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Abstract

The dynamic behavior of an elastic peridynamic material with a nonconvex bond potential is
studied. In spite of the material's inherently unstable nature, initial value problems can be solved
using essentially the same techniques as with conventional materials. In a suitably constructed
material model, small perturbations grow exponentially over time until the material fails. The
time for this growth is computed explicitly for a stretching bar that passes from the stable to
the unstable phase of the material model. This time to failure represents an incubation time for
the nucleation of a crack. The finiteness of the failure time in effect creates a rate dependence
in the failure properties of the material. Thus, the unstable nature of the elastic material leads
to a rate effect even though it does not contain any terms that explicitly include a strain rate
dependence.
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1 Introduction

This paper addresses the following question: Suppose the properties of an elastic material are
such that under quasi-static loading, it fails when some critical strain is reached. When this
strain is reached under loading at a finite rate, how much time does it take for the material to
fail?

Material failure is observed in experiments to exhibit time- and rate-dependent phenomena.
To account for these aspects of material failure, developers of failure models can include terms
that depend explicitly on the rate of deformation or the speed of crack growth. For example,
a dynamic fracture toughness can be assumed that depends on crack speed [13]. Alternatively,
an incubation time can be applied in conjunction with the static fracture toughness [22, 3].

The present work seeks to derive time-dependent failure response from a model that does
not include explicitly rate-dependent terms. Instead, the novel properties of peridynamic elastic
materials with nonconvex micropotentials lead to time-dependent effects in the strain at which
failure occurs. In this study, material failure emerges as the end result of the unstable growth of
small disturbances in the nonconvex part of the micropotential, that is, the downward-sloping
part of the curve of bond force vs. bond strain. In the peridynamic theory, these disturbances
grow at a finite rate, or more precisely, their growth rate is of exponential order. This property
permits solutions of initial value problems to be computed, both numerically and analytically,
by conventional techniques.

The results in this paper include comparisons of analytically derived results with direct nu-
merical simulations. The method used for these simulations is described in [25], which addresses
the properties of the method with regard to accuracy and stability only for stable peridynamic
materials. Jha and Lipton [8] analyze these properties in a similar numerical discretization
method for nonconvex materials. They prove that the method is numerically stable and con-
vergent, subject to certain restrictions. Additional papers by these authors also address finite
element discretizations [7, 9].

The present paper is organized as follows. Section 2 contains a summary of the bond-based
peridynamic equations. Section 3 discusses properties of nonconvex microelastic materials.
In Section 4, the evolution of a small disturbance superposed on a finite displacement field
is derived. A specific nonconvex material model is proposed in Section 5. Section 6 derives
solutions for small sinusoidal perturbations in an unstable material. A similar problem with a
Gaussian rather than sinusoidal perturbation is studied in Section 7. The time to failure of a
bar undergoing stretch at a nominally uniform strain rate is discussed in Section 8. In Section 9,
this time to failure is shown to imply a rate effect. Conclusions are given in Section 10.
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2 Bond-based peridynamic theory

The peridynamic theory is a nonlocal theory of continuum mechanics [26] in which material
points that are sufficiently close together interact directly with each other through a material
model. The cutoff distance for interaction is called the horizon, denoted by (5, which can be
finite or infinite. The equation of motion in one dimension has the form

8

pii(x,t) = i f (x + x) 4 + b(x) Vx, Vt
—6

(1)

where p, b, and u are the density, body force, and displacement respectively, and f is a pairwise
bond force density function that specifies the force that the material point x + exerts on x.
The vector is called a bond. By convention, O. The values of f are determined by the
deformation according to the material model. To satisfy the balance of linear momentum, f is
required to satisfy the condition

f (x + ,x) = — f (x,x + 0 Vx, Ng. (2)

In this paper, f is supplied by a bond-based, nonlinear microelastic material model, meaning
that each pair of material points within each other's horizon interacts as though connected by
a nonlinear spring:

f (x + ,x) = F(71,0, n = u(x + 0 - u(x) vx, ̀g,

where F is a function such that

F(—n, -0 = -F(71,) vn, V.

The function w defined by

(3)

(4)

n
w(ii, 0 = I F(z, 0 dz Vii, Ng (5)

o

is the micropotential for the microelastic material. It is related to the strain energy density W
by

If

W(x) = —
1 

2 
f 
_

8 

8 
0 4 well, Vx. (6)

w7p7(n, 0 > 0 Vn, ̀ g (7)

then the microelastic material is convex. Otherwise, it is nonconvex. The materials studied in
this paper are nonconvex, because they possess both an upward sloping and a downward sloping
segment of the curve of F vs. ?I.

Of interest in this paper are motions in which a small incremental displacement field U is
superposed on a time-independent, homogeneous deformation with strain co:

u(x,t) = cox + ii(x, t) Vx, Vt. (8)

Assume b 0 throughout the region. From (3) and (8), we adopt the following linear approxi-
mation to the material model:

F(cg + fi,) = F(cg,) + PO, ), i) = ft(x + 0 — u(x) (9)

where the incremental bond force density 1' is given by

P(i), 0 = C(0 i), C(0 = (€4 0 V?), V. (10)
an
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C is called the micromodulus function. By (4) and (10), C has the following symmetry:

C(-0 = C(0 `g. (11)

Since the homogeneous deformation by itself is in equilibrium, and since by assumption ft is
small, the equation of motion (1) with the linearized material model (10) becomes

å
pii(x,t) = f å C (0 Mx + 0 - ft(x)) ck Vx, Vt (12)

which is formally the same as in Kunin's nonlocal theory, but with a cutoff distance for inter-
actions [14]. More details about the linearized bond-based peridynamic equations can be found
in [24].
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3 Nonconvex micropotentials

The usual assumption about C is that it is non-negative for all , since this property implies
material stability. However, of particular interest in this paper are materials in which C can be
negative, as shown in Figure 1.

Lipton [15, 16] studied the properties of microelastic peridynamic materials of this type,
which are obtainable from a nonconvex micropotential. He proved that in spite of their inherent
instability, initial value problems with these materials can be well-posed. Moreover, a suitably
parameterized class of such material models, in which the critical energy release rate is inde-
pendent of horizon, has remarkable convergence properties in the limit of zero horizon. Under
appropriate conditions, this limit recovers a Griffith crack with the same prescribed critical
energy release rate, while material points off of the crack set obey the local equations of solid
mechanics. The practical nature of nonconvex peridynamic materials in simulating complex
phenomena in dynamic fracture is demonstrated by Lipton, Lehoucq, and Jha [17]. Further
analysis and demonstration of these features is given by Lipton, Said, and Jha [19, 18],

Nonconvex peridynamic material models can also reproduce features of deformation-induced
phase transformations. Dayal and Bhattacharya [4] studied a class of such microelastic mate-
rials in which two stable (upward sloping) branches of the bond force vs. bond strain curve
are separated by an unstable (downward sloping) branch. Numerical solutions under suitable
boundary conditions show that the body segregates itself in equilibrium into two stable phases.
The phase boundary between the phases has a finite thickness and a complex structure in which
some bonds necessarily occupy the unstable branch. These results demonstrate that a stable
equilibrium deformation can contain bonds in the unstable part of the material model. This
behavior is consistent with the results of Mengesha and Du [20]. Aguiar, Royer-Carfagni, and
Seitenfuss [1] analyzed a nonconvex peridynamic material with two stable branches that pro-
duces equilibrium deformations with a repeating pattern of localizations. These localizations
are strongly affected by the way boundary conditions are applied in a bar of finite length.

The possibility of having stable deformations containing some unstable bonds is in contrast
to the local theory, in which Hadamard instability (loss of strong ellipticity) cannot occur in a
stable equilibrium deformation within a finite volume. Nevertheless, loss of strong ellipticity in
the local theory is a necessary condition for the onset of interesting phenomena such as phase
changes [5, 10, 11, 12, 6, 27]. Loss of ellipticity is sometimes used as a criterion to nucleate or
grow a crack or other localization in enriched finite element techniques [2].

In an unbounded peridynamic body using the linearized model, plane waves can be studied
by assuming the following displacement field:

= Aex(kx-wt)tt(x,t) Vx, Vt (13)

where A is the amplitude, k is the wavenumber, and w is the angular frequency, which in general
depends on the wavenumber. The quantities k and w are related to the wavelength A and the
frequency v by the elementary relations

27r 27r
k = — co = —.

A ' v
(14)

To derive the relation between k and w, combine (12) (omitting the superscript from U) and
(13) to yield

i" 
2

fa
L C (0 (1 - eke) cks 

f
= J- 

a 
C(0 (1 - cos k0 ck6 

s

P - f C(0 cos ck
-6

= P - C(k) Vk
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where 0 and P are defined by

s s
C (k) = i C(0 cos Ic ck, P = C (0) = i C(0 ck. (16)

—6 —6

Observe that C is the Fourier transform of C:

s
C(k) = i C(Oe—ik < Vk. (17)

—s

For typical engineering analysis, one deals with materials for which w2 as determined by (15) is
non-negative, as illustrated by the blue curve in the right hand plot in Figure 2. In this case,
the wave phase velocity given by

V (k) = ±
w(k) 

Vk (18)
k

is real, with the + and — signs corresponding to waves moving in the +x or —x directions
respectively. However, of primary interest in the remainder of this paper are choices of the
micromodulus function C(0 such that the curve of w2 (k) is non-positive; hence, formally, w(k)
and V (k) are imaginary.
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Bond force
density F

Slope = micromodulus C(0

Bond extension -ri

Figure 1. Nonlinear material model for bond force density. The
bond vector is .
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4 Stable waves and unstable waveforms

Suppose, in an infinite, homogeneous peridynamic bar, an initial condition is given by

u(x, 0) = A cos kx, U(x, 0) = 0 Vx (19)

where k is a given wavenumber. If 2(k) >= 0 as determined by (15), then D'Alembert's
solution yields

u(x, t) = 
A 
[cos(kx — w(k)t) + cos(kx + w(k)t)] Vx, Vt. (20)

If, on the other hand, w2(k) < 0, then the displacement field is given by

u(x,t) = A cos(kx) cosh(A(k)t) Vx, Vt (21)

where
A(k) = V—w2(k) > 0 Vk. (22)

An important feature of the displacement field in (21) is that unlike the stable solution (20),
the wave does not propagate; it stays in the same place while it grows. The local strain in such
an unstable waveform is found from

e(x,t) = ux(x,t) = —Aksin(kx)cosh(A(k)t) Vx, Vt. (23)

For large times, since cosh z := (ez + e—z)/2, the decaying exponential terms in (21) and (23)
become negligible, yielding

Ak
e(x,t) ,-,-, --

2
eA(k)t sin(kx) Vx, t —> oo. (24)

The function A(k) is called the blow-up rate for wavenumber k. In general, A(k) is bounded
except for materials in which C(0 is singular at = 0. Another feature of unstable peridynamic
materials is that A(0) = 0, implying that very long wavelengths grow very slowly over time. It
will be shown below that the high-wavenumber limit of A(k) dominates the type of instability
that occurs in modeling crack nucleation.
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Bond force
density F

A Stable Slope =

Bond extension 7/

Unstable

Frequency w2

Stable: CR) > 0

Wavenumber k

Unstable: CM < 0

Material models Dispersion curves

Blow-up A
rate A(k)

Unstable: CV < 0

Wavenumber k

Blow-up rate

Figure 2. Stable and unstable peridynamic materials and their
dispersion curves.

14



5 Example of a nonconvex material model

Let s denote the bond strain defined by

8(77,0 = (25)

(Recall that 0 0.) Consider the nonlinear material whose bond force density is given by

cs if s < sl,

F(71, ) cs1(so — s) 1 (so — si) if si < s < so, (26)
0 if so < s

where c, .91, and so are positive constants, si < so. This material model is illustrated
in Figure 3.

It is helpful to compute the Young's modulus E for the material model (26) for a given value
of c. To do this, subject a bar to a constant small strain c, where c < sl. Using (26), the
stress a = Ee at any point in the bar, say x = 0, is computed by summing the forces in all the
peridynamic bonds that cross this point:

Ee = fo V(e, ck

(1)
ce(52

(27)
3

hence
3E

c — 7. (28)

The corresponding speed of small amplitude, long wavelength elastic waves is therefore given by

C = V(0) = — = (29)
3p.

Let an infinite bar be composed of the material (26). Consider an incremental displacement
field superposed on a homogeneous deformation as in (8):

u(x, t) = cox + fi(x,t) Vx, Vt. (30)

Suppose further that
Si < E0 < So. (31)

Therefore, the bar is in the unstable branch of the material model (26) for all bonds The
linearized material model for the subsequent evolution of the bar is given by

1P(), = —C(e)7) VT), Ve, CV) = (so 
CS 

si)6 > 0. (32)

From (15) and (32), the frequency of a wave with wavenumber k is found from

pw2
(IC) = — CV) (1 — cos k0

—8

—2CS1
  8
(so — 81)6 J

o
 
(1 — cos k0

—2csi 1
(1 — cos(k6p)) dp

so — 81 Jo
—2cs1 [ sin k(51

1 Vk (33)
so — 81 1u5
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where p = /(S. From (22) and (33), the blow-up rate for wavenumber k is given by

A(k) =
2cs1  [ sin 

, 1 
WI 

Vk. (34)
( ,Sci — si )p k(5 j

A graph of this curve is shown on the left in Figure 4. From (29) and (34), an alternate form of
(34) is given by

C 6s1 sin Hi
A(k) =

(5
Vk. 35( )

(so — si)

[
1 

k(5 j

Figure 4 also shows the blow-up rate as a function of wavenumber that occurs in the local theory
for a similar unstable material. The main feature is that the local curve increases unboundedly,
while the nonlocal curve from (34) is bounded. This difference results in dramatically different
results in solving initial value problems as shown on the right in Figure 4. This plot shows
the strain field that is predicted numerically for the local and nonlocal models for an infinite
bar in the unstable part of the material model with a small initial sinusoidal perturbation.
As will be shown in detail in Section 6, the nonlocal strain field grows over time, but this
growth is of exponential order. In contrast, the local solution is not of exponential order and is
therefore "more unstable than the nonlocal solution. The highly chaotic and intractable nature
of unstable elastic materials in the local theory is the reason that the analysis in the remainder
of this paper is possible within peridynamics but not in the local theory.
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Bond force

density F

Slope = c(0

so

Figure 3. Material model in equation (26).
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Figure 4. Left: Blow-up rate as a function of wavenumber for the
material in the unstable part of (26). Right: Numerical simulations
of strain in a bar starting from a small sinusoidal perturbation
demonstrate that the nonlocal model gives more sensible results
than the PDE theory for unstable elastic materials.
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6 Unstable growth of a small sinusoidal perturbation

Consider a homogeneous bar composed of the material (26). Let A be a constant wavelength.
Suppose the bar has initial conditions given by

u(x, 0) = Eox + Eo 
sin(kx), U(x, 0) = 0 Vx (36)

where 6 is a small constant and

Eo = 
si 
 
+ so 

k = 
A2

(37)

These initial conditions consist of a small oscillatory perturbation with strain amplitude 6
superposed on a homogeneous deformation. The homogeneous deformation has a strain that is
centered in the downward sloping segment of the material model shown in Figure 3.

For this initial value problem, let t f ail denote the time at which the local strain first exceeds
so at some point in the bar. From (23) and (36), this condition is found from

E0 Cosh(A(k)tfail) = 801

thus

(38)

tfail =
A(

1

k) 
COSH 

L-1 (s0 

Eo

 60 ) (39)

Figure 5 shows the evolution of the strain field for a sequence of times at a constant time
interval of At = 0.096. The material model parameters are S= 0.1, E = 1, p = 1, s1 = 0.05,
so = 0.20. The amplitude of the initial strain perturbation is 6 = 1.0 x 10-6. The wavelength
of the perturbation is A = 38.

Figure 6 shows the strain at the point x = 0 as a function of time for three values of
wavelength of the initial perturbation: A = J/5, 36, and 56. Both the numerical solution and
the analytical estimate (24) are shown for each value of A. There are two key features of these
results. First, there is a substantial period of time that passes before the solutions visibly blow
up. Second, the rate of the blow-up is dependent on the wavelength of the initial data, as shown
schematically in the lower graph in Figure 2.

Figure 7 is a graph of the failure time tfatl as a function of the wavelength of the initial per-
turbation A. The failure times from the analytic expression (39) and direct numerical simulation
are shown, which agree closely.
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-0.4 0

Position x

0.4

Figure 5. Strain field at a sequence of times for unstable growth
of a small sinusoidal perturbation.
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0.2

A = 38

i

/

, A = 56

0 1

Time

Figure 6. Growth over time of the strain at the point x = 0 for
unstable growth of a small sinusoidal perturbation. Solid lines are
the numerical solution; dashed lines are from the estimate (24).
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1.6

0.4

0
0 1 2 3

Normalized wavelength A/6

4 5

Figure 7. Failure times for growth of an initial sinusoidal per-
turbation whose strain amplitude is 1.0 x 10-6. The solid blue line
is from the direct numerical simulation; the red dashed line is from
the analytical expression (39).
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7 Failure nucleated at a Gaussian perturbation

A slight modification of the initial conditions in Section 6 gives insight into the pi ocess of crack
nucleation. Instead of (36), let the bar have initial conditions given by

u(x, 0) = Eox (X), , 0) = 0 Vx (40)

where

Ito (x) = 
\F 
2
f 'JO 

erf(x1f) Vx (41)

and where e.0 is a small constant, is a constant length scale, erf is the error function defined by

erf(z) =  
2 f z 

e-v
2 
dy Vz, (42)

\Fr o

and co is such that

si < Eo < so - Eo• (43)

The initial local strain is found from (40), (41), and (42) to be given by

ux (x, 0) = Eo fLox (x) = Foe- (x/t)2 Vx. (44)

Unlike the sinusoidal perturbation considered in the previous Section, the present initial con-
ditions include a spectrum of Fourier components. To find the solution, the Fourier transform
and its inverse will be used. For any function v(x), let

V(k) = F{v}(k) = f e-ikxv(x) dx Vk, (45)

v(x) = T-1 {V}(x) = —217r f dk Vx. (46)

The transform of the Gaussian function with half-width P is given by the standard identity

T.te-(x1.02).(k) = \Firte—A/2)2 Vk.

Linearizing the equation of motion (12) near the homogeneous field u = cox leads to

(47)

6
Ax,t) = - 6 C f(0 + — 11(x)) ck Vx, Vt (48)

where C"(e) is positive and is given by (32). Differentiating (48) with respect to x gives a
relation for the local strain field,

6

Apc (x,t) = - f C (7.— (x + fix(x)) Vx, Vt. (49)6 

Taking the transform of (49) using (45) results in

x(k,t) = (13' - C(k))fix(k,t), Vk, Vt (50)

where

P' = f (e) = C(0).
—5

(51)

The solution to the ordinary differential equation (50) with initial conditions (40) is given by

fix (k,t) = fiox(k, t) cosh(A(k)t) bk, Vt (52)
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where

A(k) =
P' — Cl(k)

Vk.
p

(53)

From (44), (47), and (52),

fix(k,t) = AFreJoe—A/2)2 cosh(A(k)t) Vk, Vt. (54)

Applying the inverse transform (46) to (54) yields

ao lc° eikx—A/2)2 cosh(A(k)t) dk Vx, Vt. (55)fix (x, t) = 2fir 
_co

Since the peak initial strain occurs at x = 0, it is reasonable to assume that failure eventually
occurs first at this point. From (55),

itx (0, t) = 
2 \ 
—° f c° CA/2)2 cosh(A(k)t) dk Vt. (56)

c 0

If the initial displacement perturbation occurs over a small distance, that is, if P< (5, then the
Gaussian term in the integrand in (56) spreads out over a large range of k. As illustrated in
Figure 4, for large k, the curve of A(k) approaches a plateau:

A(k) Aco := VP/ p as k oo. (57)

Under this assumption of small f, therefore,

fix(0,t) 
2AF 
fEo

cosh(Acct) CA/2)2 dk

2f\/77.° cosh(Acct) I \772 r)

Eo cosh(Acot) Vt.

The material property P' is related to the stability index Z defined [23, 17] by

= —Z, Ac.0 =
—Z

p

(58)

The condition Z < 0 is a criterion for the growth of a discontinuous perturbation in the displace-
ment field. The limit 0 in the above analysis represents, in effect, such a jump discontinuity.
It is therefore not surprising that Z enters into the limiting result (58). The "crack nucleation
criterion" Z < 0 is a specialization to the 1D homogeneous case of a more general result in
multiple dimensions in which Z is essentially the smallest eigenvalue of the acoustic tensor for
small wavelengths.

As in Section 6, the time to failure t f ail is defined to be the time required for the peak local
strain to exceed so. Therefore (56) leads to

c.°so co =  6° l e—A/2)2 cosh(A(k)t fail) dk. (59)
2A/Tr f_00

Using (58), the assumption of small allows t fail to be computed in closed form:

t f ail
—1 (s0 60)

•
Aoc, 

cosh (60)

The blow-up rate Aco can be expressed in terms of more basic quantities by evaluating (35) with
k oo :

C /  6 s
o =

0 s

24
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1.6

0.4

0

II• NUMERICAL

- - e- - ANALYTIC

0 0.5 1.0 1.5 2.0

Normalized Gaussian width 21' /6

2.5

Figure 8. Failure times for an initial Gaussian perturbation
superposed on a homogeneous strain in the descending part of the
material model. The solid blue line is from the direct numerical
simulation; the red dashed line is from the analytical expression
(59).

Figure 8 shows a graph of the failure time tfail as a function of the half-width of the
Gaussian function in the initial perturbation. The material model parameters are 5 = 0.1,
E =1, p =1, s1 = 0.05, so = 0.20. The peak strain in the initial perturbation 1.0 x 10-6. The
failure times found by solving the equation (59) and by direct numerical simulation are shown,
which agree closely.
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8 Stretching of a bar with a defect

Consider an infinite bar composed of the material (26), but with a small heterogeneity:

cs ifs<s1,
F (7 x) = h + ‘) c81(8o — 8)1(8o — ifs1 <8<so,2 ifso<s

(62)

Vx, V77 ̀9.1 where h is a function defined by

h(z) = 1 — hoe—(z I 02 Vz (63)

in which ho and are positive constants, 12,0 < 1. In effect, this material description adds a soft
spot near x = O.

Now suppose the bar is subjected to a zero displacement, constant strain rate initial condi-
tion:

u(x, 0) = 0, it(x , 0) = rox Vx (64)

where 7'0 is the initial strain rate. We now investigate the failure time, at which the local strain
at x = 0 first exceeds so. Since ho is small, wave propagation prior to when the peak in the
material model is reached will be neglected. The soft spot in the bar results in a small variation
in local strain and strain rate. Therefore, at the time tp = si/ro when the peak s1 in the
material model is reached,

(x, tp) = .91 hoe— (xM2, (x, tp) = ro hoe—(x/t)2 Vx. (65)

The expressions (65) in effect supply initial conditions for when the bar enters the downward
sloping segment of the material model. Setting co = sl, this is essentially the same problem
as was studied in Section 7, but with an initial perturbation in strain rate as well as strain.
Repeating the analysis of Section 7, after modifying it to include nonzero initial strain rates,
(56) now becomes

fito
x (CI t) = 2 \/77r J 

e_(ek/2)2 [51 cosh(A(k)(t — t p))

A(k
ro 
) 

.
smh(A(k)(t — tp))] dk,

At the time of failure,

t > tp. (66)

ho __(tk/2)280_81= ro (t f ail — tp) t 
[si cosh(A(k) (t f ail — t p))

A7k) sinh(A(k)(tfail — tp))] dk. (67)

Now assume that 7'0 and are both small. The following approximation to (67) therefore applies:

so — 81
2 Arir Do 2 2A 0„
tho  (f e_(tk/ 2)2 dk) (51 +  7'0 eA0.0(tf„,,t—tp) (68)

where AD, is defined in (57). Solving (68) for t fail leads to

so [s1 1 (  2(so — si)
t f ail min log 

ho(s1 ro/A 
(69)

ro ro Ao, o„) ) j

where the minimum appears because so/ro is the time it would take to fail the material if no
exponential growth at the weak spot occurred.
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Figure 9 shows the failure time for the material in (26) for a range of strain rates ro, a
weak spot of half-width £ = 26 and amplitude ho = 0.01. The material model parameters are
6 = 0.1, E =1, p =1, s1 = 0.05, so = 0.20. The figure compares the numerical results with the
approximate failure time in (69). The straight lines correspond to the minimum and maximum
possible failure times of s1/ro and so/ro. The results show that slow loading (low 7.0) causes
the material to fail a short time after it passes the peak in the curve of bond force vs. bond
strain at sl. During this time, the instability causes the pulse to grow until its maximum strain
exceeds so, which is our definition of failure.

For the same problem, Figure 10 shows, on the left, how the failure time depends on ho,
with horizon 6 = 0.1, bulk strain rate 7.0 = 0.05, and defect half-width £ = 2(5. On the right is a
graph of failure time as the defect half-width £ is varied, with horizon 6 = 0.1, bulk strain rate
ro = 0.05, and h0 = 0.01. Both these dependencies are weaker than the dependence on bulk
strain rate, which is shown in Figure 9.

At higher strain rates, the unstable growth is more rapid, because the strain rate at the weak
spot contributes to the initial perturbation as the strain passes the peak. This is seen in the sinh
term in (66). At very high strain rates, even with the contribution of this perturbation in strain
rate, there is not enough time for the instability to grow significantly before the bulk strain rot
exceeds so. In this case, the failure time given approximately the same as the "maximum" line
in Figure 9.

The evolution of the displacement field is shown for six different times Figure 11. After the
failure time, a crack appears at x = 0. Because this crack unloads the material, compressive
release waves propagate away from the crack. All the curves in this figure come from a direct
numerical simulation with 6 = 0.1, £ = 26, r0 = 0.05, and ho = 0.01. For the same simulation,
Figure 12 shows the nonlocal stress a(0, t) defined by

f å

0-(x,t) = f 

(5 

f(x — z + x — z,t) <dz Vx, Vt (70)
0 z

where f is the pairwise bond force density. (Equation (27) is a special case of (70) for constant
strain.)
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Figure 9. Failure times for the stretching of a bar with a soft
spot. The solid blue line is from the direct numerical simulation;
the red dashed line is from the analytical expression (69).
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Figure 11. Pre- and post-failure behavior of a bar with a soft
spot under tension. A crack and release waves rapidly appear after
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9 Rate effect

The results of the previous section for the failure time in a stretching bar with a defect can be
interpreted as a rate effect. Define the bulk failure strain e f azl to be the bulk strain (at points
far from the weak spot) when the bar fails:

f ail — rot f ail•

From (69) and (71),

(71)

ro 2( — 81)
E f ail R.-% min {so, + A. log ho(si

so 
ro/A.) (72)

An interesting observation from (72) is that the strain rate appears only in the dimensionless
term ro/A,„0, that is, only in proportion to the blow-up rate for the material. Since (61) continues
to hold,

ro ro8
A0,0

so — si
6s1

(73)

Figure 13 shows analytical and numerical results for the bulk failure strain as a function of bulk
strain rate for the same problem as in the previous section, the stretching of a bar with a defect.
At low strain rates (roN, < 1), the rate effect is small, and Efat/ si. At intermediate strain
rates, it becomes larger. At high strain rates, the rate effect saturates and the failure strain
follows Efail Pe, so. Both these limiting behaviors at slow and large strain rates are reasonable
physically.
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from the direct numerical simulation; the red dashed line is from
the analytical expression (72).
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10 Discussion

Rate dependence of failure in many kinds of materials can be attributed to microstructural
events such as the growth and interaction of microcracks that are too small or too fast to be
incorporated explicitly in a macroscopic engineering simulation. In this sense, incorporation
of rate dependence in a typical material model is a type of multiscale or upscaling method.
However, careful analysis at small length scales can predict failure times, or incubation times,
of an assumed initial microstructure under loading [21]. These failure times can be interpreted
as rate effects.

The results in the present paper show that failure times and the resulting rate effects can be
reproduced in a peridynamic material model that includes an unstable branch but no explicitly
rate-dependent terms. As demonstrated in Figures 9 and 10, the predicted dependences on the
weakness and length scale of a small defect are much less significant than the dependence on
the strain rate.

The conclusion is that for some materials and applications, a suitable nonconvex peridynamic
elastic model can be used in a numerical simulation to treat, implicitly, an incubation time for
material failure without computing or incorporating this incubation time explicitly. Thus, such
a peridynamic model can be interpreted as a kind of coarse graining approach to the modeling
of microstructural processes that culminate in material failure.

The most commonly used peridynamic material models for brittle materials assume an in-
creasing bond force vs. bond strain curve up to the point of bond breakage. An example of
such a model is the microelastic brittle material described in [25]. Sudden bond breakage can
be viewed as a limiting case of the nonconvex material model (26) with so —> sl. In this limit,
(57) implies that A, —> oo, so the rate effect vanishes. This suggests that a rate effect could be
added to a simple bond breakage material model by adding a tail to the bond force curve, that
is, setting so large enough to achieve the desired effect. This approach could be an alternative
to adding terms to the simple model that explicitly include a rate dependence in the critical
bond strain for breakage.

The stretching bar problem considered in Section 8 demonstrates the nucleation of a crack.
However, it can be thought of as a one-dimensional model problem for a growing crack. If,
instead of a bar, one considers a cross-section of a two-dimensional body that is transverse to a
growing crack (Figure 14), the strain concentration near the crack tip supplies a perturbation
similar to the initial data in the one-dimensional problem. If the process zone of the crack con-
tains unstable material, the one-dimensional cross-section will eventually become unstable as
well, setting off the chain of events described in Section 8 leading to the appearance of a discon-
tinuity. Viewed in this way, the results of this paper may offer insight into the difficult question
of what really happens as a crack grows: how does a material point where the deformation is
smooth transform into a point of discontinuity?
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