and lock
contention introduce noise, resulting in increased average search depths. This situation
is exacerbated by a growth in message volume, and can ultimately lead to unacceptable
amounts of time spent in communication. Since, as previously noted, developers have
expressed the intention to adopt multithreaded communication, steps should be taken to
avoid this potential 'storm'. In the following sections, we survey some of the strategies
we've explored for addressing the issue.

3. Improving Parallelism

One strategy for addressing the potential effects of matching on performance is to im-
prove parallelism in the matching engine. In this section, we describe some of the strate-
gies we've investigated for doing so.

September2018

r

Unexpected Lock Posted Lock

Unexpected r Posted RCV

 L J

Unexpected
Tail Queue

Posted RCV
Tail Queue

Tail Lock

(a) Tail locks

400000

350000

300000

250000

200000

150000

100000

50000

Tail Queues with 8 threads on a Xeon Phi

Baseline

"5' 92 97 '9oò,

Ou"eTkrteues

(b) Tail locks results

Figure 5. The Design and performance of Tail Queues.

3.1. Simultaneous Progress

A straightforward way to make the traditional matching approach (figure 2) thread-safe
is to protect it with a lock. However, doing so effectively serializes matching by block-
ing threads from simultaneously making progress in their respective searches. Provid-
ing separate locks for the PRQ and UMQ has the potential to increase multithreaded
matching performance by permitting searches to progress on each queue independently
of the other, but there remains the problem of coordinating failed searches. As noted in
section 2, if no match is found in one queue, the other must be modified to include the
unmatched request, creating a race condition.

To address this issue, we designed a new approach that we call Tail Queues. It sup-
plements the unexpected and receive queues with an ̀ inbox' mediating access to the tails
of each (figure 5(a)) [18]. This inbox contains two supplementary data structures storing
requests to be appended to the UIVIQ and PRQ, respectively. These data structures allow
for 'lazy appends', that create a separate critical section encapsulating the interactions
with the inbox queues. For example, consider a thread that will access the inboxes after
searching the PRQ. When it acquires access to the inbox, it inspects the inbox items to be
appended to the PRQ and, if none match, adds its request to those to be appended to the
UMQ. If an item matches, it is returned and removed from the inbox. In either case, the
thread appends the contents of the PRQ portion of the inbox to the actual PRQ, making
those items available to future parallel searches.

Figure 5(b) shows results for eight threads accessing a simple Tail Queues data struc-
ture. The experiments were run on an Intel Knights Corner Xeon Phi. This implemen-
tation focuses on a basic implementation of Tail Queues. While Tail Queues can enable
larger degrees of parallelism, the basic implementation allows for two threads to access
the matching engine; allowing for one thread to access PRQ and one thread to access
the UMQ. In this case the use of Tail Queues increases throughput by roughly a factor
of two, which is the maximum we can expect given only two threads can access the
data structure at a time. Additionally, this improvement is seen even at smaller list sizes,
which makes the technique viable for both modern and future applications.

September2018

4. lf no match fetch next set of tags/masks

•
32 bit tag

32 bit tag

32 bit tag

32 bit tag

32 bit tag

32 bit tag

32 bit tag AND mask

32 bit tag AND mask

32 bit tag AND mask

32 bit tag AND mask

32 bit tag AND mask

32 bit tag AND mask

1. Combine tag with mask

4-- •
2. Vector Compare

32 bit mask

32 bit mask

32 bit mask

32 bit mask

32 bit mask

32 bit mask

Bit Mask of Result

3.2. Vector and Fuzzy Matching

3. Search bit mask of result for

positive match

Figure 6. Vector matching.

Most if not all contemporary processors include SIMD vector instructions, and these
instructions typically contain comparison operations. Consequently, vector instructions
provide another opportunity for improving parallelism in message matching.

To investigate the potential of this opportunity, we designed and implemented a mod-
ified matching engine utilizing the AVX-512 SIMD instructions offered by Intel's Xeon
Phi. Figure 6 illustrates how this works for matching message tags (the process is similar
for matching ranks) In this approach, vector matching requires two vector operations
each for matching rank and tag (applying the mask and performing the comparison), as
well as some followup work to evaluate the resulting bit masks. Each step simultaneously
evaluates 16 matching queue entries [19].

The amount of parallelism could be increased by leveraging vector instructions with
smaller sizes, below the 8 bytes typically allocated for rank and tag by standard MPI
implementations. Fuzzy Matching leverages small bit with vector by truncating bits from
the tag and/or rank representation, matching only on the least 'significant' bits [19]. The

September2018

100

80

60

40

20

0

%
 Fa
ls
e
Po

si
ti

ve
s

2 4 6 8 10
Matching Window Size (bits)

• AMG2013 • Castro/MILC • miniAMR E miniFE

• Kripke E FDS • NEKbone L miniGhost

E LULESH • Pennant

Potential for false positives as a function of a bit window

12 14

Figure 7. False positive tag matches as a function of matching window size for applications run at 1024 procs.

cost of doing so is the possibility of false positives, tags or ranks that are incorrectly

identified as matches. Consequently, this approach requires a follow-up step to confirm

a match identified by the vector operations is correct. The feasibility and performance of

an implementation of this approach is dependent on the number of false positives.

To assess false positives, we considered a variety of applications and mini-

applications at different scales. We recorded the ranks of sender processes issuing point-

to-point sends, the rank of the destination process, and the tags used in those sends. We

found most of the applications surveyed had tag spaces that were either zero (i.e., none

of the inter-process communication actually required a tag) or scale-invariant (i.e., the

number of distinct tags did not grow as scale increased). Figure 7 shows false positives

for the worst-performing rank some of these applications run at 1024 procs. Eight bits

is sufficient for half to have perfect tag discrimination, and eight still remain below 5%

possible false positives.

Figure 8 shows the performance impacts of Vector and Fuzzy Matching. Figure 8(a)

shows the impact of these approaches on bandwidth on a Intel Sky Lake processor. This

figure shows a significant performance improvement as we increase the level of vector

parallelism, where using an 8-bit element vector allows us to do 64 matches in parallel.

Figure 8(b) shows the time spent matching in AMG2013. This metric is gathered by aver-

aging the result for the bottle-neck process across the run. This allows us to evaluate ap-

plication impact, as laggard processes are often determinant of application performance.

Both of these compare against the Open MPI default matching engine and a lightweight

single linked list.

September2018

6' '6,

Receve Queue Length
Baseline Fuzzy - 8 bits

Traditional —0— Fuzzy - 16 bits —0—
Veclors —6— Fuzzy - 32 bits —0—

(a) Bandwidth for small (1B) messages.

en 16000

14000

gi 12000

10000

fi 8000

6000

g 4000

c 2000

°•
64 128 256 512 1024

Processes

Baseline —e— Vectors

Traditional Fuzzy

2048 4096

(b) Mean maximum cumulative time spent search-
ing, AMG2013.

Figure 8. Performance Analysis of Vector and Fuzzy Matching

4. Managing Memory

Another strategy for increasing the efficiency of message matching is to utilize memory
in more intelligent ways, e g minimizing cache misses by encouraging list items to be
available in the cache hierarchy pm. To explore this possibility we examined two sorts
of locality, spatial and temporal. Linked lists often span multiple non-contiguous cache
lines, and are can be difficult for the CPU's pre-fetcher. With spatial locality, multiple
matching elements are placed into contiguous memory. This is so that the act of fetch-
ing one matching element into cache also brings in a number that follow. In contrast,
with temporal locality, the goal is to access the list periodically to prevent list elements
from being evicted from cache. There are a number of ways this can be accomplished,
including a dedicated network cache, pinning memory to cache, and our new technique,
software hot caching.

Figure 9 demonstrates the impact that spatial locality of MPI matching data has on
achievable bandwidth. The baseline is the default layout for a linked list approach to
message queues. LLA-n indicates that the linked list has been aggregated together to be
a contiguous memory regions that can hold n matching elements per list element (e.g.
LLA-32 has linked list elements that hold an array of 32 match elements). It can be seen
that spatial locality matters most when list lengths exceed 512 elements, with the largest
amounts element counts being the most effective.

Figure 10 examines the impact of data placement in the cache hierarchy by using
hot caching (HC). Hot caching is a technique that uses compute cores that share a cache
level with the core performing MPI processing. The hot caching core keeps the relevant
MPI match list data in cache by accessing it periodically, ensuring that it does not get
evicted from cache. We can observe that the hot caching technique is complimentary
to the spatial locality techniques that we previously discussed. Hot caching is preferred
for short list searches, but degrades at a similar point to the baseline MPI implementa-
tion. Combining the effect with increased spacial locality, the utility of hot caching is
extended to longer list searches, eventually converging with the spatial locality technique
in performance.

Figure 11 illustrates the improvements that spacial and temporal aware MPI mes-
sage matching can have on Fire Dynamics Simulator (FDS). The benefits can be up to
2X the baseline when the job core count exceeds 2048. This shows the application im-

September2018

ba
nd

wi
dt

h
(M
i B
p
s
)

Ba
nd

wi
dt

h
(
M
i
B
p
s
)

900

800

700

600

500

400

300

200

100

0

900

800

700

600

500

400

300

200

100

0

7c3,9
06.6 6).,0 'o s'o (9):,

c'sr ve?
vq,
0 co

Posted Recive Queue Search Length
baseline LLA - 4 —A— LLA - 16 —A—
LLA -2 —0— LLA - 8 LLA - 32 —A—

Figure 9. Spatial locality's impact on bandwidth

c3 A 6' /6, 02 5̀> c30r 3, 9 6 2 27 76 96,

Posted Receive Queue Search Length
baseline HC t LLA —A— HC+LLA

Figure 10. Temporal locality's impact on bandwidth

pact available from improving match-list locality. While we don't expect this to be rep-
resentative of today's applications, FDS serves as a good proxy for future multithreaded
applications. It should be noted that the HC Nehalem performance is tied to the over-
head of externally managed memory. With explicitly managed memory, we can create a
pool of elements that are consistently hot cached, removing the overhead of adding and
removing elements. As the LLA implementation manages memory within the matching
engine, HC is more effective when combined approach.

5. Changing Models

Perhaps the best way to avoid the coming storm is to adopt alternative models for mes-
sage passing. For example, by allowing relaxations of current ordering constraints, avoid-

September2018

Fa
ct
or
 S
p
e
e
d
u
p
 O
v
e
r
 B
as

el
in

e

2.2

2

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4
12 'ocoy s'ov

Process Count
HC Nehalem LLA Broadwell —v—
LLA Nehalem LLA-Large —A—

HC+LLA Nehalem -A-

Figure 11. Locality effects on Fire Dynamics Simulator

ing traditional point-to-point communication, or finding other ways to exploit multi-
threading besides promoting them to the same communicative role as traditional MPI
processes. By designing new communication models, we can tailor the interface to match
modern runtime environments, allowing for a holistic approach rather than creating a
series of workarounds. The drawback of these approaches is they can require signifi-
cant changes to applications. However, these approaches can allow for sustainable and
portable multi-threaded performance. In this final section we discuss two possible alter-
native models, RIVIA and Finepoints.

5.1. One Sided Models

RMA is MPI's one-sided communication model. Under this model, each process exposes
a buffer as a window through which other processes can put, get, and accumulate data.
This approach provides limited message processing, reducing message-passing over-
heads. However, since this technique can leverage hardware level Remote Direct Mem-
ory Access (RDMA), the out-of-band communication that occurs with RDMA must be
managed to ensure that the memory performance of the application is not impacted. For
some systems, this Network-induced Memory Contention (NiMC) can have significant
impact on application performance [21,22].

RIVIA can be a challenging model to understand and use. Unlike two-sided model,
message delivery is not explicit so the user must use methods to explicitly synchronize
the RMA windows with the remote processes. This means that communication in RIVIA
typically occurs in epochs. In the MPI-3 RMA model there are two classes of commu-
nication synchronization; active-target, and passive target. Active target provides global
memory fence (MPI_Win_fence) and group communication (Post-Start-Complete-Wait)
completion semantics. Niether of which may be well optimized in MPI implementations.
For passive target, using the MPI_Win_lock and MPI_Win_lock_all APIs enable the use
of unlock or the more efficient flush operations to synchronize windows. Users may see,
and not totally understand, suboptimal performance when opening and closing windows
frequently in applications. Additionally, RMA requires sender side knowledge of data

September2018

Runtime for MiniFE Runtime for MiniFE on Stampede

600 160

140
500

120
400

in 100

300
E E

80 ,,•-

200 60

40
100

20

0

% 20

Cores Cores
OSC/RDMA - OSC/PT2PT - - - - OSC/RDMA - OSC/PT2PT - - - -

(a) MiniFE on KNL (b) MiniFE on Stampede

Figure 12. RMA-MT results for MiniFE on two major computing platforms

Runtime for HPCCG

300

250

200

in
150

E

100 • • • 41-

50

° 6),* <9,*;1 v%
)92
%„" '46,64%,:,

Cores
OSC/RDMA - OSC/PT2PT - - - -

Figure 13. RMA-MT results for MiniFE on a KNL system

VO96,

placement, particularly when multiple processes are interacting with the same window.
MPI-3 RIVIA also has two memory models that an applications needs to be aware of. The
unified memory model and the seperate memory model. In the seperate memory model it
is necessary for the application to call MPI_Win_sync to ensure the application memory
is updated to reflect changes made to the private RMA window data.

The performance of RIVIA in a multi-threaded environment has not been a focus
of MPI library implementors in the past. This was partially due to a lack of codes that
used RMA in a multi-threaded way. Recent efforts on developing codes that use multi-
threaded RMA (R1VIA-MT) [23,24] have lead to further efforts to improve MPI library
performance. These efforts have resulted in significant performance improvements to the
multi-threaded support in MPI RMA implementations [25].

Figure 12 and 13 highlight performance of two mini-applications from the RIVIA-
MT benchmark suite. These were run using the new improvements to Open MPI and
were run on LANL's Trinity and TACC's Stampede. These results show a significant
improvement in runtime at scale, allowing for full use of the system.

5.2. Partitioned Communication

The overhead of modifying existing applications to use alternative models like one-sided
communication can be significant. Changes to alternative models can require restructur-
ing data layouts for communication and in some cases require new algorithm design to

September2018

fit the new communication model [24,25]. Therefore it is desirable to have solutions that
are as close as possible to the most popular two-sided send/recv communication model.
However, the existing multi-threaded interface for MPI does not differentiate between
processes and threads, allowing each to interact with MPI in the same way, with the same
interfaces and similar privilege.

One way to address these problems is to develop new MPI interfaces that differenti-
ate between threads and processes. In addition, these interfaces can be aligned with ex-
isting multi-threading methods/APIs. In order to provide a two-sided communication in-
terface that leverages existing multi-threading programming models, we have developed
MPI partitioned communication [26].

In partitioned communication, threads have a specialized interface that matches
multi-threading programming model semantics that also allows for greater efficiency in
MPI. The model is "partitione& in that each thread contributes a subset of the data for a
two-sided communication call. This can be conceptualized as many threads working on
a common data buffer, with notification to MPI on what data is available and when.

The MPI library can leverage this information to optimize data movement, mov-
ing data earlier than a traditional two-sided model can and leverage aggregation to opti-
mize wire efficiency. There are other advantages to moving data over a longer period of
time, reducing bursty traffic which in turn lowers network contention [27,28]. Partitioned
communication allows for what we have termed"early-bird communication". This allows
data transmission whenever data becomes available, rather than waiting for monolithic
transmissions on a per process basis like traditional MPI.

However, simply performing more communication operations would present addi-
tional problems in message volume for processing at the MPI level [15]. Therefore par-
titioned communication provides a method of moving data whenever it is available, but
provides high efficiency remote notification of completion. At the simplest level match-
ing overheads and MPI-level message volume are reduced to single-threaded levels, with
only completion of the entire buffer being promoted to the MPI level.

Early implementation of partitioned communication have shown promising results.
It significantly reduces overhead compared to multithreaded communication and with
efficient aggregation and early bird communication, partitioned communication can out-
perform thread single improving application performance.

6. Related Work

MPI message matching previous work can be broken into two main categories: matching
list performance characterization and alternative message matching approaches. In this
section we will review work done in both of these areas and how it relates to more recent
research that we have covered in this paper.

6.1. Efficient MPI Message Matching

MPI message matching has been explored in the context of evaluating its performance
[29] and investigating the impact of match list length [30] and performance on different
types of CPU architecture [31]. Vetter et al. conducted an early study on communication
overhead with several scientific applications were they found that the issue of commu-

September2018

nication overhead was worthy of further investigation [29]. Underwood and Brightwell
were the first to build MPI message matching microbenchmarks to study the impact of
long list length and unexpected messages [30]. This was followed by work attempting
to overcome such overheads by using processing-in-memory operations on a very-wide
ALU in order to process multiple matches at once in memory. With the introduction of
manycore architectures, Barrett et al. assessed the match performance of MPI with many
different CPU architectures [31]. They found that manycore architectures can have an
order of magnitude worse performance than a tradition big-core out of order processing
core.

The length of an MPI match list can be an important factor in overall performance.
Unexpected messages can lead to performance issues when they are sufficiently large in
number at any given time. Keller and Graham looked at MPI applications and the im-
pact of unexpected messages on performance. They found that for a subset of scientific
applications, processing unexpected messages can be a significant bottleneck to perfor-
mance [32]. This finding is corroborated by earlier work that focused directly on MPI
unexpected list performance using microbenchmarks Brightwell et al. have investigated
this impact with several microbenchmarks and the impact of unexpected message queue
length on overall observed communication latency [33,34,35]

6.2. Matching Techniques

Several matching techniques have been proposed to avoid performance degradation.
Dang, Snir and Gropp proposed [36] a multi-threaded hash table approach to matching
for MPI. Unlike other techniques in matching, this technique relies on a concurrent hash
table design that is highly scalable. The concurrent nature of the hash table requires that
no wildcards can be used in MPI messages at all. This constraining of the MPI model
allows for more concurrency that allows multiple threads to interact with MPI efficiently.
In contrast, Flajslik et al. demonstrated a hash-map keyed to use the entire set of match-
ing criteria [37]. This allowed them to include wildcards in a hashing-based matching
scheme. Their design requires setting a user configurable number of bins to which mes-
sage match requests are posted. They use 256 bins in the default configuration, allowing
for list lengths to ideally be divided in length by that amount (in practice the division
will not always be equal). This approach seems to have solved major long list match per-
formance issues, but the approach has a small overhead in the hash mapping for lists of
any size, and therefore has higher overhead than a traditional list when the match would
be near the front of a traditional linked list. Due to the fact that many applications have
tuned their match list performance over time to have the vast majority of matches oc-
cur near the beginning of the list, this approach may not be ideal for some applications.
Indeed, there has been work in allowing an MPI implementation to dynamically swap
between a hash-table and a traditional list [38].

Some solutions to MPI matching have been aimed at specific compute architectures,
namely GPUs. Klenk et al. proposed a solution for matching on GPUs that used two
phased, a scan phase and a reduce phase that could take advantage of the large amount
of concurrency available [39]. Unfortunately, there are no MPI implementations that run
on GPUs today, so the technique is not immediately applicable to the MPI state of the
art. It is also unknown what overheads exists for short lists or the case of the first match
element being the correct match as the work only used medium and large size lists for
performance evaluation.

September2018

Alternative match list stmctures based on new data structure layouts have also been
explored. Zounmevo and Afsahi showed that a 4-dimensional list structure could be used
to accelerate matching. It works by decomposing the list into a 4D lookup that allows
skipping portions of the list where the match cannot occur. Other approaches have sought
to create new queues dynamically to reduce the lengths of matching lists by separating
out traffic from specific source nodes as the traffic is observed arriving at the destina-
tion [40,41]

MPI message matching has also been addressed by creating hardware designed to
offload the matching processing itself. Examples of such efforts are the Portals commu-
nication API [42] that defines an interface for MPI message matching on hardware that is
also descriptive of general hardware design. Approaches have been done in FPGAs and
with TCAMs [43]. The Seastar interconnect [44] is an early example of a Portals MPI
matching offloading NIC, but it did so with a general CPU, much like early designs that
could be adapted to perform message matching like the Quadrics network QSNet II [45]
and the Myrinet network [46]. More recent examples of message matching NICs include
the Bull-Atos BXI NIC [47] that implements the Portals interface and ConnectX-5 NICs
from Mellanox that also perform message matching [48]

7. Conclusion

In this article we have shown that the non-determinism resulting from multithreading
scalable system software can have a significant negative impact on application perfor-
mance and highlighted several key techniques to approach this problem. Using our case
study of MPI Message Matching, we demonstrated that the change in access behavior
of threaded applications can create performance problems via request ordering. We then
highlighted three areas of research that have been alleviating this problem. These include;
leveraging parallelism through parallel progress and vector parallelism, modifying mem-
ory behavior, and building new interfaces to fully avoid these problems. Each of these
solution areas have different trade-offs; Leveraging parallelism requires the least changes
to the programming environment but is somewhat limited in the amount of improvement
it can offer. Changing memory behaviors offers decent performance improvement but
will require hardware vendors to expose caching controls. Additionally, the impact of
changing the caching model on other parts of code requires a more thorough examina-
tion. Finally, changing communication models offers the most promising improvements
but requires more application changes than the other approaches.

Acknowledgments

We would like to thank Kurt B. Ferreira and Kevin Pedretti for their assistance in collect-
ing the data in Section 2.2 on the average search depth of current scientific workloads.
We would also like to thank Taylor Groves for his contributions to the RMA-MT work
in Section 5.1 and Patrick G. Bridges and Dorian C. Arnold for their input on many of
these projects.

Sandia National Laboratories is a multi-mission laboratory managed and operated
by National Technology and Engineering Solutions of Sandia LLC, a wholly owned

September 2018

subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National
Nuclear Security Administration under contract DE-NA0003525.

References

[1] David E. Bernholdt, Swen Boehm, George Bosilca, Manjunath Venkata, Ryan E. Grant, Thomas
Naughton, Howard Pritchard, and Geoffroy Vallee. A survey of mpi usage in the u. s. exascale comput-
ing project. Concurrency and Computation: Practice and Experience. in press.

[2] Kyle B Wheeler, Richard C Murphy, and Douglas Thain. Qthreads: An API for programming with
millions of lightweight threads. 2008.

[3] Steve Plimpton. Fast parallel algorithms for short-range molecular-dynamics. Journal of Computational
Physics, 117(1):1-19, 1995.

[4] Sandia National Laboratories. LAMMPS molecular dynamics simulator. http : //lammps . sandia .
gov, Apr. 10 2013.

[5] Lawrence Livermore National Laboratory. Co-design at lawrence livermore national lab : Livermore
Unstructured Lagrangian Explicit Shock Hydrodynamics (LULESH). http : //code s ign .11n1 . gov/
lulesh . php, 2015. Retrieved 10 June 2015.

[6] Indiana University. HPCG benchmark. http : //physics . indiana . edu/ sg/milc . html. Retrieved
September 2017.

[7] J.M. McGlaun, S.L. Thompson, and M.G. Elrick. CTH: A three-dimensional shock wave physics code.
International Journal of Impact Engineering, 10(1):351-360, 1990.

[8] Jr. E. S. Hertel, R. L. Bell, M. G. Elrick, A. V. Farnsworth, G. I. Kerley, J. M. McGlaun, S. V. PetneY,
S. A. Silling, P. A. Taylor, and L. Yarrington. CTH: A software family for multi-dimensional shock
physics analysis. In Proceedings of the 19th International Symposium on Shock Waves, 1993.

[9] Sandia National Laboratories and University of Tennessee Knoxville. MIMD lattice computation
(MILC) collaboration. http : //www. hpcg-benchmark . org, 2017. Retrieved September 2017.

[10] Michael A. Heroux, Douglas W. Doerfler, Paul S. Crozier, James M. Willenbring, H. Carter Edwards,
Alan Williams, Mahesh Rajan, Eric R. Keiter, Heidi K. Thornquist, and Robert W. Numrich. Improving
performance via mini-applications. Technical Report SAND2009-5574, Sandia National Laboratories,
2009.

[11] Scott Levy and Kurt B Ferreira. Using simulation to examine the effect of MPI message matching
costs on application performance. In Proceedings of the 25th European MPI Users' Group Meeting
(EuroMPI). ACM, 2018.

[12] Torsten Hoefler, Timo Schneider, and Andrew Lumsdaine. LogGOPSim - simulating large-scale appli-
cations in the LogGOPS model. In Proceedings of the 19th ACM International Symposium on High
Performance Distributed Computing, pages 597-604. ACM, Jun. 2010.

[13] Kurt B. Ferreira, Scott Levy, Kevin Pedretti, and Ryan E. Grant. Characterizing MPI matching via
trace-based simulation. Parallel Computing, 77:57 - 83, 2018.

[14] Kurt Ferreira, Ryan E. Grant, Michael J. Levenhagen, Scott Levy, and Taylor Groves. Hardware MPI
message matching: Insights into MPI matching behavior to inform design. Concurrency and Computa-
tion: Practice and Experience, to appear.

[15] Whit Schonbein, Matthew GF Dosanjh, Ryan E Grant, and Patrick G Bridges. Measuring multithreaded
message matching misery. In European Conference on Parallel Processing, pages 480-491. Springer,
2018.

[16] Steve Plimpton, Paul Crozier, and Aidan Thompson. LAMMPS-large-scale atomic/molecular massively
parallel simulator. Sandia National Laboratories, 18, 2007.

[17] Erik Lindahl, Berk Hess, Szilárd P611, and Alfredo Metere. Gromacs 5.0 benchmarks, 2017.
[18] Matthew G. F. Dosanjh, Ryan E. Grant, Whit Schonbein, and Patrick G. Bridges. Tail queues: A multi-

threaded matching architecture. Concurrency and Computation: Practice and Experience. in press.
[19] Matthew GF Dosanjh. Improving hpc communication library performance on modem architectures.

2017.
[20] Matthew GF Dosanjh, S Mahdieh Ghazimirsaeed, Ryan E Grant, Whit Schonbein, Michael J Leven-

hagen, Patrick G Bridges, and Ahmad Afsahi. The case for semi-permanent cache occupancy: Under-
standing the impact of data locality on network processing. In Proceedings of the 47th International
Conference on Parallel Processing, page 73. ACM, 2018.

September 2018

[21] Taylor Groves, Ryan E Grant, and Dorian Arnold. Nimc: Characterizing and eliminating network-
induced memory contention. In Parallel and Distributed Processing Symposium, 2016 IEEE Interna-
tional, pages 253-262. IEEE, 2016.

[22] T. L. Groves, R. E. Grant, A. Gonzales, and D. Arnold. Unraveling network-induced memory con-
tention: Deeper insights with machine leaming. IEEE Transactions on Parallel and Distributed Systems,
29(8):1907-1922, Aug 2018.

[23] PJ Mendygral, Nick Radcliffe, Krishna Kandalla, David Porter, Brian J O'Neill, Chris Nolting, Paul
Edmon, Julius MF Donnert, and Thomas W Jones. Wombat: A scalable and high-performance astro-
physical magnetohydrodynamics code. The Astrophysical Journal Supplement Series, 228(2):23, 2017.

[24] Matthew GF Dosanjh, Taylor Groves, Ryan E Grant, Ron Brightwell, and Patrick G Bridges. RMA-
MT: A benchmark suite for assessing MPI multi-threaded RMA performance. In 2016 16th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing (CCGrid), pages 550-559. IEEE, 2016.

[25] Nathan Hjelm, Matthew GF Dosanjh, Ryan E Grant, Taylor Groves, Patrick G Bridges, and Dorian
Arnold. Improving MPI multi-threaded R1VIA communication performance. In International Conference
on Parallel Processing (ICPP), 2018.

[26] Ryan E. Grant, Anthony Skjellum, and Purushotham V. Bangalore. Lightweight threading with MPI
using persistent communications semantics. Technical report, Sandia National Laboratories (SNL-NM),
Albuquerque, NM (United States), 2015.

[27] Dylan T. Stark, Richard F. Barrett, Ryan E. Grant, Stephen L. Olivier, Kevin T. Pedretti, and Courte-
nay T. Vaughan. Early experiences co-scheduling work and communication tasks for hybrid MPI+X
applications. In Proceedings of the 2014 Workshop on Exascale MPI, pages 9-19. IEEE Press, 2014.

[28] Richard F Barrett, Dylan T Stark, Courtenay T Vaughan, Ryan E Grant, Stephen L Olivier, and Kevin T
Pedretti. Toward an evolutionary task parallel integrated MPI+X programming model. In Proceed-
ings of the Sixth International Workshop on Programming Models and Applications for Multicores and
Manycores, pages 30-39. ACM, 2015.

[29] Jeffrey S Vetter and Andy Yoo. An empirical performance evaluation of scalable scientific applications.
In Supercomputing, ACM/IEEE 2002 Conference, pages 16-16. IEEE, 2002.

[30] Keith D Underwood and Ron Brightwell. The impact of MPI queue usage on message latency. In
International Conference on Parallel Processing (ICPP), pages 152-160. IEEE, 2004.

[31] Brian W Barrett, Ron Brightwell, Ryan Grant, Simon D Hammond, and K Scott Hemmert. An evalu-
ation of MPI message rate on hybrid-core processors. The International Journal of High Performance
Computing Applications, 28(4):415-424, 2014.

[32] Rainer Keller and Richard L Graham. Characteristics of the unexpected message queue of MPI applica-
tions. In European MPI Users' Group Meeting, pages 179-188. Springer, 2010.

[33] Ron Brightwell and Keith D Underwood. An analysis of NIC resource usage for offloading MPI. In
18th International Parallel and Distributed Processing Symposium (IPDPS), page 183. IEEE, 2004.

[34] R. Brightwell, S. Goudy, and K. Underwood. A preliminary analysis of the MPI queue characteristics
of several applications. 2005.

[35] Ron Brightwell, Kevin Pedretti, and Kurt Ferreira. Instrumentation and analysis of mpi queue times
on the seastar high-performance network. Proceedings of the International Conference on Computer
Communications and Networks (ICCCN), pages 590-596,2008.

[36] Hoang-Vu Dang, Marc Snir, and William Gropp. Towards millions of communicating threads. In
Proceedings of the 23rd European MPI Users' Group Meeting, pages 1-14. ACM, 2016.

[37] Mario Flajslik, James Dinan, and Keith D Underwood. Mitigating MPI message matching misety. In
International Conference on High Performance Computing, pages 281-299. Springer, 2016.

[38] Mohammadreza Bayatpour, Hari Subramoni, Sourav Chakraborty, and Dhabaleswar K. Panda. Adap-
tive and dynamic design for MPI tag matching. In 2016 IEEE International Conference on Cluster
Computing (CLUSTER), pages 1-10. IEEE, 2016.

[39] Benjamin Klenk, Holger Froning, Hans Eberle, and Lany Dennison. Relaxations for high-performance
message passing on massively parallel SIMT processors. In 31st International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2017.

[40] S Mahdieh Ghazimirsaeed, Seyed H Mirsadeghi, and Ahmad Afsahi. Communication-aware message
matching in MPI. Concurrency and Computation: Practice and Experience, page e4862.

[41] S Mahdieh Ghazimirsaeed, Ryan E Grant, and Ahmad Afsahi. A dedicated message matching mecha-
nism for collective communications. In Proceedings of the 47th International Conference on Parallel
Processing Companion, page 26. ACM, 2018.

September 2018

[42] Brian W. Barrett, Ron Brightwell, Ryan E. Grant, Scott Hemmert, Kevin Pedretti, Kyle Wheeler, Keith
Underwood, Rolf Riesen, Arthur B. Maccabe, and Trammell Hudson. The portals 4.1 networking pro-
gramming interface, 2017.

[43] Keith D Underwood, K Scott Hemmert, Arun Rodrigues, Richard Murphy, and Ron Brightwell. A hard-
ware acceleration unit for MPI queue processing. In 19th IEEE International Parallel and Distributed
Processing Symposium (IPDPS), pages 10-pp. IEEE, 2005.

[44] Ron Brightwell, Kevin T Pedretti, Keith D Underwood, and Trammell Hudson. Seastar interconnect:
Balanced bandwidth for scalable performance. IEEE Micro, 26(3):41-57, 2006.

[45] Fabrizio Petrini, Wu-chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachtenberg. The quadrics
network: High-performance clustering technology. Ieee Micro, 22(1):46-57, 2002.

[46] Nanette J Boden, Danny Cohen, Robert E Felderman, Alan E. Kulawik, Charles L Seitz, Jakov N
Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local area network. IEEE micro, 15(1):29-
36, 1995.

[47] Said Derradji, Thibaut Palfer-Sollier, Jean-Pierre Panziera, Axel Poudes, and Francois Atos Wellenreiter.
The BXI interconnect architecture. In Proceedings of the 2015 IEEE 23rd Annual Symposium on High-
Poformance Interconnects, HOTI, pages 18-25, 2015.

[48] Understanding MPI tag matching and rendezvous offloads (ConnectX-5). https : //community .
mellanox . com/do c s/DOC- 2583. Accessed: 2018-07-25.

