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H13 Axial Perpendicular Velocity
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H13 Stress vs Strain
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H13 Force over Time
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H13 Force vs Axial Displacement
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-

Created on Sat Apr 20 17:15:59 2019

@author: mwilli9

from math import pi

import pandas as pd

import matplotlib.pyplot as plt
from PIL import Image

from numpy import diff

#close all open plots
plt.close('all’)

#
#Define functions for importing, formating, and ploting data
#

#function to calculate sample area (circle)

def sample_area(specs):
# area = pi*((lateral paral.length + laterial perpendic. length)/2)"2)/4
return pi*(((specs.iloc[1]['Value'] + specs.iloc[2]['Value'])/2.)**2)/4.

#function to calculate stress
def stress(test_data, area):
#stress = axial force/area (in2)
return test_data['Axial Force'].values/area

#function to calculate axial strain
def strain(test_data, specs):
#get sample height from specs excel sheet

sample_height = specs[specs['Dimension'].str.contains('Axial Length')]['Value'][0]

#axial strain = axial displacement/sample height
return test_data['Axial Displacement'].values/sample_height

#function to calculate laterial strains

def lateral_strain(test_data, specs, Ivdts):
#laterial strain 1 = Ivdt/lat parallel length
Istrainl = test_data[lvdts[0]].values/specs.iloc[1]['Value']
#laterial strain 2 = Ivdt/lat perpendicular length
Istrain2 = test_data[lvdts[1]].values/specs.iloc[2]['Value']
return Istrainl, Istrain2



#function for importing multiple velocity data files
def import_velocity(filepath):
#importing data into data frame
vdata = pd.read_csv(filepath, usecols = [3,5])
vunit = vdata.loc[0]
#removing unit row from data frame
vdata.drop(0, inplace=True)
#change dataframe from object to numeric format
vdata = vdata.transform(pd.to_numeric, errors='coerce')
return vdata, vunit

#function for selecting start of p wave

def p_wave_select(dataframe):
#should be centered at zero
#cutoff initial time
init_index = dataframe['Source'] > 0.5E-5
#determine bias in measurement baseline
inst_bias = (dataframe['CH2'][init_index]).median()
#typically deviates below zero first

#determine first time the signcal deviates below bias for more than 1 meas.

p_wave_start = two_meas_below(dataframe[init_index], inst_bias)
return dataframelinit_index].values[p_wave_start]

def two_meas_below(dataframe, bias):
foriin range(len(dataframe.values)):
#find first time signal is consistently above or below bias
if ((dataframe['CH2'].values[i:i+7] < bias).all() or
(dataframe['CH2'].valuesli:i+7] > bias).all()):
return i

defs_wave_select(dataframe):
#cutoff initial time
init_index = dataframe['Source'] > 0.5E-5
#should be increasing or decreasing for many timesteps
for i in range(len(dataframe[init_index].values)):
dx = diff(dataframe['CH2'][init_index].values[i:i+12:2 ])
if ((dx > 0).all() or (dx < 0).all()):
return dataframelinit_index].values][i]

#function for generating velocity plot
def plot_velocity(dataframe, title, results_list):



#use function to find start of p wave
p_start = p_wave_select(dataframe)
#use function to find start of s wave
s_start =s_wave_select(dataframe)
print(s_start)

dataframe.plot(x='Source', y="CH2', kind='line', figsize=(8, 5),
legend=False)

plt.plot(p_start[0], p_start[1], 'r*')
plt.plot(s_start[0], s_start[1], 'g*')

plt.ticklabel_format(axis="x', style='sci', scilimits=(-2,2))
plt.locator_params(axis='x', nbins=6)
plt.xlim(0, 1E-4)

plt.grid(color="gray’, linestyle='--', alpha=0.3)
plt.xlabel('time (sec)', fontsize=12)
plt.ylabel('amplitude (V)', fontsize=12)
plt.title(title + ' Velocity')

plt.tight_layout()

file_name = 'Results/' + title + '.png'
plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating stress strain plot
def plot_stress_strain(dataframe, title, results_list):
plt.figure(figsize=(8, 5))
plt.subplots_adjust(bottom=0.135, right=0.8, left=.105)
plt.plot(dataframe['Axial Strain'].values, dataframe['Axial Stress'], 'b-',
label="axial')
plt.plot(dataframe['Lstrainl'].values, dataframe|['Axial Stress'], 'g-',
label="lateral para')
plt.plot(dataframe['Lstrain2'].values, dataframe['Axial Stress'], 'r-',
label='"lateral perp')
plt.xlabel('strain’, fontsize=12)
plt.ylabel('stress (psi)', fontsize=12)
plt.grid(color="gray’, linestyle='--', alpha=0.3)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left', fontsize=9,
title='strains')
plt.title(title + ' Stress vs Strain')
file_name = 'Results/' + title + ".png'
plt.savefig(file_name, dpi=200)
results_list += [Image.open(file_name)]



#function for generating force over time plot

def plot_force_time(dataframe, title, results_list):
#determine unload time from maximum displacement
unload = dataframe['Axial Displacement'].argmax()

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Running Time'].values[unload],
dataframe['Axial Force'].values[unload], 'o0')

plt.plot(dataframe['Running Time'], dataframe['Axial Force'])

plt.ylabel('axial force (Ibf)', fontsize=12)

plt.xlabel('time (sec)', fontsize=12)

plt.grid(color="gray’, linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force over Time')

plt.tight_layout()

file_name = 'Results/' + title + 'force_time.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating force versus displacement plot
def plot_force_displacement(dataframe, title, results_list):
#determine unload time from maximum displacement

unload = dataframe['Axial Displacement'].argmax()

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Axial Displacement'].values[unload],
dataframe['Axial Force'].values[unload], '0')

plt.plot(dataframe['Axial Displacement'], dataframe['Axial Force'])

plt.ylabel('axial force (Ibf)', fontsize=12)

plt.xlabel('axial displacement (in)', fontsize=12)

plt.grid(color="gray’, linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force vs Axial Displacement')

plt.tight_layout()

file_name = 'Results/' + title + 'force_displacement.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#
#lmport, format, and format data
#




#defining test specifications filepath
specsdata = 'H13 Dimensions.xIsx'
specs = pd.read_excel(specsdata, sheetname='dimensions')

#defining test data filepath

ucstestdata = 'Test Data/' + pd.read_excel(specsdata,
sheetname="test data')['file'][0]

#defining names of lvdt

Ivdtl = pd.read_excel(specsdata, sheetname="test data')['lvdt 1'][0]

lvdt2 = pd.read_excel(specsdata, sheetname="test data')['lvdt 2'][0]

#store as together as a tuple

Ivdts = lvdt1, lvdt2

#importing data into data frame

tdata = pd.read_csv(ucstestdata, header=1)
#remove whitespace from column headers
tdata.columns = tdata.columns.str.strip()
#create series of test data units

tunit = tdata.loc[0]

#removing unit row from data frame

tdata.drop(0, inplace=True)

#change dataframe from object to numeric format
tdata = tdata.transform(pd.to_numeric, errors='coerce’)

#defining velcoity data filepath

velocitydatal = 'Velocity/' + pd.read_excel(specsdata,
sheetname="velocity data')['file'][0]

velocitydata2 = 'Velocity/' + pd.read_excel(specsdata,
sheetname='velocity data')['file'][1]

velocitydata3 = 'Velocity/' + pd.read_excel(specsdata,
sheetname='velocity data')['file'][2]

velocitydata4 = 'Velocity/' + pd.read_excel(specsdata,
sheetname="velocity data')['file'][3]

#importing velocity datasets into organized data frames
vdatal, vunitl = import_velocity(velocitydatal)
vdata2, vunit2 = import_velocity(velocitydata2)
vdata3, vunit3 = import_velocity(velocitydata3)
vdata4, vunit4 = import_velocity(velocitydata4)

#calculate sample area
sample_area = sample_area(specs)
#calculate axial stress



tdata['Axial Stress'] = stress(tdata, sample_area)
#calculate strain

tdata['Axial Strain'] = strain(tdata, specs)
#calculate laterial strains

Istrainl, Istrain2 = lateral_strain(tdata, specs, lvdts)
tdata['Lstrainl'] = Istrainl

tdata['Lstrain2'] = Istrain2

#importing pre photo

prephoto = 'Photos/' + pd.read_excel(specsdata, sheetname="photos')['pre'][0]
#open pre photo jpg file

prelmage = Image.open(prephoto)

#change image size

prelmage = prelmage.resize((1600, 1200))

#save pre photo image as pdf

prelmage.save('Results/' + prephoto[7:-4] + ".pdf', "PDF", Quality = 100)

#importing post photo

postphoto = 'Photos/' + pd.read_excel(specsdata, sheetname="photos')['post'][0]
#open post photo jpg file

postimage = Image.open(postphoto)

#change image size

postimage = postimage.resize((1600, 1200))

#save post photo image as pdf

postimage.save('Results/' + postphoto[7:-4] + '.pdf', "PDF", Quality = 100)

#add image to results list

results_list = [postimage]

#
#Plot data
#

#plot veloity data

plot_velocity(dataframe=vdatal, title=velocitydatal[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata2, title=velocitydata2[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata3, title=velocitydata3[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata4, title=velocitydata4[9:-4],
results_list=results_list)

#plot stress strain data
plot_stress_strain(dataframe=tdata, title=ucstestdata[10:-25],



results_list=results_list)

#plot force vs time
plot_force_time(dataframe=tdata, title=ucstestdata[10:-25],
results_list=results_list)

#plot force vs displacement
plot_force_displacement(dataframe=tdata, title=ucstestdata[10:-25],
results_list=results_list)

#

#Create PDF containing all results
#

#name of results file

results_file = 'Results/AllResults.pdf'

#add images to pdf

prelmage.save(results_file, 'PDF', resolution=100, save_all=True,
append_images=results_list)



