
Michelle Williams

University of Arizona

MNE520 Data Analysis Final Project

3D Printed Rock Analysis using Python

May 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &

Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.

Department of Energy's National Nuclear Security Administration under contract DE-NA0003525

SAND2019-6661R

1 lIll
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

No. C334 2 STARRETT 3
1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

f 1, 1 I I I I lk ijillu l l.11,1,11111111„10,111,1,

1 1 1 1 I
1 2 3 4 5 6 7 8 c,

TEMPERED

2 3 4 5(6 7 8 c

\ '01,11,1i1,11! H11.11111 \ 1

H13 Pre

H13 _ Axial _Parallel Velocity

2.0 -

1.5 -

1.0 -

a) 0.5

0- 0 . 0 -tFmmmnlamumimaauuLasaimmuaaluLjVi\t\rumrV

—0.5 -

—1.0 -

—1.5 -

0.0 0.2 0.4

time (sec)
0.6 0.8 1.0

le-4

H13 _Axial_Perpendicular Velocity

t
(13

1

2

1

1

-2 -
f 1 1

0.0 0.2 0.4

time (sec)
0.6 0.8 1.0

le-4

H13 Radial Parallel Velocity

0.0
f

0.2 0.4 0.6 0.8 1.0

time (sec)

H13_Radial_Perpendicular Velocity

,

I ,\
1 i i

0.6 0.80.0 0.2 0.4

time (sec)
1.0

le-4

0

H13 Stress vs Strain

1
0.005

strain

strains

axial

Iateral para

lateral perp

H13 Force over Time

0 200 400 600

time (sec)
800 1000

H13 Force vs Axial Displacement

0.00 0.01 0.02 0.03

axial displacement (in)
0.05

#!/usr/bin/env python3

-*- coding: utf-8 -*-

Created on Sat Apr 20 17:15:59 2019

@author: mwilli9

from math import pi

import pandas as pd

import matplotlib.pyplot as plt

from PIL import Image

from numpy import diff

#close all open plots

plt.close('all')

#Define functions for importing, formating, and ploting data

#function to calculate sample area (circle)

def sample_area(specs):

area = pi*((lateral paral.length + laterial perpendic. length)/2)^2)/4

return pi*(((specs.iloc[1][lvaluel] + specs.iloc[2][lvaluel])/2.)**2)/4.

#function to calculate stress

def stress(test_data, area):

#stress = axial force/area (in2)

return test_datarAxial ForceTvalues/area

#function to calculate axial strain

def strain(test_data, specs):

#get sample height from specs excel sheet

sample_height = specs[specsrDimensionTstr.containsCAxial Length'ifi'Valuel[0]

#axial strain = axial displacement/sample height

return test_datarAxial Displacement'lvalues/sample_height

#function to calculate laterial strains

def lateral_strain(test_data, specs, lvdts):

#laterial strain 1 = lvdt/lat parallel length

Istrainl = test_data[lvdts[0]].values/specs.iloc[1]['valuel

#laterial strain 2 = lvdt/lat perpendicular length

Istrain2 = test_data[lvdts[1]1.values/specs.iloc[2][Valuel

return Istrainl, Istrain2

#function for importing multiple velocity data files

def import_velocity(filepath):

#importing data into data frame

vdata = pd.read_csv(filepath, usecols = [3,5])

vunit = vdata.loc[0]

#removing unit row from data frame

vdata.drop(0, inplace=True)

#change dataframe from object to numeric format

vdata = vdata.transform(pd.to_numeric, errors='coerce')

return vdata, vunit

#function for selecting start of p wave

def p_wave_select(dataframe):

#should be centered at zero

#cutoff initial time

init_index = dataframe['Source'] > 0.5E-5

#determine bias in measurement baseline

inst_bias = (dataframerCHninit_index]).median()

#typically deviates below zero first

#determine first time the signcal deviates below bias for more than 1 meas.

p_wave_start = two_meas_below(dataframe[init_index], inst_bias)

return dataframe[init_index].values[p_wave_start]

def two_meas_below(dataframe, bias):

for i in range(len(dataframe.values)):

#find first time signal is consistently above or below bias

if ((dataframerCH2Tvalues[i:i+7] < bias).all() or

(dataframerCH2Tvalues[i:i+7] > bias).all()):

return i

def s_wave_select(dataframe):

#cutoff initial time

init_index = dataframe['Source'] > 0.5E-5

#should be increasing or decreasing for many timesteps

for i in range(len(dataframe[init_index].values)):

dx = diff(dataframerCH2Tinit_index].values[i:i+12:2])

if ((dx > 0).all() or (dx < 0).all()):

return dataframe[init_index].values[i]

#function for generating velocity plot

def plot_velocity(dataframe, title, results_list):

#use function to find start of p wave

p_start = p_wave_select(dataframe)

#use function to find start of s wave

s_start = s_wave_select(dataframe)

print(s_start)

dataframe.plot(x='Source', y='CH2', kind='line', figsize=(8, 5),

legend=False)

plt.plot(p_start[0], p_start[1], 'r*')

plt.plot(s_start[0], s_start[1], 'g*')

plt.ticklabel_format(axis=1x1, style='sci', scilimits=(-2,2))

plt.locator_params(axis=1x', nbins=6)

plt.xlim(0, 1E-4)

plt.grid(color='gray', linestyle='--', alpha=0.3)

plt.xlabel('time (sec)', fontsize=12)

plt.ylabel('amplitude (V)', fontsize=12)

plt.title(title + ' Velocity')

plt.tight_layout()

file_name = 'Results/' + title + '.png'

plt.savefig(file_name, dpi=200)

results_list += [lmage.open(file_name)]

#function for generating stress strain plot

def plot_stress_strain(dataframe, title, results_list):

plt.figure(figsize=(8, 5))

plt.subplots_adjust(bottom=0.135, right=0.8, left=.105)

plt.plot(dataframe['Axial StrainTvalues, dataframe['Axial Stress'], 'b-',

label='axial')

plt.plot(dataframerLstrain11.values, dataframe['Axial Stress], 'g-',

label=llateral para')

plt.plot(dataframerLstrainnvalues, dataframe['Axial Stress], 'r-',

label=llateral perp')

plt.xlabel('strain', fontsize=12)

plt.ylabel('stress (psi)', fontsize=12)

plt.grid(color='gray', linestyle='--', alpha=0.3)

plt.legend(bbox_to_anchor=(1.04, 1), loc='upper left', fontsize=9,

title='strains')

plt.title(title + ' Stress vs Strain')

file_name = 'Results/' + title + '.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating force over time plot

def plot_force_time(dataframe, title, results_list):

#determine unload time from maximum displacement

unload = dataframe['Axial Displacementlargmax()

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Running Time'].values[unload],

dataframe['Axial Forcel.values[unload], 'o')

plt.plot(dataframe['Running Time'], dataframe['Axial Force'])

plt.ylabel('axial force (lbf)', fontsize=12)

plt.xlabel('time (sec)', fontsize=12)

plt.grid(color='gray', linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force over Time')

plt.tight_layout()

file_name = 'Results/' + title + 'force_time.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating force versus displacement plot

def plot_force_displacement(dataframe, title, results_list):

#determine unload time from maximum displacement

unload = dataframe['Axial Displacementlargmax()

#

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Axial Displacementl.values[unload],

dataframe['Axial Forcel.values[unload], 'o')

plt.plot(dataframe['Axial Displacement], dataframe['Axial Force'])

plt.ylabel('axial force (lbf)', fontsize=12)

plt.xlabel('axial displacement (in)', fontsize=12)

plt.grid(color='gray', linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force vs Axial Displacement')

plt.tight_layout()

file_name = 'Results/' + title + 'force_displacement.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#Import, format, and format data

#defining test specifications filepath

specsdata = 'H13 Dimensions.xlsx'

specs = pd.read_excel(specsdata, sheetname='dimensions1

#defining test data filepath

ucstestdata = 'Test Data/' + pd.read_excel(specsdata,

sheetname='test data1rfile1[0]

#defining names of lvdt

lvdtl = pd.read_excel(specsdata, sheetname='test data')['lvdt 11[0]

lvdt2 = pd.read_excel(specsdata, sheetname='test data')['lvdt 21[0]

#store as together as a tuple

lvdts = lvdtl, lvdt2

#importing data into data frame

tdata = pd.read_csv(ucstestdata, header=1)

#remove whitespace from column headers

tdata.columns = tdata.columns.str.strip()

#create series of test data units

tunit = tdata.loc[0]

#removing unit row from data frame

tdata.drop(0, inplace=True)

#change dataframe from object to numeric format

tdata = tdata.transform(pd.to_numeric, errors=1coerce1

#defining velcoity data filepath

velocitydatal = 'Velocity/' + pd.read_excel(specsdata,

sheetname='velocity data')['file1[0]

velocitydata2 = 'Velocity/' + pd.read_excel(specsdata,

sheetname='velocity data')['file1[1]

velocitydata3 = 'Velocity/' + pd.read_excel(specsdata,

sheetname='velocity data')['file1[2]

velocitydata4 = 'Velocity/' + pd.read_excel(specsdata,

sheetname='velocity data')['file1[3]

#importing velocity datasets into organized data frames

vdatal, vunitl = import_velocity(velocitydatal)

vdata2, vunit2 = import_velocity(velocitydata2)

vdata3, vunit3 = import_velocity(velocitydata3)

vdata4, vunit4 = import_velocity(velocitydata4)

#calculate sample area

sample_area = sample_area(specs)

#calculate axial stress

tdata['Axial Stress'] = stress(tdata, sample_area)

#calculate strain

tdata['Axial Strain'] = strain(tdata, specs)

#calculate laterial strains

lstrainl, lstrain2 = lateral_strain(tdata, specs, lvdts)

tdatarLstrainll = lstrainl

tdata['Lstrain2'] = lstrain2

#importing pre photo

prephoto = 'Photos/ + pd.read_excel(specsdata, sheetname='photos')['pre'][0]

#open pre photo jpg file

prelmage = lmage.open(prephoto)

#change image size

prelmage = prelmage.resize((1600, 1200))

#save pre photo image as pdf

prelmage.save('Results/ + prephoto[7:-4] + '.pdf', "PDF", Quality = 100)

#importing post photo

postphoto = 'Photos/ + pd.read_excel(specsdata, sheetname='photos')['posr][0]

#open post photo jpg file

postlmage = lmage.open(postphoto)

#change image size

postlmage = postlmage.resize((1600, 1200))

#save post photo image as pdf

postlmage.save('Resultst + postphoto[7:-4] + 1.pdf, "PDF", Quality = 100)

#add image to results list

results_list = [postlmage]

#

#Plot data

#plot veloity data

plot_velocity(datafra me=vdata 1, title=velocitydatal[9:-4],

results_list=results_list)

plot_velocity(dataframe=vdata2, title=velocitydata2[9:-4],

results_list=results_list)

plot_velocity(dataframe=vdata3, title=velocitydata3[9:-4],

results_list=results_list)

plot_velocity(dataframe=vdata4, title=velocitydata4[9:-4],

results_list=results_list)

#plot stress strain data

plot_stress_strain(dataframe=tdata, title=ucstestdata[10:-25],

results_list=results_list)

#plot force vs time

plot_force_time(dataframe=tdata, title=ucstestdata[10:-25],

results_list=results_list)

#plot force vs displacement

plot_force_displacement(dataframe=tdata, title=ucstestdata[10:-25],

results_list=results_list)

#

#Create PDF containing all results

#name of results file

results_file = 'Results/AllResults.pdf'

#add images to pdf

prelmage.save(results_file, 'PDF', resolution=100, save_all=True,

append_images=results_list)

