SAND2019- 6661R

Michelle Williams
University of Arizona
MNE520 Data Analysis Final Project
3D Printed Rock Analysis using Python
May 2019

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology &
Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525

@ Sandia
National
Laboratories

(fi
g

b

mfo—
ka7 89

[123 4
i No. C334 2
| 1294 7678¢]1234 5678|9

|

‘
{ :

1"l

ARA Y 141

AT TR AT TR RTAN AN ;.lif!..fll'H’Hl.tH.L

—Mh-ﬁa—‘ww m}-ﬂ

-

'I'T ﬂwlz lHlBPost

|\l’||||||l|||lLlllllll,..ml?‘

s ll

amplitude (V)

H13 Axial Parallel Velocity

2.0

1.5+

1.8+

=05~

_1.0 ik

_..1.5 L

%

0.0

0.2

0.4

time (sec)

0.6

0.8

1.0
le—4

amplitude (V)

H13 Axial Perpendicular Velocity

\

0.0 0.2 0.4
time (sec)

0.6

0.8

1.0
le—4

amplitude (V)

H13 Radial _Parallel Velocity

0.0

0.2 0.4 0.6
time (sec)

0.8

1.0
le—4

amplitude (V)

H13 Radial Perpendicular Velocity

0.0

0.2

0.4 0.6
time (sec)

0.8

1.0
le—4

stress (psi)

H13 Stress vs Strain

3500 -

3000 -

2500 -

2000 -

1500 -

1000 -

500 -

—0.005

0.000

0.005 0.010
strain

0.015

strains
— axial
— |ateral para
— |ateral perp

H13 Force over Time

6000 -

5000 -

4000 -

3000 A

axial force (lbf)

2000 -

1000 -

unload

200

400

time (sec)

600

800

1000

H13 Force vs Axial Displacement

6000 - e ® unload

5000 -

4000 -

3000 A

axial force (lbf)

2000 -

1000 -

0.00 0.01 0.02 0.03 0.04 0.05
axial displacement (in)

#!/usr/bin/env python3
-*- coding: utf-8 -*-

Created on Sat Apr 20 17:15:59 2019

@author: mwilli9

from math import pi

import pandas as pd

import matplotlib.pyplot as plt
from PIL import Image

from numpy import diff

#close all open plots
plt.close('all’)

#
#Define functions for importing, formating, and ploting data
#

#function to calculate sample area (circle)

def sample_area(specs):
area = pi*((lateral paral.length + laterial perpendic. length)/2)"2)/4
return pi*(((specs.iloc[1]['Value'] + specs.iloc[2]['Value'])/2.)**2)/4.

#function to calculate stress
def stress(test_data, area):
#stress = axial force/area (in2)
return test_data['Axial Force'].values/area

#function to calculate axial strain
def strain(test_data, specs):
#get sample height from specs excel sheet

sample_height = specs[specs['Dimension'].str.contains('Axial Length')]['Value'][0]

#axial strain = axial displacement/sample height
return test_data['Axial Displacement'].values/sample_height

#function to calculate laterial strains

def lateral_strain(test_data, specs, Ivdts):
#laterial strain 1 = Ivdt/lat parallel length
Istrainl = test_data[lvdts[0]].values/specs.iloc[1]['Value']
#laterial strain 2 = Ivdt/lat perpendicular length
Istrain2 = test_data[lvdts[1]].values/specs.iloc[2]['Value']
return Istrainl, Istrain2

#function for importing multiple velocity data files
def import_velocity(filepath):
#importing data into data frame
vdata = pd.read_csv(filepath, usecols = [3,5])
vunit = vdata.loc[0]
#removing unit row from data frame
vdata.drop(0, inplace=True)
#change dataframe from object to numeric format
vdata = vdata.transform(pd.to_numeric, errors='coerce')
return vdata, vunit

#function for selecting start of p wave

def p_wave_select(dataframe):
#should be centered at zero
#cutoff initial time
init_index = dataframe['Source'] > 0.5E-5
#determine bias in measurement baseline
inst_bias = (dataframe['CH2'][init_index]).median()
#typically deviates below zero first

#determine first time the signcal deviates below bias for more than 1 meas.

p_wave_start = two_meas_below(dataframe[init_index], inst_bias)
return dataframelinit_index].values[p_wave_start]

def two_meas_below(dataframe, bias):
foriin range(len(dataframe.values)):
#find first time signal is consistently above or below bias
if ((dataframe['CH2'].values[i:i+7] < bias).all() or
(dataframe['CH2'].valuesli:i+7] > bias).all()):
return i

defs_wave_select(dataframe):
#cutoff initial time
init_index = dataframe['Source'] > 0.5E-5
#should be increasing or decreasing for many timesteps
for i in range(len(dataframe[init_index].values)):
dx = diff(dataframe['CH2'][init_index].values[i:i+12:2])
if ((dx > 0).all() or (dx < 0).all()):
return dataframelinit_index].values][i]

#function for generating velocity plot
def plot_velocity(dataframe, title, results_list):

#use function to find start of p wave
p_start = p_wave_select(dataframe)
#use function to find start of s wave
s_start =s_wave_select(dataframe)
print(s_start)

dataframe.plot(x='Source', y="CH2', kind='line', figsize=(8, 5),
legend=False)

plt.plot(p_start[0], p_start[1], 'r*')
plt.plot(s_start[0], s_start[1], 'g*')

plt.ticklabel_format(axis="x', style='sci', scilimits=(-2,2))
plt.locator_params(axis='x', nbins=6)
plt.xlim(0, 1E-4)

plt.grid(color="gray’, linestyle='--', alpha=0.3)
plt.xlabel('time (sec)', fontsize=12)
plt.ylabel('amplitude (V)', fontsize=12)
plt.title(title + ' Velocity')

plt.tight_layout()

file_name = 'Results/' + title + '.png'
plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating stress strain plot
def plot_stress_strain(dataframe, title, results_list):
plt.figure(figsize=(8, 5))
plt.subplots_adjust(bottom=0.135, right=0.8, left=.105)
plt.plot(dataframe['Axial Strain'].values, dataframe['Axial Stress'], 'b-',
label="axial')
plt.plot(dataframe['Lstrainl'].values, dataframe|['Axial Stress'], 'g-',
label="lateral para')
plt.plot(dataframe['Lstrain2'].values, dataframe['Axial Stress'], 'r-',
label='"lateral perp')
plt.xlabel('strain’, fontsize=12)
plt.ylabel('stress (psi)', fontsize=12)
plt.grid(color="gray’, linestyle='--', alpha=0.3)
plt.legend(bbox_to_anchor=(1.04, 1), loc="upper left', fontsize=9,
title='strains')
plt.title(title + ' Stress vs Strain')
file_name = 'Results/' + title + ".png'
plt.savefig(file_name, dpi=200)
results_list += [Image.open(file_name)]

#function for generating force over time plot

def plot_force_time(dataframe, title, results_list):
#determine unload time from maximum displacement
unload = dataframe['Axial Displacement'].argmax()

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Running Time'].values[unload],
dataframe['Axial Force'].values[unload], 'o0')

plt.plot(dataframe['Running Time'], dataframe['Axial Force'])

plt.ylabel('axial force (Ibf)', fontsize=12)

plt.xlabel('time (sec)', fontsize=12)

plt.grid(color="gray’, linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force over Time')

plt.tight_layout()

file_name = 'Results/' + title + 'force_time.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#function for generating force versus displacement plot
def plot_force_displacement(dataframe, title, results_list):
#determine unload time from maximum displacement

unload = dataframe['Axial Displacement'].argmax()

plt.figure(figsize=(8, 5))

plt.plot(dataframe['Axial Displacement'].values[unload],
dataframe['Axial Force'].values[unload], '0')

plt.plot(dataframe['Axial Displacement'], dataframe['Axial Force'])

plt.ylabel('axial force (Ibf)', fontsize=12)

plt.xlabel('axial displacement (in)', fontsize=12)

plt.grid(color="gray’, linestyle='--', alpha=0.3)

plt.legend(['unload'], loc=0, fontsize=9)

plt.title(title + ' Force vs Axial Displacement')

plt.tight_layout()

file_name = 'Results/' + title + 'force_displacement.png'

plt.savefig(file_name, dpi=200)

results_list += [Image.open(file_name)]

#
#lmport, format, and format data
#

#defining test specifications filepath
specsdata = 'H13 Dimensions.xIsx'
specs = pd.read_excel(specsdata, sheetname='dimensions')

#defining test data filepath

ucstestdata = 'Test Data/' + pd.read_excel(specsdata,
sheetname="test data')['file'][0]

#defining names of lvdt

Ivdtl = pd.read_excel(specsdata, sheetname="test data')['lvdt 1'][0]

lvdt2 = pd.read_excel(specsdata, sheetname="test data')['lvdt 2'][0]

#store as together as a tuple

Ivdts = lvdt1, lvdt2

#importing data into data frame

tdata = pd.read_csv(ucstestdata, header=1)
#remove whitespace from column headers
tdata.columns = tdata.columns.str.strip()
#create series of test data units

tunit = tdata.loc[0]

#removing unit row from data frame

tdata.drop(0, inplace=True)

#change dataframe from object to numeric format
tdata = tdata.transform(pd.to_numeric, errors='coerce’)

#defining velcoity data filepath

velocitydatal = 'Velocity/' + pd.read_excel(specsdata,
sheetname="velocity data')['file'][0]

velocitydata2 = 'Velocity/' + pd.read_excel(specsdata,
sheetname='velocity data')['file'][1]

velocitydata3 = 'Velocity/' + pd.read_excel(specsdata,
sheetname='velocity data')['file'][2]

velocitydata4 = 'Velocity/' + pd.read_excel(specsdata,
sheetname="velocity data')['file'][3]

#importing velocity datasets into organized data frames
vdatal, vunitl = import_velocity(velocitydatal)
vdata2, vunit2 = import_velocity(velocitydata2)
vdata3, vunit3 = import_velocity(velocitydata3)
vdata4, vunit4 = import_velocity(velocitydata4)

#calculate sample area
sample_area = sample_area(specs)
#calculate axial stress

tdata['Axial Stress'] = stress(tdata, sample_area)
#calculate strain

tdata['Axial Strain'] = strain(tdata, specs)
#calculate laterial strains

Istrainl, Istrain2 = lateral_strain(tdata, specs, lvdts)
tdata['Lstrainl'] = Istrainl

tdata['Lstrain2'] = Istrain2

#importing pre photo

prephoto = 'Photos/' + pd.read_excel(specsdata, sheetname="photos')['pre'][0]
#open pre photo jpg file

prelmage = Image.open(prephoto)

#change image size

prelmage = prelmage.resize((1600, 1200))

#save pre photo image as pdf

prelmage.save('Results/' + prephoto[7:-4] + ".pdf', "PDF", Quality = 100)

#importing post photo

postphoto = 'Photos/' + pd.read_excel(specsdata, sheetname="photos')['post'][0]
#open post photo jpg file

postimage = Image.open(postphoto)

#change image size

postimage = postimage.resize((1600, 1200))

#save post photo image as pdf

postimage.save('Results/' + postphoto[7:-4] + '.pdf', "PDF", Quality = 100)

#add image to results list

results_list = [postimage]

#
#Plot data
#

#plot veloity data

plot_velocity(dataframe=vdatal, title=velocitydatal[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata2, title=velocitydata2[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata3, title=velocitydata3[9:-4],
results_list=results_list)

plot_velocity(dataframe=vdata4, title=velocitydata4[9:-4],
results_list=results_list)

#plot stress strain data
plot_stress_strain(dataframe=tdata, title=ucstestdata[10:-25],

results_list=results_list)

#plot force vs time
plot_force_time(dataframe=tdata, title=ucstestdata[10:-25],
results_list=results_list)

#plot force vs displacement
plot_force_displacement(dataframe=tdata, title=ucstestdata[10:-25],
results_list=results_list)

#

#Create PDF containing all results
#

#name of results file

results_file = 'Results/AllResults.pdf'

#add images to pdf

prelmage.save(results_file, 'PDF', resolution=100, save_all=True,
append_images=results_list)

