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ABSTRACT

This application note describes how Release 6.11 of the Xyce circuit simulator can be coupled
with external simulators via either a Python-based interface that leverages the Python ctypes
foreign function library or via the Verilog Procedural Interface (VPI). It also documents the usage
of these interfaces on RHEL6 and RHEL7, with Python 2.6 or 2.7. These interfaces are still under
development and may change in the future. So, a key purpose of this application note is to solicit
feedback on these interfaces from both internal Sandia Xyce users and other performers on the
DARPA Posh Open Source Hardware (POSH) program.
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1. INTRODUCTION

Xyce is Sandia National Laboratories’ SPICE-compatible high-performance analog circuit
simulator, written to support the simulation needs of the laboratories’ electrical designers. It has
the capability to solve extremely large circuit problems on large-scale parallel computing
platforms, and contains device models specifically tailored to meet Sandia’s needs.

This application note documents recent work on interfacing Release 6.11 of Xyce to both Verilog
and VHDL (VHSIC Hardware Description Language) simulation codes. These interfaces are still
under development and may change in the future. So, a key purpose of this application note is to
solicit feedback on these interfaces from both internal Sandia Xyce users and other performers on
the DARPA Posh Open Source Hardware (POSH) program.

Chapter 2 gives a description of the XyceCInterface class and its methods. It also describes how
to build Xyce as “shared” objects that can be invoked by, or linked with, other programs. That
XyceCInterface class provides the basis of the Python-based and VPI-based interfaces that are
the described in Chapters 3 and #. Working examples are given for both of these interfaces.
Finally, this application note only documents the usage of these interfaces on RHEL6 and
RHELY7, with Python 2.6 or 2.7. Their support on OSX and Windows, as well as compatibility
with Python 3, is “future work™.

Reference [1] describes the Xyce General External Interface, which is another mechanism for
external simulation codes to use Xyce as their circuit simulator. That approach can be used on a
wide variety of circuit/mesh coupling problems. An example is coupling frequency-domain
electromagnetic simulators to Xyce, and performing the frequency-domain analyses that Xyce
provides such as harmonic balance.

1.1. TARGET AUDIENCE AND PREREQUISITES

This application note is intended for users and developers of existing simulation codes who wish
to use Xyce in order to add circuit simulation capability to their existing capabilities. It assumes
that you have already downloaded and compiled Xyce™ according to its documentation, that you
have installed it in a manner that allows you to run it directly by typing “Xyce” in the command
line, and that you are able to run a basic netlist using that installed copy of Xyce. Section 2.2 then
gives more instructions of how to compile and install Xyce as “shared objects” that can be linked
with the open-source Verilog simulator Icarus [2] via the Verilog Procedural Interface (VPI) [3],
or invoked via the Sandia-supplied Python interface.



For external open-source users, source code for Xyce can be obtained from our website at
xyce.sandia.gov. Internal Sandia users should contact the Xyce development team for either
source code access or access to a build of the shared-objects version of Xyce. That capability is
not included, by default, in the Xyce 6.11 binaries that are distributed within Sandia.

The Xyce Reference Guide [4] and Users’ Guide [5] provide more detail on Xyce syntax and
usage for circuit simulation. Readers who are not familiar with SPICE or Xyce are encouraged to
work through the tutorial examples in Chapters 2 and 3 of the Users’ Guide before trying to run
the examples given in this application note. Those two chapters explain how to run transient
(.TRAN) simulations in Xyce, using a simple Diode Clipper circuit as an example. Reference [6]
contains a brief explanation of the mathematical foundations of parallel circuit simulation in
Xyce. All of these documents are available on our website at xyce.sandia.gov.

This application note assumes minimal familiarity with Verilog. So, section 4.1| gives a brief
overview of Icarus, which is an open-source Verilog simulation and synthesis tool.

One purpose of this application note is to solicit feedback on these Mixed Signal Interfaces. The
Xyce development team can be contacted via email at xyce @sandia.gov.
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2. XYCECINTERFACE

The XyceCInterface class provides methods to invoke various methods on a pointer to an
N_CIR_Xyce object (whose class name is Xyce: :Circuit: :Simulator), which is the topmost
object in a Xyce simulation. Section 2.1 provides a detailed description of the methods provided
the XyceCInterface class. The parameters, return values, known limitations and bugs for each
method are described. Examples of how to use these methods are given in subsequent chapters of
this application note. Section [2.2 then gives a description of how to build the Xyce 6.11 source
code so that it includes the XyceCInterface class and can be linked to, or invoked as, “shared
objects” by other programs.

Chapters [3/ and 4/ describe Python-based and VPI-based interfaces that leverage the
XyceCInterface class. However, that class can also be leveraged directly by C++ codes that do
not need the full generality of the Xyce General External Interface [1].

2.1. APIDESCRIPTION

For the Xyce 6.11 release, the XyceClnterface.C and XyceClnterface.h files are located in the
utils/XyceClnterface subdirectory of the Xyce source tree. The names, signatures and return types
of these methods may change in future Xyce releases. In addition, slightly different versions and
additional methods may be developed for the Python-based and VPI-based interfaces described in
subsequent chapters.

2.1.1. xyce_open

void xyce_open(void ** ptr)

This method allows the calling program to obtain a void** pointer to an N_CIR_Xyce object. It
must be called before any of the other methods described below. The type of this pointer may
change in future Xyce releases.
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2.1.2. xyce_initialize

int xyce_initialize(void ** ptr, int argc, char ** argv)

This method assumes that the pointer ptr was previously obtained with the xyce_open method.
The other two arguments for the xyce_initialize method mimic the function of the same
arguments in a normal C or C++ main function: they are interpreted as representing the command
line that invoked Xyce. The argument argc is the number of strings present in the array of strings,
argv.

The string argv [0] is taken to be the name of the program, and no use is made of it. Subsequent
elements of the argv array are command line options as documented in Chapter 3 of the Xyce
Reference Guide [4]. The final argument string in this array should be the name of the Xyce
netlist to be processed.

The xyce_initalize method actually invokes the initializeEarly and initializeLate
methods of the underlying N_CIR_Xyce object. The initializeEarly method instantiates the
devices present in the netlist and allocates all of the solvers and packages needed. The
initializeLate method then completes the analysis of the circuit topology, sets up the internal
vector and matrix storage, initializes the output manager, and makes the N_CIR_Xyce object ready
for the simulation to take place. If the external programs using the Python-based and VPI-based
interfaces described in this application note needed to set Xyce-internal device properties directly,
rather than via the simulation’s Xyce netlist, then the existing xyce_initalize method of the
XyceCInterface class could likely be split into separate xyce_initializeEarly and
xyce_initialiazeLate methods. That split approach was taken for the Xyce General External
Interface [1].

This method returns a integer value that maps to the Xyce: :Circuit: :Simulator: :RunStatus
enum values. So this function returns O for the run status of “ERROR”, 1 for the run status of
“SUCCESS” and 2 for the run status of “DONE”. More details on these run-status codes are:

“ERROR?” signifies failure of the initialization, and the actual error condition will have been
printed to Xyce’s standard error stream. Further calls to that XyceClnterface object’s methods
should not be made, as Xyce has effectively terminated with a fatal error when this value is
returned.

“DONE?” signifies that all processing is complete. This return value is used when the command
line arguments include an argument that prevents Xyce from proceeding to a full simulation, such
as “-syntax”, “-count”, “-v”, “-norun” and so forth. If xyce_initialize returns this value, Xyce
has effectively exited successfully and further calls such as xyce_runSimulation should not be

performed.

“SUCCESS?” signifies that the initialization was successful, and the XyceClnterface object is
ready for futher calls such as xyce_runSimulation.
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2.1.3. xyce_runSimulation

int xyce_runSimulation(void ** ptr)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

This method causes Xyce to run the entire simulation specified in the netlist to completion. It
returns the status codes described in the xyce_initialize subsection above.

2.1.4. xyce_simulateUntil

int xyce_simulateUntil(void **ptr,
double requestedUntilTime,
double * completedUntilTime)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

This method causes Xyce to perform a limited simulation not to exceed the simulation time
specified in requestedUntilTime. Upon return, completedUntilTime will contain the actual
time that Xyce reached, which will be less than or equal to requestedUntilTime either because
the netlist specified a final time earlier than requestedUntilTime, or because there was a fatal
convergence error. Each call to xyce_simulateUntil after the first one resumes the current
simulation from where the last call left off. If xyce_simulateUntil () is called with
requestedUntilTime less than the current simulation time then the simulation will proceed to
completion from that current simulation time.

This method returns 1 if the simulation completed successfully, either by reaching the value of
requestedUntilTime or the final time specified in the netlist, whichever is earlier. It returns 0O if
the run was unsuccessful. If xyce_simulateUntil returns 1 and completedUntilTime is less
than requestedUntilTime then Xyce has completed its work and further calls to
xyce_simulateUntil will do nothing.

2.1.5. xyce_close

void xyce_close(void ** ptr)

This method causes Xyce to close all output files after a simulation run is complete and emit
timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be called after
the Xyce simulation is complete.

13



2.1.6. xyce_getNumDevices

int xyce_getNumDevices(void **ptr,
char * modelGroupName,
int * numDevNames,
int * maxDevNameLength)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getNumDevices takes a character array containing a “model group” name, and returns the
number of devices from the model group in the netlist. It also return the size of longest device
name from that model group. It is a general purpose method that can be given any valid model
group name (“M” for MOSFETs, “Q” for BITs, etc. [4]).

This method was added to improve memory management for the xyce_getDeviceNames,
xyce_getDACDeviceNames and xyce_getADCMap methods. For C interfaces, it allows the
calling program to pre-allocate the correct-sized arrays for those methods’ returned parameter(s)
such as deviceNames. It is also used internally for array-size management by the corresponding
Python methods such as getDeviceNames.

This method returns 1 if at least one device of the requested type exists in the netlist. Otherwise, it
returns O with both numDevNames and maxDevNameLength equal to 0. A request for an invalid
model group will also return 0.

2.1.7. xyce_getDeviceNames

int xyce_getDeviceNames(void ** ptr,
char * modelGroupName,
int * numDevNames,
char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getDeviceNames takes a character array containing a “model group” name, and returns a
char** array of the names for all devices in the netlist of that type. It is a general purpose method
that can be given any valid model group name (“M” for MOSFETs, “Q” for BJTs, etc. [4]). This
method also returns the number of devices from the specified model group in the netlist.

This method returns 1 if at least one device of the requested type exists in the netlist. Otherwise, it
returns O with numDevNames equal O and deviceNames being of zero length. A request for an
invalid model group will also return 0.
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2.1.8. xyce_getDACDeviceNames

int xyce_getDACDeviceNames(void ** ptr,
int * numDevNames,
char ** deviceNames)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method.

xyce_getDACDeviceNames returns a char®* array of the names for all the Digital-to-Analog
(DAC) devices in the netlist. So, it is basically a specialized version of the more general
xyce_getDeviceNames method described above. This method also returns the number of DAC
devices in the netlist.

This method returns 1 if at least one DAC device exists in the netlist. Otherwise, it returns 0 with
numDevNames equal 0 and deviceNames being of zero length.

2.1.9. xyce_updateTimeVoltagePairs

int xyce_updateTimeVoltagePairs(void ** ptr,
char * DACname,
int numPoints,
double * timeArray,
double * voltageArray)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize. If DACname is not the name of a valid DAC device in
the Xyce netlist then the function will execute with a Xyce warning message and return O as noted
below.

This method will return 1 if the time-voltage pairs for the specified DACname were successfully
updated. Otherwise, it will return O.

The “error condition” of timeArray and voltageArray being of unequal lengths is checked
when this method is invoked via the Python ctypes-based interface. It is not checked when
xyce_updateTimeVoltagePairs is invoked directly. For direct invocation, it is the responsbility
of the calling function to verify that the parameters numPoints, timeArray and voltageArray
have consistent values and lengths.

Examples of how to use this method, with both Python and VPI, are provided in the release src
subdirectories utils/XyceCInterface/Python_examples/runCircuitWithDACs and
utils/XyceCInterface/VPI_examples/runXyceWithDAC.
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2.1.10. xyce_checkResponseVar

int xyce_checkResponseVar(void ** ptr, char * variable_name)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_checkResponseVar takes a character array containing a “measure name”. It returns 1 if
variable_name is a valid measure name in the the Xyce simulation. Otherwise, it returns 0.

An example Xyce measure statement is as follows [4]. This example is a MAX measure for a
transient (TRAN) simulation. Its name is MAXV1, where that name is not case-sensitive. It returns
the maximum value of the quantity V(1) found during the simulation.

.MEASURE TRAN MAXV1 MAX V(1)

2.1.11. xyce_obtainResponse

xyce_obtainResponse(void ** ptr, char * variable_name, double * value)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_obtainResponse takes a character array containing a “measure” name. It returns the value
of that . MEASURE statement at the current simulation time in the value parameter. If the Xyce
simulation has completed then it will return the value at the final simulation time.

This method returns 1 if the requested variable_name is a valid measure name in the the Xyce
simulation. Otherwise, it returns 0. For a return value of 0, the value parameter will also be set to
0.

2.1.12. xyce_setADCWidths

int xyce_setADCWidths(void ** ptr,
int numADCnames,
char ** ADCnames,
int * widths)

16



This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_setADCWidths takes a char** array of the ADC names for which the “output bit-vector
widths” are being setting. The parameter widths is then an int* array of those widths. Each ADC
will then have 2**width quantization levels, where different ADCs may have different widths.

This method will return 1 if the “output bit-vector width” is succesfully updated at every ADC
specified in ADCnames. It will return O if the update process fails at any ADC specified in
ADCnames.

The “error condition” of ADCnames and widths being of unequal lengths is checked when this
method is invoked via the Python ctypes-based interface. It is not checked when
xyce_setADCWidths is invoked directly. For direct invocation, it is the responsbility of the
calling function to verify that the parameters numADCnames, ADCnames and widths have
consistent values and lengths.

The ADC widths can be set via this function, the WIDTH instance parameter for each individual
YADC device, and the associated YADC model parameters (see Section 5.1]). The order of
precedence is in that order. This function should have the highest precedence, since it occurs after
the xyce_initialize method is called.

2.1.13. xyce_getADCWidths

int xyce_getADCWidths(void ** ptr,
int numADCnames,
char ** ADCnames,
int * widths)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getADCWidths takes a char** array of the ADC names for which the values of the “output
bit-vector widths” are being requested. The parameter widths is then an int* array of those
widths. Each ADC then has 2**width quantization levels, where different ADCs may have
different widths.

This method will return 1 if the “output bit-vector width” is succesfully found at every ADC
specified in ADCnames. It will return O if the get process fails for any ADC specified in ADCnanmes.
The width value for any ADC not found in the netlist will be returned as 0.

The “error condition” of numADCnames and ADCnames not being consistent is not checked when
xyce_getADCWidths is invoked directly. For direct invocation, it is the responsbility of the
calling function to verify that the parameters numADCnames and ADCnames have a consistent value
and length.
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2.1.14. xyce_getTimeVoltagePairsADC

int xyce_getTimeVoltagePairsADC(void** ptr,
int * numADCnames,
char ** ADCnames,
int * numPoints,
double ** timeArray,
double ** voltageArray )

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getTimeVoltagePairsADC returns a char** array of the names for all the ADC devices in
the netlist. The returned double** voltageArray then contains the “deltaV” values (the
differences between the voltages at the positive and negative terminals) for the ADC devices
listed in the ADCnames array at the time points specified in the double** timeArray.

The formats of the returned numPoints, timeArray and voltageArray parameters will be
illustrated further in Section [7.1]. This function is the “least mature” of the XyceCInterface
methods and Section describes its limitations via a Python-based example. Many of these
limitations stem from known limitations in the YADC device (see Section 5.1)) implemented in
Xyce 6.11.

This method will return 1 if there are ADC devices in the netlist. It will return O otherwise.

The use of both xyce_getTimeVoltagePairsADC and and xyce_getTimeStatePairsADC in
the same program is not recommended, because of an open bug.

2.1.15. xyce_getTimeStatePairsADC

int xyce_getTimeStatePairsADC(void#** ptr,
int * numADCnames,
char ** ADCnames,
int * numPoints,
double ** timeArray,
double ** stateArray )

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getTimeStatePairsADC returns a char®* array of the names for all the ADC devices in
the netlist. The returned double** stateArray then contains the integer-valued states (ranging
from O to 2 * width|i] — 1, where width[i] is the bit width of the i" ADC) at the time points
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specified in the double** timeArray. So, this function partially removes the need for an external
simulation program to convert the “deltaV” values, stored internally within Xyce, into state
values. However, that external simulator may still need to convert the returned integer state-values
into a suitable binary/octal/hexadecimal format for its use.

This method will return 1 if there are ADC devices in the netlist. It will return O otherwise.

The use of both xyce_getTimeVoltagePairsADC and and xyce_getTimeStatePairsADC in
the same program is not recommended, because of an open bug.

2.1.16. xyce_getADCMap

int xyce_getADCMap(void ** ptr,
int * numADCnames,
char ** ADCnames,
int * widths,
double * resistances,

double * upperVLimits,
double * lowerVLimits,
double * settlingTimes)

This method assumes that the pointer ptr was previously obtained with the xyce_open method
and successfully initialized with the xyce_initialize method. So, it must be called after the
calls to xyce_open and xyce_initialize.

xyce_getADCMap returns a char** array of the names of all the ADC devices in the netlist. The
widths, resistances, upperVLimits, lowerVLimits and settlingTimes arrays are then int*
or double* arrays of the corresponding instance parameters for the ADC devices listed listed in
the ADCnames array. The ordering in those five instance-parameter arrays is the same as in the
ADCnames array.

This method will return 1 if there are ADC devices in the netlist. It will return O otherwise, and
the various arrays will be empty in that case.

2.2. XYCE SHARED OBJECTS BUILDING AND
TESTING GUIDE FOR RHEL6 AND RHEL7

This section describes how to build the source code for the Xyce 6.11 release as “shared objects”
that can be linked with, or invoked by, other simulators. It covers the build process for the gcc
compilier on RHEL6 and RHEL7 for a serial build. For information on how to build with the Intel
compilers, or on other Linux variants, please contact the Xyce development team.

At this point, a build process for the XyceCInterface code in support of Mixed Signal interfaces
is not supported on either OSX or Windows. Support for those operating systems is expected in
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future releases though. Finally, the mixed signal interfaces have only been demonstrated with a
serial build of Xyce.

The reconfigure scripts shown in Figures 2-1) and 2-2 have been shown to work on RHEL6 and
RHELY7. They will produce . so libraries that can invoked by Python via the Sandia-supplied
ctypes interface described in Chapter 3 and also linked with Icarus to create Verilog vvp programs
as described in Chapter 4. The directory where this build of Xyce will be installed is denoted as
$installDir in these reconfigure scripts. These scripts also refer to the top-level installation
directory of Trilinos as $archdir, and assume that Trilinos has been built according to the
guidance in the Xyce Building Guide [7]. The top-level Xyce src directory is referred to as
$xyceSrcDir.

$xyceSrcDir/configure \
ARCHDIR=$archdir \
--disable-verbose_linear \
--disable-verbose_nonlinear \
--disable-verbose_time \
--enable-shared \
--enable-xyce-shareable \
--prefix=$installDir \

CC=gcc \

CXX=g++ \

F77=gfortran \

CXXFLAGS="-01 -fno-inline -g"

Figure 2-1. Compiling Xyce as Shared Objects on RHEL6 with gcc

$xyceSrcDir/configure \
ARCHDIR=$archdir \
--disable-verbose_linear \
--disable-verbose_nonlinear \
--disable-verbose_time \
--enable-shared \
--enable-xyce-shareable \
--prefix=$installDir \

CC=gcc \

CXX=g++ \

F77=gfortran \

CXXFLAGS="-01 -fno-inline -std=c++11"

Figure 2-2. Compiling Xyce as Shared Objects on RHEL7 with gcc

As other notes, the use of -enable-shared and -enable-xyce-shareable is needed in order
to create the . so files. Also, the CXXFLAGS shown above are set for a debug build. That is
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convenient for co-development with Icarus and Xyce, since the combined vvp programs (see
Chapter 4) can then be debugged in gcc (or your other favorite debugger). A more typical Xyce
build would use -O3 instead, for better performance. After running reconfigure and make, it is
recommended that a make install also be done.

To test the installed build the following tags list (-taglist option for the run_xyce_regression
script) should be used. It includes the MIXED_SIGNAL tests that are specific to this application
note. Per the “Some tests only work when tested from a build directory” section of the “Running
the Xyce Regression Suite” web-page [8] the tag -1ibrary should be used if make install was
used. The addition of +mixedsignal to this tagslist will just run the MIXED_SIGNAL tests.

"+serial+nightly-library?noverbose?klu-verbose?rad?fft?qaspr?nonfree?mixedsignal"

The MIXED_SIGNAL regression tests have not been fully integrated with the release testing
process for Xyce yet. So, they may still be “fragile”, especially with respect to how they
determine the path to $xyceSrcDir. In addition, the Python interface, described in Chapter 3,
was tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 6.11 release. Some features (and
regression tests) are known to fail when the tests are run with Python 3.4.2 or 3.5.2. (Note: the
regression tests may be hard-coded to use Python 2.x on Sandia systems.) So, the reader should
contact the Xyce development team if they have problems with either the build or test processes
described in this section.

Finally, this application note only discusses the build process for RHEL6 and RHEL7. The
authors do welcome feedback though on the reader’s experience with other Linux variants,
especially Ubuntu.

2.2.1. Post-Release Code Fixes

If Xyce was built from source then please contact the Xyce Development Team about any relevant
updates related to the Mixed Signal Interface. Those updates, if any, should be publically
available from our GitHub site (https://github.com/Xyce/).
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3. PYTHON WRAPPERS TO
XYCECINTERFACE

A Sandia-supplied implementation of ctype-based Python wrappers for the XyceCInterface
class is available in the release subdirectory utils/XyceCInterface. The file name is
xyce_interface.py. As background, ctypes is a “foreign function library for Python. It
provides C compatible data types, and allows calling functions in DLLs or shared libraries. It can
be used to wrap these libraries in pure Python.” More information on ctypes can be found at

[9].

This application note will not discuss the internals of the xyce_interface.py file. The key point
is that it provides a wrapper for the methods documented in Section 2.1

3.1. APIDESCRIPTION

This section provides a mapping of the Python interfaces methods to the underlying
XyceCInterface methods described in Section [2.1].

3.1.1. xyce_interface

xyceObj = xyce_interface()

This method allows the calling Python program to invoke the underlying xyce_open method of
the XyceCInterface. It creates a pointer to an N_CIR_Xyce object (which is also called a “xyce”
object in some of the example files discussed in Section [3.2). It must be called before any of the
other Python-based methods described below.

3.1.2. initialize

result = xyceObj.initialize(argv)
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This method assumes that xyceObj was previously obtained with the xyce_interface method.
The argument (argv) represents the command line that invoked Xyce, but it should not include
the program name Xyce. This method allows the calling Python program to invoke the underlying
xyce_initialize method of the XyceCInterface. The return value (in result) is the same as
for the underlying xyce_initialize method of XyceCInterface.

If initialize () returns 2 (which is the Xyce::Circuit::Simulator::RunStatus of “DONE”) then
the calling .py file will likely segfault. This can happen for Xyce command line options such as
-norun that prevent Xyce from proceeding to a full simulation. (This is not an expected use case
for the Python interface.) This should be fixed in a future release.

3.1.3. runSimulation

result = xyceObj.runSimulation()

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_runSimulation method of the XyceCInterface. The
return value (in result) for this Python method is the same as for the xyce_runSimulation
method of XyceCInterface.

3.1.4. simulateUntil

(result, actual_time) = xyceObj.simulateUntil(requested_time)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_simulateUntil method of the XyceCInterface. The
return value (in result) is the same as for the xyce_simulateUntil method of
XyceCInterface. See Section 2.1.4 for a discussion of the requested_time parameter. For the
Python method, actual_time is a returned value rather than a parameter in the function call. It is
also described in Section 2.1.4.

3.1.5. close

xyceObj.close()

This method causes Xyce to close all output files after a simulation run is complete and emit
timing information. It also deletes the pointer to the N_CIR_Xyce object. It should be called after
the Xyce simulation is complete.
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3.1.6. getNumDevices

(result, numDevices, maxDeviceNameLength) = xyceObj.getNumDevices (modelGroupName)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getNumDevices method. The return value (in result) is
the same as for the xyce_getNumDevices method of XyceCInterface. Valid values for the
modelGroupName parameter are discussed in Section 2.1.7. This method is used internally by the
getDeviceNames, getDACDeviceNames and getADCMap methods to pre-allocate the
correct-sized arrays for those methods’ returned parameter(s) such as deviceNames.

3.1.7. getDeviceNames

(result, deviceNames) = xyceObj.getDeviceNames(modelGroupName)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getDeviceNames method of the XyceCInterface. The
return value (in result) is the same as for the xyce_getDeviceNames method of
XyceCInterface. For the Python method, deviceNames is a returned array rather than a
parameter in the function call. Valid values for the modelGroupName parameter are discussed in
Section 2.1.7.

3.1.8. getDACDeviceNames

(result, DACnames) = xyceObj.getDACDeviceNames ()

This method is basically a specialized version of the Python method getDeviceNames that only
returns the names of YDAC devices in the simulation. See Section 2.1.4. for more details on the
underlying xyce_getDACDeviceNames method of XyceCInterface.

3.1.9. updateTimeVoltagePairs

result = xyceObj.updateTimeVoltagePairs(DACname, timeArray, voltageArray)
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This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_updateTimeVoltagePairs method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface method
xyce_updateTimeVoltagePairs.

The “error condition” of timeArray and voltageArray being of unequal lengths is checked
when this method is invoked via the Python interface. If that check fails then this method returns
-1. This error condition is not checked when xyce_updateTimeVoltagePairs is invoked
directly.

An example of how to use this Python method is provided in the release src subdirectory
utils/XyceCInterface/Python_examples/runCircuitWithDACs.

3.1.10. checkResponseVar

result = xyce0Obj.checkResponseVarName (variable_name)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_checkResponseVar method of the XyceCInterface.
The return value (in result) is the same as for the XyceCInterface method
xyce_checkResponseVar.

3.1.11. obtainResponse

(result, value) = xyceObj.obtainResponse(variableName)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_obtainResponse method of the XyceCInterface. The
return value (in result) is the same as for the XyceCInterface method
xyce_obtainResponse. See Section 2.1.11] for a description of value.

3.1.12. setADCWidths

result = xyceObj.setADCWidths(ADCnames, width)
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This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_setADCWidths method of the XyceCInterface. The
return value (in result) is the same as for the XyceCInterface method

xyce_setADCWidths.

See Section 2.1.12 for a description of the ADCnames and widths parameters. The ADC widths
can be set via this function, the WIDTH instance parameter for each individual YADC device and
the associated YADC model parameters (see Section 5.1)). The order of precedence is in that
order. This function should have the highest precedence, since it occurs after the
xyce_initialize method is called.

The “error condition” of ADCnames and widths being of unequal lengths is checked when this
method is invoked via the Python interface. If that check fails then this method returns -1. This
error condition is not checked when xyce_setADCWidths is invoked directly.

3.1.13. getADCWidths
(result, width) = xyceObj.getADCWidths (ADCnames)

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getADCWidths method of the XyceCInterface. See
Section 2.1.13|for a description of the ADCnames and widths parameters.

For the Python method, width is a returned array rather than a parameter in the function call. The
return value (in result) is the same as for the xyce_getADCWidths method of XyceClnterface.
If a given ADC is not found in the netlist then its width value will be returned as O.

3.1.14. getTimeVoltagePairsADC

(result, ADCnames, numADCnames, numPoints, timeArray, voltageArray) =
xyceObj.getTimeVoltagePairsADC()

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getTimeVoltagePairsADC method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface method
xyce_getTimeVoltagePairsADC.

This function is the “least mature” of the Python methods and Section [7.1] describes its limitations
via a Python-based example. Many of these limitations stem from known limitations in the YADC
device (see Section 5.1) implemented in Xyce 6.11. In addition, because of an open bug, the use
of both getTimeVoltagePairsADC and getTimeStatePairsADC in the same Python program is
not recommended.

26



3.1.15. getTimeStatePairsADC

(result, ADCnames, numADCnames, numPoints, timeArray, stateArray) =
xyceObj.getTimeStatePairsADC()

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getTimeStatePairsADC method of the
XyceCInterface. The return value (in result) is the same as for the XyceCInterface method
xyce_getTimeStatePairsADC.

The returned stateArray contains the integer-valued states (ranging from 0 to 2 * width[i] — 1,
where widthli] is the bit width of the i ADC) at the time points specified in the returned
timeArray. So, this function partially removes the need for an external simulation program to
convert the “deltaV” values, stored internally within Xyce, into state values. However, that
external simulator may still need to convert the returned integer state-values into a suitable
binary/octal/hexadecimal format for its use.

Because of an open bug, the use of both getTimeVoltagePairsADC and
getTimeStatePairsADC in the same Python program is not recommended.

3.1.16. getADCMap

(status, ADCnames, widths, resistances, upperVLimits, lowerVLimits, settlingTimes) =
xyceObj.getADCMap ()

This method assumes that xyceObj was previously obtained with the xyce_interface method
and successfully initialized with the initialize method. This method allows the calling Python
program to invoke the underlying xyce_getADCMap method of the XyceCInterface. See
Section 2.1.16 for a description of the ADCnames,widths, resistances, upperVLimits,
lowerVLimits and settlingTimes returned arrays.

The return value (in result) is the same as for the XyceCInterface method xyce_getADCMap.
If the netlist has no ADC devices then returned arrays will be empty.

3.2. EXAMPLES

This section gives a brief example of how to run a Xyce simulation from a Python (2.6 or 2.7)
program using the Sandia-supplied ctypes-based interface. Since Python is an interpreted
langauge there is no need for further compilation or linking of Xyce. It is sufficient to have built
Xyce as “shared objects” per the instructions in Section 2.2,
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An example Python program, called runACircuit. py, is shown in Figure 3-1. The associated
Xyce netlist, which is called runACircuit.cir, is shown in Figure 3-2. (Note: These files are also
found in the release src subdirectory utils/XyceCInterface/Python_examples just in case
cut-n-paste from the .pdf document does not work for the reader.) That Python program can then
be invoked with:

python runACircuit.py </path/to/where/libxycecinterface/is/installed>

The one caveat is that the location of xyce_interface.py should be added to your PYTHONPATH
environment variable. The file UpdatePythonPath. sh in the release subdirectory
utils/XyceCInterface provides a “non-working” example of how to modify that environment
variable. The path (/path/to/XyceSrcDirectory/utils/XyceCInterface) in that file should
be replaced with the actual path to your Xyce source directory.

For the Xyce 6.10 release, we recommended the use of the LD_LIBRARY_PATH environment
variable as a means of communicating the location of the .so files to the Python interface code.
That approach meant that the Python interface would not work on newer versions of OSX because
of Apple’s System Integrity Protection (SIP) feature. To work around that issue, the invocation
line must now include the location where the shared object files are installed. If Xyce was built
and installed per the instructions in Section 2.2/ then that location will be $installDir/1ib

Additional examples of using xyce_interface.py can be found in the release src subdirectory
utils/XyceCInterface/Python_examples. Those examples also use the simulateUntil(),
getDACDeviceNames (), updateTimeVoltagePairs() and obtainResponse () methods. See
Reference [10] for an example of how to use xyce_interface.py to interface Xyce to GHDL
[11] and Cocotb [12].

Additional examples can also be found in the Xyce regression test suite in the subdirectory
Netlists/MIXED_SIGNAL/Python. However, some of those examples are “error condition”
tests, which purposefully fail or otherwise have purposefully invalid or non-useful syntaxes. The
comments in the files for each test should indicate which ones are functional examples and which
lines in a given test are not valid or useful.

For internal High Performance Computing (HPC) users, the .so files needed to run these examples
can be found in /projects/xyce/XyceRad_6.11/Serial/toss3/1ib. The Python interface
file is then in /projects/xyce/XyceRad_6.11/Serial/toss3/python. The examples are in
/projects/xyce/XyceRad_6.11/Serial/toss3/examples/Python_examples.

For internal Common Engineering Environment (CEE) users, the .so files needed to run these
examples can be found in (where RHELX is either RHEL6 or RHEL7, depending on the CEE
machine you are using) /projects/xyce/Xyce_6.11/RHELX/Serial/1lib. The Python
interface file is then in /projects/xyce/Xyce_6.11/RHELX/Serial/python, and the
UpdatePythonPath script has the correct path for each RHEL version. The examples are in
/projects/xyce/Xyce_6.11/RHELX/Serial/examples/Python_examples. The “path to
where libxycecinterface is installed” is /projects/xyce/Xyce_6.11/RHELX/Serial/lib.
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import sys
from xyce_interface import xyce_interface

# this calls the xyce_interface.open() method to
# make a xyce object

libDirectory = sys.argv[1]

xyceObj = xyce_interface(libdir=1ibDirectory)
print ( xyceObj )

argv= [’runACircuit.cir’]
print( "calling initialize with netlist %s" % argv[0] )

result = xyceObj.initialize(argv)
print( "return value from initialize is %d" % result )

print( "Calling runSimulation..." )
result = xyceObj.runSimulation()
print( "return value from runSimulation is %d" % result )

print( "calling close")
xyceObj.close()

Figure 3-1. Python Program for runACircuit example

* test circuit
Vi 1 0 SIN(O 1 1)
R1101

.TRAN 0 1

.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)
.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 3-2. Xyce Netlist for runACircuit Python example

3.3. KNOWN LIMITATIONS AND BUGS

This section has a list of the known limitations and bugs of the Python-based version of the Mixed
Signal interface.
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This interface has been tested with Python 2.6.6, 2.7.4 and 2.7.5 for the Xyce 6.11 release.
Some features are known to fail when this interface is used with Python 3.4.2 or 3.5.2.
Support for Python 3 will likely be added in a future release.

The getTimeVoltagePairsADC() and getTimeStatePairsADC() methods are currently
limited to returning only up to 1000 devices each. The individual device names must each
also be less than 1000 characters long. There is also a limit of 1000 time/state points that
can be returned by those methods. The memory management for these two methods will
likely be improved in the next release, in conjunction with fixes for the “Coordinated Time
Stepping Issues” mentioned in Section 7.1|. In the meantime, the work-around is to
manually edit the source for those methods in xyce_interface.py.

The use of both getTimeVoltagePairsADC and getTimeStatePairsADC in the same
Python program is not recommended, because of an open bug.

If the initialize () method returns 2 (which is the Xyce::Circuit::Simulator::RunStatus
of “DONE”) then the calling .py file will likely segfault. This can happen for Xyce
command line options such as -norun that prevent Xyce from proceeding to a full
simulation. This is not an expected use case for the Python interface though.



4. XYCE VPIINTERFACE TO ICARUS

This chapter describes how the XyceCInteface class can be used to interface Xyce to Icarus,
which is an open-source Verilog simulation and synthesis tool. It begins with a brief overview of
Icarus. It then gives a working “runXyce” example where a Xyce simulation is called from a
simple Verilog program via the vvp executable produced by Icarus. It concludes with guidance on
building the example runXyce.vvp and runXyce. vpi files.

4.1. ICARUS OVERVIEW

Since this application note assumes minimal familiarity with Verilog and Icarus, some helpful
references for Icarus are:

* Icarus Verilog Home Page [2]

e Download and Build Instructions [13]
* Getting Started [14]

* VPI Example [15]

The next two subsections assume that the reader has downloaded and installed Icarus according to
those Download and Build Instructions. It also assumes that the reader can execute the simple
“Hello World” examples given at those Getting Started and VPI Example webpages.

For more information on VPI, consult the IEEE Standard [3]. This book [16] also has a good set
of VPI examples, with example code.

4.2. XYCE VPI IMPLEMENTATION AND EXAMPLES

As mentioned previously, this is the initial implementation of a Verilog Procedural Interface
(VPI) capability for Xyce. It is subject to change in future Xyce releases. In particular, this initial
version accesses the XyceCInteface class directly within the VPI code. Subsequent versions will
likely use a “C++ wrappers” approach so that the VPI code only uses ANSI-C and the native PLI
data-types in its function calls.

This section describes how to use the XyceCInterface class to run a Xyce simulation from a
Verilog program via the VPI capability supported by Icarus. This is a very simple demonstration
of that interface that is basically a “runXyce” example that uses a Verilog program (runXyce.v),
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a Xyce netlist (runXyce.cir) and some VPI code (runXyce. c), as shown in Figures 4-1|, 4-2 and
4-3. It is basically the same as the runACircuit example given in Section 3.2. (Note: all three of
these files can be also found in the release src subdirectory
utils/XyceCInterface/VPI_examples/runXyce.)

Additional examples of using the VPI interface with Icarus can be found in the release src
subdirectory utils/XyceCInterface/VPI_examples. Those examples also use the
xyce_simulateUntil(), xyce_getDACDeviceNames (), xyce_updateTimeVoltagePairs()
and xyce_obtainResponse () methods of the XyceCInterface.

module main;
initial $runXyce;
endmodule

Figure 4-1. Verilog Program for runXyce VPl example

* test circuit
Vi 1 0 SIN(O 1 1)
R1101

.TRAN 0 1
.PRINT TRAN V(1)

.MEASURE TRAN MAXV1 MAX V(1)
.MEASURE TRAN MINV1 MIN V(1)

.END

Figure 4-2. Xyce Netlist for runXyce VPI example
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#include <vpi_user.h>

#include <stdio.h>

#include <stdlib.h>

#include <N_CIR_XyceCInterface.h>

static int runXyce_compiletf (char*user_data) {
return O;

}

static int runXyce_calltf (char*user_data) {
// Used as a pointer to a pointer to an N_CIR_Xyce object.
// This somewhat convoluted syntax is needed to stop p from
// pointing at the same address as the VPI system task.
void** p = (void **) malloc( sizeof(voidx [1]) );

// Make Xyce command line for xyce_initialize() call.

char *argList[] = {(charx) ("Xyce"), (char*) ("runXyce.cir") 7};
int argc = sizeof (arglist)/sizeof (argList[0]);

char**x argv = arglist;

// Demo methods in utils/XyceCInterface/N_CIR_XyceCInterface.C
xyce_open(p) ;

xyce_initialize(p,argc,argv);

xyce_runSimulation(p);

xyce_close(p);

// pointer clean-up and return
free(p);
return O;

}

void runXyce_register() {
s_vpi_systf_data tf_data;

tf_data.type = vpiSysTask;
tf_data.tfname = "$runXyce";
tf_data.calltf = runXyce_calltf;
tf_data.compiletf = runXyce_compiletf;

tf_data.sizetf = 0;
tf_data.user_data = O;
vpi_register_systf (&tf_data);

}

void (*vlog_startup_routines[])() = {
runXyce_register,
0 /* final entry must be zero */

};

Figure 4-3. VPI File for runXyce VPl example



4.3. VPI BUILDING GUIDE FOR RHEL6 AND RHEL?

The sequence of commands shown in Figure 4-4 should compile Icarus and the Xyce shared
objects into an executable vvp program. (Note: This process was tested with Icarus Verilog
version 11.0.) It is analogous to the compilation steps given on the Icarus VPI Example web page
[15]. In this command sequence the top-level Xyce build directory build is denoted as
$xyceBuildDir and the top-level Xyce src directory is referred to as $xyceSrcDir.
$verilogBase can be generated by running which iverilog and using the returned directory
path starting above the bin subdirectory. $baseName is then the common prefix (e.g., runXyce)
of the .c and .v. files.

The sequence of commands shown in Figure 4-4 assumes that Xyce built according to the
instructions in Section 2.2. After the runXyce.vvp program is made then it can be executed
with:

vvp -M. -mrunXyce runXyce.vvp

gcc -c¢ -fpic -I$verilogBase/include/iverilog \
-I$xyceSrcDir/utils/XyceCInterface \
-I$xyceBuildDir/include \

$baseName.c

gcc -I$verilogBase/include/iverilog/libvpi.a \

-shared -L$xyceBuildDir/lib \
-L$xyceBuildDir/utils/XyceCInterface/.libs -lxycecinterface \
-W1,-rpath=$xyceBuildDir/1lib \
-W1,-rpath=$xyceBuildDir/utils/XyceCInterface/.libs \

-0 $baseName.vpi $baseName.o

iverilog -o$baseName.vvp $baseName.v

Figure 4-4. Compiling vvp Program with an Installed Xyce Build

Finally, additional examples of using Xyce with Icarus and VPI can be found in the release
subdirectory utils/XyceCInterface/VPI_examples. Those examples also use the
xyce_simulateUntil(), xyce_getDACDeviceNames (), xyce_updateTimeVoltagePairs()
and xyce_obtainResponse () methods of the XyceCInterface class.
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5. DEVICE MODELS FOR MIXED
SIGNAL SIMULATION

Xyce has simple models for a Digital-to-Analog Converter (DAC) and an Analog-to-Digital
Converter (ADC) that help demonstrate the Python and VPI interfaces discussed in the previous
chapters. These models will likely be enhanced in future releases, so feedback on missing features
is encouraged.

This chapter contains manual pages for the YADC and YDAC devices. This information may be
moved to the Xyce Reference Guide in a future release.

5.1. ANALOG-TO-DIGITAL CONVERTER

Instance Form  YADC<name> <(+) node> <(-) node> [model name] [device parameters]

Model Form .MODEL <model name> ADC [model parameters]

Examples YADC1 ADC1 1 2 simpleADC R=1T WIDTH=2
.MODEL simpleADC ADC (settlingtime=50ns uppervoltagelimit=>5
+ lowervoltagelimit=0)

Parameters and

Options (+) node

(-) node
Polarity definition for a positive voltage across the ADC. The first
node is defined as positive. Therefore, the voltage across the
component is the first node voltage minus the second node voltage.

model name
This parameter is optional for the YADC device. If it is omitted then
the default values for the model parameters will be used.
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device parameters
Parameters listed in Table 5-1 may be provided as space separated
<parameter>=<value> specifications as needed. Any number of
parameters may be specified.

Comments

36

The “upper voltage limit”and “lower voltage limit” model parameters might
not be the best approach for this device. They might be replaced, in a future
release, with a Vref+ node against which a Vin is compared, with a common
negative reference (e.g. ground). For now, a reasonable approach is to connect
the negative terminal to ground and use 0.0 as the value for the
LOWERVOLTAGELIMIT parameter.

The YADC device is calculating “breakpoints” for when its output digital
states change. However, there are at least two known issues with that process
in this Xyce release. First the breakpoint times (and the voltage difference
between the positive and negative terminals at those times) are based on the
times of “accepted steps” in the simulation, rather than (possibly) interpolated
estimates of when the state changes actually occurred. So, those times and
voltages may be inaccurate, and be reported as occuring later than the actual
state-change times. The second, and larger issue, is that breakpoints calculated
by the YADC device are not actually used by the rest of the Xyce simulation.
Instead, those times and voltages are simply made available to the external
simulator via the xyce_getTimeVoltagePairsADC method described in
Section 2.1.14.

The YADC device stores “deltaV” (the difference between the voltages at the
positive and negative terminals) in the TVVEC time-voltage vector returned
by the XyceCInterface method xyce_getTimeVoltagePairsADC. So, the
external digital simulator has two options. It can duplicate the calculation of
the output state of the YADC device, via the equations given below. Or it can
request the integer-value state directly via the xyce_getTimeStatePairsADC
method. However, because of an open bug, only one of those methods should
be used in a given program.

The capability to output the YADC device-state directly via the N() operator
on a .PRINT line has been added for Xyce 6.11. A syntax example is as
follows where YADC!ADC1 is the fully-qualified name in this example:

YADC ADC1 1 O simpleADC R=1T

.model simpleADC ADC(settlingtime=50ns uppervoltagelimit=2
+ lowervoltagelimit=0 width=3)

.PRINT TRAN N(YADC!ADC1_STATE)

A final issue may be that the output state is defined as an integer, between 0
and 2**WIDTH-1. An option to have it reported, to the external simulators, as a
binary bit-vector might be added in a future release.



Table 5-1. ADC Device Instance Parameters

Parameter Description Units Default
R Internal resistance Q le+12
WIDTH Output bit vector width S 1

Table 5-2. ADC Device Model Parameters

Parameter Description Units Default
LOWERVOLTAGELIMIT Lower limit of ADC voltage range A% 0
SETTLINGTIME Settling time S 1e-08
UPPERVOLTAGELIMIT Upper limit of ADC voltage range v 5
WIDTH Output bit vector width S 1




ADC Equations C++ style code for how the output state of the YADC device is calculated is
shown in Figure 5-1|. (Note: this code comes from Instance: :getInstanceBreakPoints() in
the source file src/DeviceModelPKG/OpenModels/N_DEV_ADC.C.)

// vPos is the voltage on the positive terminal.
// vNeg is the voltage on the negative terminal.
// width_ is the Output bit vector width (from WIDTH).
// nQuantLevels_ is 2**x(width_).
deltaV = vPos-vNeg;
vFrac = deltaV/(model_.upperVoltagelLimit_
- model_.lowerVoltagelLimit_);

if (vFrac < (1.0)/(nQuantlLevels_) )
{

newState = 0;

3

else if (vFrac >= (nQuantlLevels_ - 1.0)/(nQuantlLevels_))

{

newState = nQuantLevels_ -1;

}

else

{

newState = int(vFrac*nQuantLevels_);

}
if (newState != lastOutputLevel_)

{
// update TVVEC with deltaV value and breakpoint time

}

Figure 5-1. Calculation of the YADC Output State
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5.2. DIGITAL-TO-ANALOG CONVERTER

Instance Form  YDAC<name> <(+) node> <(-) node> [model name]

Model Form .MODEL <model name> DAC [model parameters]

Examples YDAC dacl 2 0 simpleDAC
.model simpleDAC DAC (tr=5e-9 tf=5e-9)

Parameters and
Options (+) node
(-) node
Polarity definition for a positive voltage across the DAC. The first
node is defined as positive. Therefore, the voltage across the
component is the first node voltage minus the second node voltage.

model name
This parameter is optional for the DAC device. If it is omitted then
the default values for the model parameters will be used.

Comments The DAC device acts like a voltage source as far as the rest of the circuit is
concerned. There is no output R-L-C smoothing network, as might be found in
a more realistic DAC.

Table 5-3. DAC Device Model Parameters

Parameter Description Units Default
TF Fall Time S 1e-09
TR Rise Time s le-09
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6. SUMMARY OF CHANGES SINCE
XYCE 6.10

This chapter provides a brief summary of the changes in the Mixed Signal Interface since Release
6.10 of Xyce.

* The syntax for invoking the Python interface has changed. See Section 3.2 for more details.

* The XyceClnterface methods xyce_simulateUntil, xyce_getADCMap,
xyce_obtainResponse, xyce_getDeviceNames and xyce_getDACDeviceNames have
been modified to improve their C-langauge compliance. They now use double* and int*,
rather than double& or int&. The latter is allowed in C++, but not in C.

* The recommended steps for compiling an executable vvp program, for the VPI interface,
has changed. See Section 4.3/ for more details.

* Two new methods, xyce_getADCWidths and getADCWidths, were added to the
XyceClnterface and the Python wrappers to that interface. They allow the user to get the
current values of the WIDTH instance parameter at a specified list of ADCs in the netlist.

* Two new methods, xyce_getADCMap and getADCMap, were added to the XyceClnterface
and the Python wrappers to that interface. They allow the user to get the current values of
all of the instance and model parameters at every ADC in the netlist.

* Two new methods, xyce_getTimeStatePairsADC and getTimeStatePairsADC were
added to the XyceClnterface and the Python wrappers to that interface. They return the
ADC state as an integer, rather than the “deltaV” value.

* The WIDTH parameter is now both an instance parameter and a model parameter for the
ADC device.

* The XyceClnterface methods xyce_getDeviceNames and xyce_getDACDeviceNames,
and their corresponding Python wrappers, have improved return codes that now properly
indicate success or failure for those calls. Success in this context means that at least one
device of the requested type exists in the netlist.

* The “error condition” of the timeArray and voltageArray being of unequal lengths is
now checked when the Python method updateTimeVoltagePairs is used.

* The “error condition” of ADCnames and widths being of unequal lengths is now checked
when the Python methods getADCWidths and setADCWidths are used.
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* The method getDeviceNames () might not work correctly if an invalid model group name
was used as a parameter. In that case, the first letter of the model group name would be
used. So, for example, a request for devices of model group BOGO would actually return all
of the B devices in the netlist. This is fixed now, and a request for model group BOGO will
now return an error.

* The XyceClnterface method xyce_updateTimeVoltagePairs used to unconditionally
emit the warning message “Netlist warning: Failed to update the timevoltage pairs for the
DAC” even if the update was successfully. This has been fixed.
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7. CONCLUSIONS AND FUTURE WORK

This application note provided an overview of the XyceCInterface class and how it can used to
interface to external programs via a Sandia-supplied Python ctypes interface and the Verilog
Procedural Interface (VPI). These interfaces are not an “officially announced” capability in Xyce
yet. So, one purpose of this application note was to solicit feedback on these interfaces from both
internal Sandia Xyce users and other performers on the DARPA Posh Open Source Hardware
(POSH) program. The remainder of this chapter will summarize the known limitations of these
interfaces.

The Common Operating Environment (COE) at Sandia encourages internally developed software
to support RHEL6, RHEL7, OSX and Windows 10. In addition, support for Ubuntu may be part
of that COE in the near future. At present, the interfaces described in this application note have
only been tested and documented for RHEL6 and RHEL7.

A list of miscellaneous bugs for the Python interface was listed in Section 3.3. The main issue
with that Python interface, which is “coordinated time stepping”, will be discussed in the next
subsection.

The primary issue with the VPI capability is the lack of standards compliance. The example given
in Section 4.2 uses the C++ features of the XyceCInterface directly. Wrapper functions, that
only use ANSI C and the native PLI data-types in their function calls, still need to be
implemented.

7.1.  KNOWN ISSUES WITH COORDINATED TIME
STEPPING

The xyce_getTimeVoltagePairsADCmethod of the XyceCInterface is the least mature of that
interface’s methods. Many of its limitations stem from known limitations in the YADC device (see
Section 5.1)) implemented in Xyce 6.11. This section gives a Python-based example that illustrates
those limitations. The goal is to solicit feedback on the best resolution of these issues.

The netlist for this “TimeStepping” example is shown in Figure [7-1. The calling Python program
is shown in Figure [7-2. An abbreviated version of the resultant stdout, with a subset of the
descriptive output from the Python program is then shown in Figure 7-3.

The returned arrays (timeArray and voltageArray) are 2x2 in this example. In general, they
would be MxN where is the value of numADCnames and N is the value of numPoints. For the
simulation interval ending at 1e-5, the returned values of (0,0) are “not useful”. They are basically
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the simulation start time. The returned values of (1e-5,2e-1) are also not useful in this case. They
are the breakpoints set by the call to simulateUntil. So, the underlying
xyce_getTimeVoltagePairsADC() method of the XyceCInterface, and the device model in
the YADC device, may need to be modified to only report breakpoints that were set by the ADC
devices.

Another problem is accuracy. There is useful breakpoint information returned for ADC2 after the
second call to simulateUntil. However, the time (1.267¢-05) and value (2.524e-01) were
determined based on the last accepted Xyce time step (see the .prn file) at time = 1.262e-05,
instead of when the state change might have actually occured. A related issue is that the returned
value is the voltage difference between the positive and negative terminals of the YADC device.
So, the external simulator has to duplicate the YADC equations (see Section |5.1) to determine the
binary-state value for each YADC in the simulation.

The final, and most important problem, is that the breakpoints generated by each YADC device
are not actually used by the rest of the Xyce simulation. The Xyce simulation in this example
continued on until the next value of requested_time and did not pause at any of the breakpoints
generated by the YADC devices. (Note: that capability was broken in a previous release and was
not fixed/changed in time for the Xyce 6.11 release.) So, based on various Sandia and DARPA
POSH use cases, techniques for coordinated time-stepping of Xyce and the external simulator(s)
need to be defined and implemented for simulations that contain both YADC and YDAC

devices.

* Netlist name is TimeStepping.cir

* These WIDTH values will be overwritten by the Python program
YADC adcl 1 O simpleADC R=1T WIDTH=1

YADC adc2 1 O simpleADC R=1T WIDTH=1

.model simpleADC ADC(settlingtime=50ns uppervoltagelimit=2

+ lowervoltagelimit=0)

vli10PWL OO le-4 2
.TRAN 0 1le-4

* illustate syntax for printing out YADC device parameters
.PRINT TRAN V(1) YADC!ADC1:WIDTH YADC!ADC2:WIDTH
.END

Figure 7-1. Xyce Netlist for Time Stepping Example
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import sys

from xyce_interface import xyce_interface

libDirectory = sys.argv[1]

xyceObj = xyce_interface(libdir=1libDirectory)

print ( xyceObj )

argv= [’TimeStepping.cir’]

print( "calling initialize with netlist %s" % argv([0] )

result = xyceObj.initialize(argv)

print( "return value from initialize is %d" % result )

# get ADC names

(result, names) = xyceObj.getDeviceNames("YADC")

print( "return value from getDeviceNames is J%d" % result )
print( names )

#tset ADC widths. This is hard-coded for two ADCs, and must

# match the WIDTH variables on the ADC instance lines. This may
# seem backwards but names is [’YADC'!'ADC2’, ’YADC'ADC1’] here.
width=[3,2]

result = xyceObj.setADCWidths (names,width)

stepSize = le-5

steps = range(0,3)

for i in steps:
requested_time = 0.0 + (i+1l) * stepSize
print( "Calling simulateUntil for requested_time = %.3e" \
% requested_time )
actual_time = 0.0
(result, actual_time)=xyceObj.simulateUntil(requested_time)
print( "simulateUntil status = ’%d and actual_time = %.3e" \
% (result, actual_time) )
(result, ADCnames, numADCnames, numPoints, timeArray, \
voltageArray) = xyceObj.getTimeVoltagePairsADC()
print( "number of pts returned by getTimeVoltagePairsADC() \
is %d" % numPoints )
# Note: ADCnames is [’YADC!ADC1’, ’YADC!ADC2’] here.
print ("ADC 1: Time and voltage array O values are %.3e %.3e" \
%(timeArray[0] [0] , voltageArray[0][0]) )
print ("ADC 1: Time and voltage array 1 values are %.3e %.3e" \
%(timeArray[0] [1] , voltageArray[0][1]) )
print ("ADC 2: Time and voltage array O values are %.3e %.3e" \
%h(timeArray[1] [0] , voltageArray[1][0]) )
print ("ADC 2: Time and voltage array 1 values are %.3e %.3e" \
%h(timeArray[1] [1] , voltageArray[1][1]) )

print( "calling close")

xycelObj.close()

Figure 7-2. Python Program for Time Stepping Example



Calling simulateUntil for requested_time = 1.000e-05
simulateUntil status = 1 and actual_time 1.000e-05
number of pts returned by getTimeVoltagePairsADC() is 2
names are YADC!ADC1 YADC!ADC2
ADC 1: Time and voltage array O values are
ADC 1: Time and voltage array 1 values are
ADC 2: Time and voltage array O values are
ADC 2: Time and voltage array 1 values are
Calling simulateUntil for requested_time = 2.000e-05
simulateUntil status = 1 and actual_time = 2.000e-05
number of pts returned by getTimeVoltagePairsADC()  is 2
names are YADC!ADC1 YADC!ADC2
ADC 1: Time and voltage array O values are 2.000e-05 4.000e-01
ADC 1: Time and voltage array 1 values are 0.000e+00 0.000e+00
ADC 2: Time and voltage array O values are 1.267e-05 2.524e-01
2.

.000e+00 0.000e+00
.000e-05 2.000e-01
.000e+00 0.000e+00
.000e-05 2.000e-01

N, O+~ O

ADC 2: Time and voltage array 1 values are 2.000e-05 4.000e-01
Calling simulateUntil for requested_time = 3.000e-05
simulateUntil status = 1 and actual_time = 3.000e-05

number of pts returned by getTimeVoltagePairsADC() is 2
names are YADC!ADC1 YADC!ADC2

ADC 1: Time and voltage array O values are 2.625e-05 5.241e-01
ADC 1: Time and voltage array 1 values are 3.000e-05 6.000e-01
ADC 2: Time and voltage array O values are 2.625e-05 5.241e-01
ADC 2: Time and voltage array 1 values are 3.000e-05 6.000e-01
calling close

Figure 7-3. Abbreviated stdout for Time Stepping Example
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