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ABSTRACT

This report updates the estimated values of the baseline available drawdowns for the
caverns at the Big Hill storage facility, and an updated table listing the available
drawdowns. A new finite element numerical analysis model was constructed that consists
of a realistic mesh capturing the sonar-measured geometries of Big Hill SPR site and used
the daily data of actual wellhead pressures and oil-brine interfaces. The number of
available drawdowns for each of the Big Hill SPR caverns is estimated using the new
model. All caverns are predicted to have five available drawdowns remaining from a
geomechanical perspective. BC-101, 105, and 110 have a region of concern at the floor
edge and/or sloping floor, where tensile and dilatant stresses are predicted to occur during
each workover. The tensile state is predicted to occur because of the geometries of the edge
and floor. Therefore, geomechanical examination for three caverns would be recommended
after a drawdown leach. The well integrity of each cavern is not investigated in this report.
The estimate of the number of baseline available drawdowns for the Big Hill caverns in this
report will be incorporated in future assessments of the available drawdowns for all the
SPR caverns. The estimates for the number of baseline available drawdowns are subject to
change in the future as the knowledge of physical phenomena at the sites, and the further
development of the models of geomechanical behavior at the sites, evolve over time.
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EXECUTIVE SUMMARY

This report updates the estimated values of available drawdowns for the caverns at the Big Hill
storage facility, and an updated table listing the available drawdowns. This report follows up the
comprehensive SAND report [Sobolik et al. 2018] that gave greater detail to the decisions behind
the estimates for the Strategic Petroleum Reserve (SPR) caverns.

The estimates for the baseline available drawdowns for each of the Big Hill caverns have been
updated based on the recently upgraded Big Hill geomechanical model [Park, 2017a]. The new
estimates for Big Hill are summarized in the following table:

Cavern
Basis in 2014 Updated

Geomechanics

in 2019

Remarks
2D P/D < 1 3D P/D < 1 Geomechanics Best Estimate

1
BH-101 3 3 5 3 5 Re-examine after a drawdown

BH-102 4 4 5 4 5

BH-103 2 4 5 4 5

BH-104 3 3 5 3 5

BH-105 4 4 5 4 5 Re-examine after a drawdown

BH-106 4 4 5 4 5

BH-107 3 4 5 4 5

BH-108 2 5 5 5 5

BH-109 4 5 5 5 5

BH-110 4 5 5 5 5 Re-examine after a drawdown

BH-111 3 4 5 4 5

BH-112 3 3 5 3 5

BH-113 3 3 5 3 5

BH-114 3 5 5 5 5

BC-101, 105, and 110 have a region of concern at the floor edge and/or on the sloping floor,
where tensile and dilatant stresses are predicted to occur during each workover. The tensile state
is predicted to occur because of the geometries of the edge and floor. Therefore, geomechanical
examination for three caverns would be recommended after a drawdown leach.

The well integrity of each cavern is not investigated in this report. The structural integrity of
caverns is examined at this time. The estimate of the number of baseline available drawdowns
for the Big Hill caverns in this report will be incorporated in future assessments of the available
drawdowns for all the SPR caverns. The estimates for the number of baseline available
drawdowns are subject to change in the future as the knowledge of physical phenomena at the
sites, and the further development of the models of geomechanical behavior at the sites, evolve
over time.
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Abbreviation Definition

3D Three-Dimensional

2D Two-Dimensional
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1. INTRODUCTION

This report updates the estimated values of available drawdowns for the caverns at the Big Hill
(BH) storage facility, and an updated table listing the available drawdowns. This report follows
up the comprehensive SAND report [Sobolik et al. 2018] that gave greater detail to the decisions
behind the estimates for the Strategic Petroleum Reserve (SPR) caverns.

A consensus has now been built regarding the assessment of drawdown capabilities and risks for
the SPR caverns. This work began in 2014, when the SPR issued an Engineering Change Process
(ECP), PM-00449, Baseline Remaining Drawdowns for all SPR Caverns. It described creating a
technical baseline for all available drawdowns for each cavern considering P/D ratios and other
factors. These meetings led to the establishment of baseline values for available drawdowns for
each cavern [Sobolik et al., 2014; Sobolik 2016]. Then in September 2017, Sandia National
Laboratories (Sandia) was directed to update these reports annually to include a process to track
the evolution of drawdown capacity for each cavern as operations are performed on them. This
request was in response to legislation in 2015 directing the sale of SPR oil through the year 2025,
to reduce the stored oil inventory at SPR from approximately 700 million barrels (MMB) to
approximately 500 MMB. As a result, meetings were held between Sandia, DOE/SPR, the Fluor
Federal Petroleum Operations (FFPO; the SPR M&O contractor), to define the process that will
be used to track volume changes and their impact on drawdown capacity [Sobolik et al. 2018].

The 2D and 3D P/D ratios for each of the Big Hill caverns are described in detail in Rudeen and
Lord [2013]. Computational results from Park and Ehgartner [2011] were used to determine the
geomechanical drawdown limits. No Big Hill caverns are currently predicted to exhibit a 2D P/D
< 1.0 on the first raw water drawdown. The 14 SPR caverns at this site are predicted to be
structurally stable well beyond the 5th drawdown leach [Park and Ehgartner, 2011]. However,
the caverns in the numerical model for Big Hill were simplified to cylindrical shapes. As a result,
the 3D P/D-developed limits have been used to provide the best estimate assessment of the
drawdown capacity for these caverns. A new finite element numerical analysis model is being
constructed that consists of a realistic mesh capturing the sonar-measured geometries of Big Hill
SPR site and using the daily data of actual wellhead pressures and oil-brine interfaces [Park,
2017a]. The number of available drawdowns for each of the Big Hill SPR caverns is estimated
using the new model.

The well integrity of each cavern is not investigated in this report. The structural integrity of
caverns is examined at this time. The estimate of the number of baseline available drawdowns
for the Big Hill caverns in this report will be incorporated in future assessments of the available
drawdowns for all the SPR caverns. The estimates for the number of baseline available
drawdowns are subject to change in the future as the knowledge of physical phenomena at the
sites, and the further development of the models of geomechanical behavior at the sites, evolve
over time.
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2. MODEL DESCRIPTION

2.1. Finite Element Model

A three-dimensional finite element (FE) model capturing realistic geometries of BH site has been
constructed using sonar and seismic survey data obtained from field investigations [Park, 2017a].
The model contains the interbed between the caprock and salt top; and the interface between the
dome and surrounding in situ rock to examine the interbed behavior in the most realistic manner
available. Figure 3 shows an overview of the hexahedral finite element mesh of the stratigraphy
and cavern field at BH. The element blocks in Figure 3 are combined into single FE mesh as
shown Figure 4, which includes the boundary conditions for numerical analysis. The salt dome is
modeled as being subject to a uniform regional far-field stress state acting from an infinite
distance away. The surrounding rock block encircles the caprock and salt dome blocks. The
lengths of the model's boundaries are 14,600 ft (more than two times the dome's minor
diameter) in the N-S direction and 12,400 ft (more than two times the dome's major diameter) in
the E-W direction. The sizes of the caverns are much smaller than the dome size. Therefore, the
model boundary distances (surrounding rock) are enough to be regarded as being at infinite
distance away from the caverns (i.e. fixed boundaries are applied).

Seismic and Sonar Images

Overburden

aprock (Limestone)

aprock (Anhydrite)

Interbed

Salt Dome

Interface

Farfield
(Surrounding Rock)

105
110 109

104 103

Y (North)

X (East)

102

112 111

Cavern Array

106

1

101

Figure 1. Images of Big Hill salt dome and caprock obtained from the seismic, sonar and borehole
survey (left), an overview of the meshes of the stratigraphy (middle), and caverns (right). The
cavern ID numbers are also shown [Park, 2017a].
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12,400 ft (37 0 m

300 ft (91 m)

5700 ft (1737 m)

Ux=0
14,600 ft
(4450 m)

z

y (North)

X (East)

Figure 2. Entire finite element model and boundary conditions at Big Hill. llx=0 means no
displacement in X-direction at every node [Park, 2017a].

2.2. Internal Pressure Change

The modeling simulates the cavern responses forward in time from the initial cavern creation.
The actual wellhead pressure histories of BH-101 through BH-114 have been recorded since the
dates in Table 1 as shown Figure 3. They are recorded at the oil-side wellhead, i.e. oil-side
wellhead pressure. Pressure drops occurred during workovers and fluid transfers. For the
purposes of the present simulation, it is assumed that the initial leaches of the caverns started on
the dates one year before the wellhead pressure recording started, i.e. they were leached to full
size over a one-year period. For example, the wellhead pressure of BH-101 was recorded from
9/19/1990, so it is assumed that the initial leach of BH-101 started on 9/19/1989 with one year
leaching period.

Figure 4 shows the wellhead histories, which consist of the actual (4/20/1990 - 9/18/2017) and
the assumed future (9/19/2017 - 9/18/2047) pressure records used for 14 SPR caverns in the
simulation. The previous approximately two-year (2/3/2007 - 2/12/2009) wellhead pressure
history of each cavern as shown in Figure 3 is selected for the assumed future wellhead pressure
replication. The selected period, during which no drawdowns take place, contains the typical
normal operation histories. These histories are replicated one and half times for the next five-
years (9/19/2017 - 9/18/2022). This five-year histories are replicated for the next five-year
drawdown cycles thereafter (9/19/2022 - 9/18/2047). The first drawdown leach is assumed to

15



start at 9/19/2022. Note that the 1st, 2nd, etc., in the plots indicate the drawdown leach start dates
(9/19/2022, 9/19/2027, 9/19/2032, 9/19/2037, and 9/19/2042, respectively).

In general, the SPR caverns are most susceptible to structural instability when a workover is in
progress. In this analysis, the workover is simulated by means of an internal pressure change in
the SPR caverns. Modeling of the workover processes is used to investigate the structural
stability of the caverns. For simulation purposes, the pressure drop to zero psi for each cavern
lasts for three months, or 5 percent of time during a 5-year period. The duration of the workover
may be slightly longer than is historically encountered in the field, but is chosen to provide an
adverse condition and closely simulate actual subsidence measurements [Park et al. 2005].

Rather than complicating the analyses, the following assumptions are made:
• The replicated five-year histories (7/18/2017 - 7/17/2047) are applied for the majority of

the time, with pressure drops periodically included.
• For workover conditions, zero wellhead pressure is used.
• Not all caverns are in workover mode at the same time.
• BH-101 is the first cavern in the workover which starts on 1/1/2019 and lasts for three

months.
• After that, workovers are performed on BH-102, BH-103 ..., and BH-114 in order with

three months duration as shown Figure 4.
• These workover cycles are repeated every 5 years to meet the drawdown cycles.
• The pressure due to the oil and brine in the cavern plus the wellhead is applied on the

cavern inside boundary.

Before a cavern's initial leach starts, the model has a stabilization period (1/1/1900 - 4/20/1989).
To avoid the numerical shock, gravity is applied gradually into the mesh for ten seconds. After
that, the model is allowed to consolidate with gravity for approximately 89 years so that every
element is stabilized numerically.

The analysis simulates caverns that were leached to full size over a one-year period by means of
gradually switching from salt to fresh water in the caverns. Creep is permitted to occur over the
entire simulation period (1/1/1900 - 9/18/2047). On 9/19/2022 and subsequently every 5 years
thereafter, the SPR caverns are instantaneously leached to produce an increased volume of 15%
during each leach cycle to simulate drawdowns. Modeling of the leaching process in the caverns
was accomplished by deleting elements along the walls of the caverns so that the volume
increased by 15% with each leach. Leaching is assumed to occur uniformly along the entire
height of the cavern. However, loss of salt due to leaching in the floor or roof of the caverns is
not simulated in the model. The 5-year period between each drawdown allows the stress state in
the salt to return to a steady-state condition, as will be evidenced in the predicted closure rates.
The simulation was run out to 9/18/2047 to investigate the structural behavior of the dome for
approximately 57 years, as the process of salt creep continues to reduce the caverns' volume.

In actuality, the caverns were not always fully filled with just oil. Brine fills the bottom of the
caverns, and the proportion changes with time depending on cavern operations. The difference
between pressure gradients of oil (0.37 psi/ft of depth) and brine (0.52 psi/ft of depth) cannot be
ignored [Park, 2017a]. So, the amount of oil and brine in a cavern over time needs to be
considered. Figure 5 shows the oil-brine interface (OBI) depth history of SPR caverns used in
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this analysis. The history data (1/1/1990 — 9/18/2017) were obtained from the BC field office.
The previous approximately two-year (2/3/2007 - 2/12/2009), which is the same period as the
wellhead history replication period for the normal operation, OBI history of each cavern is
selected for the assumed future OBI replication for the rest of the simulation.

Table 1. Dates of initial leach completion, wellhead pressure recording started, and assumed
initial leach started

BH-101

e of Initial Leach

Completion

09/17/1990

Date of Wellhead Pressure

Recording Started

09/19/1990

Assumed Date Initial

Leach Started
—

09/19/1989

BH-102 10/19/1990 10/20/1990 10/20/1989

BH-103 11/27/1990 11/29/1990 11/29/1989

BH-104 10/21/1990 10/21/1990 10/21/1989

BH-105 05/13/1990 05/14/1990 05/14/1989

BH-106 10/15/1990 10/17/1990 10/17/1989

BH-107 04/23/1990 04/25/1990 04/25/1989

BH-108 06/13/1990 06/14/1990 06/14/1989

BH-109 07/23/1990 07/25/1990 07/25/1989

BH-110 04/18/1990 04/20/1990 04/20/1989

BH-111 07/14/1991 07/15/1991 07/15/1990

BH-112 06/17/1991 06/19/1991 06/19/1990

BH-113 04/30/1991 05/02/1991 05/02/1990

BH-114 08/26/1991 08/29/1991 08/29/1990
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Figure 3. Field wellhead pressure histories for the seven Bayou Choctaw SPR caverns
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Figure 4. Individual Big Hill SPR caverns' wellhead pressure histories used in this analysis
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3. SALT DAMAGE CRITERIA

Potential damage to or around the SPR caverns was evaluated based on two failure criteria:
dilatant damage and tensile failure.

For purpose of these analyses, the tensile strength of the salt is conservatively assumed to be zero
in order to check for tensile failure. Tensile cracking in rock salt initiates perpendicular to the
largest tensile stress direction. The potential for tensile failure exists if the maximum principal
stress (a 1) is numerically zero or tensile (positive value of (TA

Dilatancy is attributed to micro-fracturing or changes in the pore structure of the salt, resulting in
an increase in permeability. A dilatancy is considered as the onset of damage to rock salt. A
dilatant damage criterion is used to delineate potential zones of damage in the salt formation
surrounding the SPR facility. Dilatant damage criterion typically relates two stress invariants to
access failure and/or dilation of pressure-dependent materials: the first invariant of the Cauchy
stress tensor, 11, and the second invariant of the deviatoric stress tensor, .12. These two invariants
are defined mathematically as:

/1 = 01 + u2 + u3 (1)

(al 
- 
0.2)2 + (02 

- 
03)2 + (03 

- 
602

6

where, 61, 62, and 63 are the maximum, intermediate, and minimum principal stresses,
respectively.
Lee et al. [2004] suggested the following strength criterion of BH salt based on a series of quasi-
static triaxial compression tests:

n •
=a•e +c

The values of the parameters are calculated as follows:

a= -1320.5 psi
n= -3.4 x 10-4 (1/psi)
c= 1746 psi

A dilatant damage factor (DF) for the BC salt can then be defined by:
n • 1

a • e l+c
DF — IZ (4)

If DF 1, the shear stresses in the salt ( JZ ) are large compared to the mean stress ( /1) and

dilatant behavior is expected. If DF >1 , the shear stresses are small compared to the mean
stress and dilatancy is not expected. To calculate the dilatancy damage potential in salt, the post-
processing code ALGEBRA is used with the output of the FE code ADAGIO to determine
spatial locations of dilatant damage.

(2)
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4. CAVERN INTEGRITY

4.1. BH-101

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. A 15% volume increase is typical for a standard freshwater drawdown, but the BH
salt quality is worse than that of other sites. The exact volume increase depends on the insoluble
content of salt, so a 16% volume increase is used for a drawdown for the BH salt [Park et al.
2005; Park and Ehgartner, 2011]. Also, typical leaching processes tend to increase a cavern
radius more at the bottom of the cavern than at the top, with very little change to the roof and
floor of the cavern. For the purposes of this modeling effort for Big Hill, leaching is assumed to
add 16% to the volume of the cavern, and is assumed to occur uniformly along the entire height
of the cavern, with no leaching in the floor or roof of the caverns. Each leaching layer, or onion
skin, is built around the perimeter of the meshed cavern volume using the same rules stated
previously.

Figure 6 shows the cavity of BH-101 as developed from sonar data, along with drawdown skins
(leaching layers) and extra skins. In this simulation, BH-101 is modeled as having five
drawdown layers to be removed to account for the future oil drawdown activities. The
thicknesses of five layers and extra skin 1 are calculated to get a 16% cavern volume increase for
each drawdown. Five drawdown skins and extra skin 1 are used for examining the analysis
results after the initial leach, 1st drawdown, 2nd drawdown, and ... 5th drawdown leaches,
respectively. Six layers and extra skin 2 of 40 ft thick are used for applying the cavern specific
calibrated values of multiplication factors, A2F and KOF [Park, 2017a].

Extra Extra
Skin 2 Skin 1

5th 4th 3rd 2nd 1st
Cavern
Cavity

I I I
1st 2nd 3rd 4th 5th

Extra Extra
Skin 1 Skin 2

Figure 6. BH-101 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 7 shows the predicted maximum cri, and minimum DF in the salt volume surrounding the
cavity of BH-101 over time. In the numerical analysis, o-/ is calculated in every element in the
salt dome at each time step. The maximum a/ means the maximum value among all o-ir values
calculated in all elements in a specific volume (in this case, each skin layer) at a specific time. In
the plot, a positive value (+) indicates a tensile stress. In the similar manner, DF is calculated in
every element in the salt dome at each time step. The minimum DF means the minimum value
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among all DF values calculated in all elements in a specific volume at a specific time. As
mentioned in Section 3, when DF < 1, we consider dilatant damage to have occurred. Note that
the 1st, 2nd, etc., in the plots indicate the drawdown leach start dates (9/19/2022, 9/19/2027,
9/19/2032, 9/19/2037, and 9/19/2042, respectively) of all SPR caverns.

The maximum o-/ reaches a positive or tensile value (calculated to be 36 psi) on 1/19/1991 during
the first wellhead pressure down (810 psi to 450 psi) (see Figure 4), and keeps the positive value
(tensile stress state) until the simulation ends. The minimum DF is predicted to be less than 1
(calculated to be 0.7) on 9/20/1991 and return to be larger than 1 right after that. The minimum
DF fluctuates between larger and smaller than 1 until the simulation ends. The dilatant damage
occurs and disappears during DF < 1 and DF > 1, respectively.

Figure 8 and Figure 9 show the locations of the maximum al and minimum DF , respectively,
around BH-101 on specific dates. The areas in tensile stressed and dilatant damaged are
indicated by the elements in red in the figures. A close examination reveals that the extreme
stress state occur at the edge of the floor of the cavern, where there is a sharp corner in the mesh.
The mesh geometry at this location is likely creating an numerically high stress concentration
that exaggerates the stress at the bottom of the cavern. This occurrence is not believed to be
significant enough to cause micro-cracking in the salt of a magnitude that would affect cavern
stability. This phenomenon happened also at WH-110 in the West Hackberry [Sobolik, 2016]
and BC-101 in the Bayou Choctaw [Park, 2017b] simulations. Therefore, the salt volume
surrounding the cavern cavity excluding the elements at the sharp corners of the cavern roof and
floor might be better to predict true tensile stressed and dilatant damaged areas that affect
cavern stability. Because of this, the values of maximum a 1, and minimum DF calculated at the
corners of the cavern floor will be removed for every BH SPR cavern in the following sections.
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Time: 1991.72 year

2.0
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Time: 2002.72 year
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Figure 9. Contour plots of DF on 9/20/1991 and 9/20/2002 (look up view)

Figure 10 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum al (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-101 excluding elements at the corners of the cavern floor over time. The
initial cavern cavity volume was 13.1 MMB on 9/20/1990 and is predicted to be 11.9 MMB on
9/19/2022. The cavern volume is predicted to decrease by 9.1% over 32 years (9/20/1990 -
9/19/2022). The bizarre values of maximum 61i and minimum DF in Figure 7 are removed
through excluding them calculated from the elements at the corners of the cavern roof and floor,
thus we can see the true values of them calculated in the volume surrounding the cavern cavity.

The maximum ai reaches a positive (tensile stress state) value during the workovers after the
second drawdown leach. The maximum a/ are calculated to be 112, 166, 624, and 104 psi at
2029.22, 2034.22, 2039.22, and 2044.22 years, respectively. Figure 11 shows the contour plots
of ci on the specific times to show the area in tension in the cavern skin layers during the
workovers after each drawdown leach. The areas in tensile state are located in the sloping floor.
The tensile state may occur because of the geometry of the relatively horizontal floor, but not
vertical wall.

The values of DF become less than 1 during every workover as shown in Figure 10. The
minimum DF are calculated to be 0.92, 0.82, 0.13, and 0.96 at 2029.22, 2034.22, 2039.14, and
2044.22 years, respectively. Figure 12 shows the contour plots of DF at specific times to show
the areas in dilatant damage state (DF<l) in the cavern skin layers after each drawdown leach.
The dilatant damaged areas are created during the workovers. This implies there is creation of
micro-cracking and increase in porosity/permeability during every workover. The areas in a
dilatant damage stress condition disappear when the cavern pressure returns to the normal
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operating condition. This implies there is no additional creation of micro-cracking and increase
in porosity/permeability during the normal operation. However, there is a possibility of salt
fracture and crack propagation under both tensile and dilatant damage states during the
workovers after the second drawdown leach. Once a crack is created, the crack will continue to
propagate with time because it is in tensile state. Structural failure may occur at the sloping floor,
i.e. salt uplift is expected during the four workover periods. However, the salt uplift on the
sloping floor may not affect the cavern structural stability.

In conclusion, BH-101 may be structurally stable until the fifth drawdown leach. However, the
dilatant damaged areas in tensile stress state are created on the sloping floor of the cavern during
the workovers after the second drawdown leach substantially. Therefore, we need to re-examine
the cavern stability with a new cavern volume after a drawdown leach in future.
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4.2. BH-102

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 13 shows the cavity of BH-102 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-102 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities as mentioned in the
previous section.

Extra Extra
Skin 2 Skin 2

I I I
5th 4th 3rd 2nd 1st

Cavern
Cavity

1st 2nd 3rd

1
z

y(N

(E

Extra Extra
Skin 1 Skin 2

Figure 13. BH-102 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 14 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-102 over time. The initial cavern cavity volume was 12.9 MMB on
10/20/1990 and is predicted to be 11.9 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 7.7% over 32 years (10/20/1990 - 9/19/2022).

The maximum cr1 never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-/ is -572 psi on 5/20/2012 during the
workover started on 4/10/2012 for 53 days. The smallest predicted value of the minimum DF is
1.93 on 8/20/2005 during the workover started on 7/20/2005 for 31 days.

In conclusion, BH-102 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 14. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-102 (2nd), maximum al (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-102 over time
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4.3. BH-103

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 15 shows the cavity of BH-103 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-103 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 15. BH-103 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 16 shows the predicted maximum cri, and minimum DF in the salt volume surrounding
the cavity of BH-103 over time. The maximum al reaches a positive or tensile value (calculated
to be 9 psi) on 4/20/1998 during the wellhead pressure down (925 psi to 38 psi) (see Figure 4),
and return to a negative value. It has been the positive value (tensile stress state) since 5/22/2001
until 9/20/2032. The minimum DF is predicted to be less than 1 (calculated to be 0.59) on
5/22/2001 and return to be larger than 1 right after that. The minimum DF fluctuates between
larger and smaller than 1 until the simulation ends. The dilatant damage occurs and disappears
during DF < 1 and DF > 1, respectively.
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and Figure 18 show the locations of the maximum al and minimum DF, respectively, around
BH-103 on specific dates. The areas in tensile stressed and dilatant damaged are indicated by the
elements in red in the figures. A close examination reveals that the extreme stress state occur at
the edge of the cavern floor, where there is a sharp corner in the mesh. The mesh geometry at
this location is likely creating an numerically high stress concentration that exaggerates the stress
at the bottom of the cavern. This occurrence is not believed to be significant enough to cause
micro-cracking in the salt of a magnitude that would affect cavern stability. Because of this, the
values of maximum al, and minimum DF calculated at the corners of the cavern floor will be
removed as it has been removed in BH-101.
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Figure 16. Predicted maximum al (top) and minimum dilatant damage factor (bottom) in the salt
surrounding BH-103 over time
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Figure 17. Contour plots of cr1 on 4/20/1998, 5/22/2001, and 5/20/2016 (look up view)
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Figure 18. Contour plots of DF on 5/22/2001, 6/20/2012, and 11/20/2015 (look up view)

Figure 19 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum o-/ (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-103 over time. The initial cavern cavity volume was 13.0 MMB on
11/20/1990 and is predicted to be 11.2 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 7.1% over 32 years (11/20/1990 - 9/19/2022).

The maximum 61 never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The maximum 61 drops suddenly on 9/18/2017 because the values of that
calculated at the corner elements of the cavern floor in the first skin layer were excluded. The
largest predicted value of the maximum 61 is -148 psi on 8/20/2044 during the workover started
on 7/1/2044 for three months. The smallest predicted value of the minimum DF is 2.32 on
7/21/2039 during the workover started on 7/1/2039 for three months.

In conclusion, BH-103 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 19. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-103 (2nd), maximum cr1 (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-103 over time
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4.4. BH-104

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 20 shows the cavity of BH-104 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-104 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.

Extra Extra
Skin 2 Skin 2

1 I I I 
: 

I I I I
5th 4th 3rd 2nd 1st

Cavern
Cavity

1st 2nd 3rd 4th 5th
Extra Extra
Skin 1 Skin 2

Figure 20. BH-102 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 21 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-104 over time. The initial cavern cavity volume was 13.0 MMB on
10/20/1990 and is predicted to be 12.3 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 6.7% over 32 years (10/20/1990 - 9/19/2022).

The maximum o-/ never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-1 is -559 psi on 12/20/2044 during
the workover started on 10/1/2044 for 3 months. The smallest predicted value of the minimum
DF is 2.10 on 1/21/1992 during the workover started on 1/5/1992 for 85 days.

In conclusion, BH-104 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 21. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-104 (2nd), maximum cr1 (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-104 over time
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4.5. BH-105

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 22 shows the cavity of BH-105 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-105 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 22. BH-105 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 23 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum ol (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-105 over time. The initial cavern cavity volume was 13.0 MMB on
5/21/1990 and is predicted to be 11.5 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 9.3% over 32 years (5/21/1990 - 9/19/2022).

The maximum cri reaches a positive (tensile stress state) value during the workovers started on
5/1/2004 for 65 days. The maximum 61 are calculated to be 332 psi on 6/20/2004 (2004.47 year).
The value of maximum cyj goes up and down with zero until 5/21/2010. The second negative
peak appears on 6/22/2011 (2011.47 year) and calculated to be 730 psi. The positive value
persists until the first drawdown starts. The positive peaks appear during the workovers after
each drawdown leach. The maximum aj are calculated to be 193, 343, 779, 1391, and 2158 psi
at 2025.22, 2030.22 2035.22, 2040.22, and 2045.22 years, respectively. Figure 24 shows the
contour plots of al on the specific times to show the area in tension in the cavern skin layers
during the workovers at 2004.47, 2011.47, 2020.22, and 2045.22 years. The areas in tensile state
are located at the floor edge and on the sloping floor. The tensile state may occur because of the
geometry of the edge and floor, but not vertical wall.

The minimum DF reaches less than 1 (onset of dilatant damage) during the workovers started on
5/1/2004 for 65 days when the maximum 61 reaches a positive (tensile stress state) value
simultaneously. The minimum DF is calculated to be 0.99 on 6/20/2004 (2004.47 year). The
peak values of DF appear during every workover as shown in Figure 23. The minimum DF are
calculated to be 0.13, 0.14, and 0.07 at 2014.05, 2021.80, and 2045.89 years, respectively.
Figure 25 shows the contour plots of DF at specific times to show the areas in dilatant damage
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state (DF<l) in the cavern skin layers after each drawdown leach. The areas in dilatant damaged
are located at the floor edge. The dilatant state may occur because of the geometry of the edge of
floor, but not vertical wall. This implies it does not affect the cavern structural stability.

In conclusion, BH-105 may be structurally stable until the fifth drawdown leach. However, the
dilatant damaged areas in tensile stress state are created on the edge and sloping floor of the
cavern during the workovers. Therefore, we need to re-examine the cavern stability with a new
cavern volume after a drawdown leach completes in future.
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Figure 23. Predicted volumetric change (top), volumetric closure normalized to initial cavern
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47



Time: 884.47

5001
••.\

0I

00 —

iii

Time: 1 1 .47
5001
0 0

-500 —

—
- 1000

ow
—

-1500 1

Oie -20001

Time:2020.22
FiP

500•
01 9

500 .----
0

-1000 -f--) • "

......
a: I -15001

•"1:::. t

'" I -2000 I Time: 8 8. Time: 45.
F. !

500-1 500 1

.
.

. •
1

¥ .1<

____•-z...,.--...,_-_--.4.-:1,
...:----=.--7--;5_,..A,-- -..z:-&--ft.---- ,. „. .,.--- — -W._—_- — -----...--..— _

m

ma
.....

iir

0-1

-500 —

—
1000

15001

2000 I

„:-_----- - - .-...._
--- — OM
— - ----

--------- Z.---- \
4.. -500 —. . .. - ;._:.,- -- :- -- _ _-_—_ • z..... .. ... . ..r. -... - . . ,4,.....,_. -_, ..._ ____,

.....mumfti----------„, -,...,, —
WPM 1.1111 e00.........., ,0: V& ,• ,,,. . ... . ,ere, Dri -,........... wr roAt

.......
g. ......,re
I-114 14/‘

II

,

/

0

i lifr
kW

• 1111,11111110-- II

Figure 24. Contour plots of 01 on specific dates. Areas in tensile state are shown in red (ai > 0).
Each value of maximum ai are indicated by each arrow at each specific time on the 3rd panel in
Figure 23Figure 10

48



Time: 2021.80

Time:
..„_
,_,-,--_--_ -_,_ 

---
_....--_E-_

.,....-..E-_--&-.---
;.--:m--F.---.,

SS .47

3.0

2.5

2.1

1 .0-1

0.5 I

Time:

_,0-..--_,,_-__-_-------

14. 5

3.0-1

2.51

2.0

1 .5

1 .01

0.51

.0____:,.--E..-..-----.--a.-..-=.-.----...-....-...........

3.0 Time: 1.' I •-] ' / _ .89

2.

2.1
u_
Q

1.

az 1.01

y -4.1( 0.51

3.0
3.

2.5
2.1

2,0 , , 1
2 r,

1.5

1.
1.0

1 . 0-1 g
r a

0.51
,Y

Figure 25. Contour plots of DF on specific dates. Areas in dilatant are shown in red (DF < 1). Each
value of minimum DF is indicated by each arrow at each specific time on the bottom panel in
Figure 23

49



4.6. BH-106

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 26 shows the cavity of BH-106 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-106 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Skin 1 Skin 2

Figure 26. BH-106 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 27 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-106 over time. The initial cavern cavity volume was 13.1 MMB on
10/20/1990 and is predicted to be 12.4 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 5.2% over 32 years (12/20/1990 - 9/19/2022).

The maximum o-/ never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o- 1 is -297 psi on 6/20/2045 during the
workover started on 4/1/2045 for three months. The smallest predicted value of the minimum DF
is 2.16 on 4/22/1991 during the workover started on 4/15/1991 for 20 days.

In conclusion, BH-106 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 27. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-106 (2nd), maximum ai (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-106 over time
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4.7. BH-107

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 28 shows the cavity of BH-107 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-107 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 28. BH-107 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 29 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-107 over time. The initial cavern cavity volume was 12.9 MMB on
4/20/1990 and is predicted to be 11.9 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 6.7% over 32 years (4/20/1990 - 9/19/2022).

The maximum o-/ never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-1 is -691 psi on 8/21/1991 during the
workover started on 7/22/1991 for 60 days. The smallest predicted value of the minimum DF is
2.66 on 7/21/2035 during the workover started on 7/1/2035 for three months.

In conclusion, BH-107 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 29. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-107 (2nd), maximum cr1 (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-107 over time
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4.8. BH-108

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 30 shows the cavity of BH-108 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-108 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 30. BH-108 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 31 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-108 over time. The initial cavern cavity volume was 12.4 MMB on
6/20/1990 and is predicted to be 11.7 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 6.0% over 32 years (6/20/1990 - 9/19/2022).

The maximum ai never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o- 1 is -254 psi on 12/20/2020 during
the workover started on 10/1/2020 for three months. The smallest predicted value of the
minimum DF is 2.66 on 9/20/1998 during the workover started on 9/3/1998 for 88 days.

In conclusion, BH-108 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 31. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-108 (2nd), maximum ai (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-108 over time
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4.9. BH-109

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 32 shows the cavity of BH-109 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-109 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 32. BH-109 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 33 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-109 over time. The initial cavern cavity volume was 13.4 MMB on
7/21/1990 and is predicted to be 12.5 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 6.8% over 32 years (7/21/1990 - 9/19/2022).

The maximum ai never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-1 is -455 psi on 3/22/2046 during the
workover started on 1/1/2046 for three months. The smallest predicted value of the minimum DF
is 2.47 on 1/20/2046 during the workover started on 1/1/2046 for three months.

In conclusion, BH-109 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 33. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-109 (2nd), maximum ai (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-109 over time
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4.10. BH-110

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 34 shows the cavity of BH-110 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-110 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 34. BH-110 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 35 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-110 over time. The initial cavern cavity volume was 13.1 MMB on
4/20/1990 and is predicted to be 12.1 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 8.0% over 32 years (4/20/1990 - 9/19/2022).

The maximum o-/ reaches a positive (tensile stress state) value during the workovers started on
4/1/2026 for three months. The maximum ai are calculated to be 466 psi on 6/20/2026 (2026.47
year). The value of maximum air goes up and down with zero between 10/21/2022 and
4/20/2026. Figure 36 shows the contour plots of air on the specific times to show the area in
tension on the cavern skin layer. Each value of maximum al are indicated by each arrow at each
specific time on the 3rd panel in Figure 35. The area in tensile state is located at the floor edge.
The tensile state may occur because of the geometry of the floor edge, but not vertical wall. This
implies it does not affect the cavern structural stability. The minimum DF either never reaches to
be less than 1 during every workover until the end of simulation.

In conclusion, BH-110 may be structurally stable until the fifth drawdown leach. However, the
areas in tensile stress state are created on the floor edge of the cavern during the workovers.
Therefore, we need to re-examine the cavern stability with a new cavern volume after a
drawdown leach completes in future.
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4.11. BH-111

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 37 shows the cavity of BH-111 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-111 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 37. BH-111 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 38 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-111 over time. The initial cavern cavity volume was 13.2 MMB on
7/21/1991 and is predicted to be 13.0 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 1.9% over 31 years (7/21/1991 - 9/19/2022). The amount of volume closure is
smaller than that of other SPR caverns because the lower volume of cavity is relatively small.
The creep closure rate increases with depth because the difference between lithostatic and cavern
internal pressures increases.

The maximum cr1 never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o- 1 is -416 psi on 9/20/2021 during the
workover started on 7/1/2021 for three months. The smallest predicted value of the minimum DF
is 1.36 on 7/22/2036 during the workover started on 7/1/2036 for three months.

In conclusion, BH-111 is predicted to be structurally stable through the fifth drawdown leach.
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4.12. BH-112

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 39 shows the cavity of BH-112 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-112 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 39. BH-112 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 40 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-112 over time. The initial cavern cavity volume was 13.1 MMB on
6/21/1991 and is predicted to be 12.6 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 3.8% over 31 years (6/21/1991 - 9/19/2022). The amount of volume closure is
relatively small because the lower volume of cavity is small like BH-111.

The maximum cr1 never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-/ is -170 psi on 12/21/2021 during
the workover started on 10/1/2021 for three months. The smallest predicted value of the
minimum DF is 1.56 on 10/21/2026 during the workover started on 10/1/2026 for three months.

In conclusion, BH-112 is predicted to be structurally stable through the fifth drawdown leach.
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4.13. BH-113

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 41 shows the cavity of BH-113 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-113 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 41. BH-113 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 42 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-113 over time. The initial cavern cavity volume was 13.1 MMB on
5/21/1991 and is predicted to be 12.0 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 8.1% over 31 years (5/21/1991 - 9/19/2022).

The maximum ai never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o-1 is -522 psi on 6/22/2015 during the
workover started on 2/10/2015 for 173 days. The smallest predicted value of the minimum DF is
2.51 on 2/20/2015 during the workover started on 2/10/2015 for 173 days.

In conclusion, BH-113 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 42. Predicted volumetric change (top), volumetric closure normalized to initial cavern
volume of BH-113 (2nd), maximum ai (3rd) and minimum dilatant damage factor (bottom) in the
salt surrounding BH-113 over time
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4.14. BH-114

Modeling of the leaching process of the caverns is performed by deleting a pre-meshed block of
elements along the walls of the cavern so that the cavern volume is increased by 16 percent per
drawdown. Figure 43 shows the cavity of BH-114 as developed from sonar data, along with
drawdown skins and extra skins. In this simulation, BH-114 is modeled as having five drawdown
layers to be removed to account for the future oil drawdown activities.
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Figure 43. BH-114 cavern cavity with five drawdown skins (leaching layers) and extra skins

Figure 44 shows the predicted volumetric change (top), and volumetric closure normalized to
initial cavern volume (2nd panel), maximum 61 (3rd panel), and minimum DF (bottom) in the salt
volume surrounding BH-114 over time. The initial cavern cavity volume was 13.5 MMB on
8/20/1991 and is predicted to be 12.5 MMB on 9/19/2022. The cavern volume is predicted to
decrease by 7.1% over 31 years (8/20/1991 - 9/19/2022).

The maximum cri never reaches a positive (tensile stress state) value through five drawdowns,
and the minimum DF either never reaches to be less than 1 during every workover until the end
of simulation. The largest predicted value of the maximum o- 1 is -158 psi on 4/20/2013 during a
series of workovers started on 9/8/2012 for 224 days. The smallest predicted value of the
minimum DF is 1.62 on the same day of predicting the largest value of the maximum o -

In conclusion, BH-114 is predicted to be structurally stable through the fifth drawdown leach.
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Figure 44. Predicted volumetric change (top), volumetric closure normalized to initial cavern
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5. CONCLUSIONS - AVAILABLE DRAWDOWNS

The estimates for the baseline available drawdowns for each of the Big Hill caverns have been
updated based on the recently upgraded Big Hill geomechanical model [Park, 2017a]. The new
estimates for Big Hill are summarized in Table 2. All caverns are predicted to have five baseline
available drawdowns remaining from a geomechanical perspective. The values for the baseline
available drawdowns for the Big Hill caverns presented here were not completed in time to be
implemented in the 2019 annual report on the number of available drawdowns for each SPR
cavern [Sobolik et al., 2019]; however, they will be included in the next annual report. In those
annual reports, the number of available drawdowns for a particular cavern is defined by the
difference between number of baseline available drawdowns for a cavern based on geomechanics
and cavern geometry (such as presented in Table 2), and the number of drawdowns spent due to
the cumulative volume of raw water injections into that cavern.

BC-101, 105, and 110 have a region of concern at the floor edge and/or on the sloping floor,
where tensile and dilatant stresses are predicted to occur during each workover. The tensile state
is predicted to occur because of the geometries of the edge and floor. Therefore, geomechanical
examination for three caverns would be recommended after a drawdown leach.

The well integrity of each cavern is not investigated in this report. The structural integrity of
caverns is examined at this time. The number of available drawdowns in Table 2 is not the final.
The numbers will be updated after the examination of the well integrity is completed through the
upgraded BH geomechanical model next fiscal year.

Table 2. 2019 U dated number of available drawdowns — Biq Hill

Cavern
Basis in 2014 Updated

Geomechanics

in 2019

Remarks
2D P/D < 1 3D P/D < 1 Geomechanics Best Estimate

BH-101 3 3 5 3 5 Re-examine after a drawdown

BH-102 4 4 5 4 5

BH-103 2 4 5 4 5

BH-104 3 3 5 3 5

BH-105 4 4 5 4 5 Re-examine after a drawdown

BH-106 4 4 5 4 5

BH-107 3 4 5 4 5

BH-108 2 5 5 5 5

BH-109 4 5 5 5 5

BH-110 4 5 5 5 5 Re-examine after a drawdown

BH-111 3 4 5 4 5

BH-112 3 3 5 3 5

BH-113 3 3 5 3 5

BH-114 3 5 5 5 5
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