
SANDIA REPORT
SAN D2019-LBS
Unlimited Release
Printed April 2019

Some Results About Distributed Load
Balancing

Philippe P. Péba9, Jonathan Lifflander

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

SAND2019-5139

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

2

SAND2019-LBS
Unlimited Release
Printed April 2019

Some Results About Distributed Load
Balancing

Philippe P. Peba5.T, Jonathan Lifflander
08753,

Sandia National Laboratories
Livermore, CA 94551

U.S.A.

Abstract

In this report with discuss load-balancing research and results in the context of the DARMA/VT
project.

3

This page intentionally left blank.

This document was generated on 2019-05-06 with the Automatic Report Generator (ARG)
version "master" on the Darwin system s1032319ca. local.

5

This page intentionally left blank.

Contents

1 Introduction 11

2 Remarks on the Grapevine Load-Balancing Algorithm 13

2.1 Informed Transfer Criterion 13

2.1.1 Convergence Problems 13

2.1.2 An Optimal Decision Criterion 14

2.1.3 Results with Modified Criterion 18

2.2 Performance Model 20

2.3 Rounds vs. Iterations 21

3 Statistical Properties of Some Solvable Cases 23

3.1 Dirac Distributions 23

3.2 Optimal Distributions 25

3.2.1 Object Iso-Load Case 25

3.2.2 Iso-Load Approximations 28

4 Application to a Small Yet Real Case 31

4.1 Experimental Setting 31

4.2 Comparative Results 32

4.3 Prescribed Object Moves 33

5 Conclusion 35

References 36

7

List of Figures

2.1 Plot of global imbalance (i) and maximum load (Lmax) versus iterations. . . 15

2.2 Plot of global imbalance (1) and maximum load (Lmax) versus iterations with
modified criterion 6 ' 19

2.3 Plot of global imbalance (1) and maximum load (Lmax) versus time normalized
to 52s (average time to solution); plot ordinates are rescaled by a factor of 60 in
the red inset for the second half of the time interval to emphasize convergence. 22

4.1 Histogram of the initial per-processor loads. 31

4.2 Graph representing the number of inter-rank object moves prescribed by the
load-balancer after 5 iterations of our improved version (with criterion 6 ')
when k = f = 4. 33

4.3 Graph representing the number of inter-rank object moves prescribed by the
load-balancer after 5 iterations of the original algorithm (with criterion 6)
when k = f = 4. Note that the cluster of ranks {0; 1; 2; 3; 4} is enlarged in
the upper right corner for legibility. 34

8

List of Tables

3.1 Load/processor statistics before and after 4 iterations of the original and mod-
ified algorithms, with 4 gossiping rounds, in an iso-load case where 11'1 divides

1 01 25

3.2 Load/processor statistics before and after 4 iterations of the original and mod-
ified algorithms, with 4 gossiping rounds, in an iso-load case where 1131 does
not divide 101 27

3.3 Load/processor statistics before and after 4 iterations of the original and mod-
ified algorithms, with 4 gossiping rounds, when 11:1 does not divide 101, when
uniform random noise of increasing magnitude is added to the iso-load case. 28

3.4 Load/processor statistics after 100 iterations of the original and modified algo-
rithms, with 4 gossiping rounds, when 1P1 does not divide 101, when uniform
random noise of increasing magnitude is added to the iso-load case 29

4.1 Object mapping statistics of the initial object/processor load distribution of
a VT-based simulation on 8 ranks 32

4.2 Object mapping statistics obtained after 5 iterations of the load-balancing
algorithm with both version of the decision criteria (6 vs. 6 ') when k = f = 4. 32

9

This page intentionally left blank.

Chapter 1

Introduction

The goal of this report is to discuss the findings we made with the Load-Balancing Simulator
(LBS), and also to discuss some theoretical results.

11

This page intentionally left blank.

Chapter 2

Remarks on the Grapevine
Load-Balancing Algorithm

2.1 Informed Transfer Criterion

Here we discuss the original informed transfer algorithm of the Grapevine algorithm. We
begin with line 6 of said algorithm:

6 : if (Lx +load(0i) < Lavg) then

This is motivated by our observations with our first experiments with a strict Grapevine
implementation of a high rejection rate of this condition. Furthermore, this rejection rate
only slowly and marginally decreased with the increase in the number of gossiping rounds
(k) in the first phase (gossip algorithm) of Grapevine.

2.1.1 Convergence Problems

In fact, we noticed that this finding can be explained by the fact that the condition set forth
in the algorithm for each overloaded processor:

4 : while (Li > (T x Lave))

mandates that, after a variable number of iterations, each overloaded processor no longer is,
up to a certain relative threshold T. This implies that, in the worst case, after completion
of this loop,

Lm„ < T x La„ <> ID <T — 1

where /D is the load imbalance of the distribution D of objects across the entire set of
processors. This amounts to saying that the objective function that the algorithm aims to
minimize is F(D) = ID — T + 1, and that a sufficient stopping criterion if F(D) > 0 (we
observe that Lave is by definition a constant as no loss or gain of load may occur globally).

However, F(D) > 0 is by no means necessary, and it fact if it were, there would be no
guarantee that the algorithm would terminate in finite time. This is however ensured by the

13

fact that, given an underloaded processor, the criterion of line 6 is tested for all of its objects,
of which there is only a finite number. While this ensures termination of the while-loop in
finite time — this does not guarantee that any transfer will have occurred at all.

We now illustrate this problem with one representative test case with o = 104 objects initially
distributed across p = 24 amongst n = 212 processors, of i = 10 iterations of the original
Grapevine algorithm (via our NodeGossiper simulator), each of each having k = 10 gossiping
rounds, with an overload threshold of T = 1.0 and a fanout factor of f = 6. We observe the
following rejection rates caused by the criterion of line 6:

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (I)
0 280
1 9084 154931 94.46 187
2 4 1654 99.76 187
3 1 1130 99.91 187
4 7 2682 99.74 185
5 6 2396 99.75 183
6 2 1143 99.83 183
7 1 1041 99.90 183
8 0 882 100.0 183
9 0 882 100.0 182
10 3 1405 99.79 182

These immediately hint at the fact that the decision criterion is too tight. And indeed, it
enforces strict monotonicity for each of the underloaded processors; in other words, it uses
the "taxicab" norm (11 • Hi) to minimize in the 11.1100 sense: this criterion is therefore not
adapted to the considered minimization problem. Another way to look at the problem is
to see it as an attempt to decrease the load of underloaded processors while never allowing
a single underloaded one to become overloaded — even when this may improve the global
imbalance.

As a result, these almost full rejection rates, limits load-balancing to a noticeable decrease of
Z during the first iteration of the algorithm, after which esssentially no further improvements
occur while I remains stuck in a local minimum. Furthermore, increasing k and allowing for
higher values of T does not substantially affect the outcome on average (with the exception
of the occasional convergence due to a nice original layout). This is illustrated in Figure 2.1.

2.1.2 An Optimal Decision Criterion

In order to ensure a faster convergence of the algorithm, we propose the following adapted
criterion:

14

290-

28

270-

260-

250

240-

230-

220-

210-

200-

190-

180-

170-

160-

150.

14a

130-

120-

110-

100-

90-

80-

70-

60-

50-

40-

20-

10-

0
0

NodeGossiper n=4096 p=16 0=10000 uniform f=6 t=1.0

i=10 load imbalance
1=10 maximum load

4 5 6 0 10
lteralions

Figure 2.1: Plot of global imbalance (/) and maximum load (Lmax)
versus iterations.

Lemma 1:
The following alternate criterion:

6' : if load(02) < L, — Lx then

ensures that the objective function F monotonically decreases.

Proof:
Consider a strictly overloaded processor pi and a strictly underloaded one px in an proces-
sor/object distribution D, with respective loads L, and L. Consider also an object 0, E p,
such that = load(0i) < L, — Lx (both sides being necessarily positive by hypothesis on
loads); we can thus distinguish the two following disjoint cases:

1. If < Lx), then L, — > Lx + and thus Lx + t < Li — t < L,.

2. If > 2 (Li — Lx), then Li — < Lx + and thus L,— < Lx + < L, <=> < Li — L.

Therefore, we can assert that, overall, max (Li — t, Lx + t) < Li <=> < L, — L.•
recall that

Li
F(D) =

Lmax
T > T,

La„ La„

15

Now,

with equality if and only if pi is such that Li = Lmax in D (i.e., it has maximum load in the
original distribution). Therefore, < Li — Lx ensures that

max (Li — Lx + f) T < Li — T < F (D) (2.1)
Lave Lave

Finally, when considering the new load/processor distribution Di that results from the trans-
fer of 0, from pi to px, and denoting 14 = Li — .e and Lix = Lx their respective new
loads, we are faced with a trichotomy of possible cases (the two first ones are not necessarily
disjoint):

1. If pi is such that 14 = Lima), in Di (i.e., pi has maximum load in the new distribution
Di), then max (Li — f, Lx f) = Li — = Li 1:a n 1 e

T <

a (2.1) yiel:sv:e

T < F(D)
e Li —

F =
Lave
 T = T

v
T =

2. If px is such that Lix = /max in D' (i.e., px has maximum load in the new distribution
D'), then max (Li — L x ,e) = L x = Lix-Lave and (2.1) yi:ldves:

F (Di)
Liave T L'n::: T L x Lx f Li

= T <

a

— — T < F (D)

3. If a processor py {pi, px-} is such that L'y = Lima), in Di (i.e., neither pi nor px have
maximum load in the new distribution D'), then necessarily LC, = Ly because the
transfer did not affect py, and thus necessarily LC, < Li and (2.1) yields:

''
F (Di) =

Lm
ax T =

L
Y T =

Ly
T <

Li
T < F(D).

Lave Lave Lave Lave

Furthermore, in this case, •If'e — T < P—ve — T is not strict if and only if Py also
had maximum load in D; because there is only a finite number of such maximally-
overloaded processors, we are guaranteed that in a finite number of iterations the
inequality will become strict.

We can therefore conclude that, overall,

< Li — L x > PAD') < F (D).

❑

We remark that the new, modified criterion can be equivalently written as

6' : if L x load(0,) < L, then

which is indeed less strict than the the original one, for it allows, in particular, one under-
loaded processor to land in overloaded territory after a transfer. However, what is ensured is

16

the maximum norm will not increase. In addition, Lemma 1 ensures that, as long as one can
find at least one object satisfying this criterion on at least one overloaded processor, then the
optimization can continue. However, once it is no longer possible to find such a combination,
then F may no longer decrease: this new criterion thus also provides a stopping criterion.

While this criterion will provide more opportunities for overload transfers than the original
one, one may wonder whether it could not be further relaxed, hereby allowing for even lower
rejection rates. This question is quikcly answered by the following, with the same notations
a in Lemma 1:

Lemma 2:
If pi is a processor with maximum load in D, and

(30i E pi) (313x E D) = load(0i)> Li — Lx

then if 0, is transferred from px to pi, the objective function F does not decrease (and
possibly increases).

Proof:
If p, has maximum load in the object/load distribution D, and one can find 0, E pi and
px E D, then by definition of F one has, on one hand:

Lx + T > Li —T=F(D).
Lave Lave

On the other hand, in the new distribution D' obtained by transferring 0, from pi to px,
one has:

Lx + L' max L'
TT= T x < = F(D').

Lave LaveLave

Combining the two above inequalities thus yields F (D') > F(D). Furthermore, if (02, px)
is such that L'x is not a maximally-overloaded processor in the new distribution, then the
latter inequality is strict, in which case F increases. D.
As a result of Lemma 1 and Lemma 2, we can now assert the following:

Proposition [Optimal Load-Transfer Criterion]:
The following alternate criterion:

6' : if load(0i) < Li — Lx then

is optimal for the load transfer strategy of Algorithm 2.

Proof:
From Lemma 1 we know that this alternate criterion ensures that monotonicity is sufficient
to ensure that F monotonically decreases.

Furthermore, from Lemma 2 we know that if this criterion is not met for at least one
particular case, then F will no longer monotonically decrease (and will possibly increase if
(0,, px) is such that L'x is not maximal in D..

17

Therefore, alternate criterion 6 ' , being necessary and sufficient, is optimal for the considered
optimization strategy. ❑.

2.1.3 Results with Modified Criterion

We now study the results of the modified algorithm, with alternate criterion 6 ' , when used
in the NodeGossiper simulator for the same case as above. The new acceptance/rejection
results are as follows:

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (/)
0 280
1 11292 648 5.427 3.34
2 4044 3603 47.12 1.60
3 2201 3412 60.79 0.873
4 1324 3586 73.03 0.632
5 765 3171 80.56 0.632
6 410 2969 87.87 0.626
7 247 2794 91.88 0.626
8 159 2749 94.53 0.626
9 120 2682 95.72 0.626
10 72 2643 97.35 0.623

In contrast with what was happening with the original criterion 6, we see now that the
rejection rate is almost null initially, then slowly increases as the global imbalance rapidly
decreases. In fact, with already more than acceptable values of /, additional iterations
continue to improve the outcome, hereby experimentally validating the preceding theoretical
results. This is examplified by comparing the values of / in both cases:

iteration criterion 6 criterion 6'
(index) (/) (/)
0 280 280
1 187 3.34
2 187 1.60
3 187 0.873
4 185 0.632
5 183 0.632
6 183 0.626
7 183 0.626
8 183 0.626
9 182 0.626
10 182 0.623

18

We note, in particular, that the modified algorithm has not fully run its course after iteration
10, and continues to improve /, albeit modestly, while the original algorithm has essentially
converged to a very sub-optimal local minimum and is no longer able to improve the overall
imbalance after a few steps.

2

28

27

2

2

2

23

22

21

2

1
18

17

1

150

140

13

12

11

i

NodeGossiper n=4096 p=16 0=10000 uniform f=6 t=1.0
-.-k=10 1=10 load imbalance
-.-k=10 1=10 maximum load

)--/ 8 a 5 6 6 lb
Iterations

Figure 2.2: Plot of global imbalance (/) and maximum load (Lmax)
versus iterations with modified criterion 6'.

Furthermore, we illustrate below that, ceteris paribus increasing the number of objects in
order to obtain an object-to-processor ratio of 8 (closer to our typical use case than the ratio
of about 2.5 used above) allows for even faster convergence:

19

iteration transfers rejected rejection rate imbalance
(index) (number) (number) (%) (/)
0 270
1 33761 269 0.790 1.52
2 7179 3642 33.66 0.714
3 4227 5946 58.45 0.399
4 3304 9023 73.20 0.317
5 2496 9570 79.31 0.273
6 1978 10138 83.67 0.187
7 1419 9895 87.46 0.139
8 1026 9312 90.08 0.139
9 692 8938 92.81 0.139
10 463 8379 94.76 0.139

These results are consistent with what the intuition would assume: having relatively more
objects per processor provides more flexibility for the load-balancer to exploit. This is
even further illustrated by the fact that, despite having attained an even better-balanced
distribution than before (0.139 vs. 0.623), the algorithm continues to progress with even
lower terminal rejection rates than before.

2.2 Performance Model

To further elucidate the theoretical tradeoff between utilizing more iterations (i) or gossiping
rounds (k), we build a performance model for the load balancing algorithm to model the
computational complexity.

The implementation of the Grapevine algorithm relies on having efficient termination detec-
tion, an extensively well-researched distributed computing problem. A distributed computa-
tion is globally terminated if every process is locally terminated and there is no message in
transit between any processes. Termination detection is an important distributed problem,
on which many non-bulk-synchronous algorithms rely in order to correctly sequence opera-
tions across complex dynamic communication patterns. In Grapevine, it is used to determine
when gossiping is finished and when all load transfers have occurred.

Chandy and Misra [1] prove the lower and upper bounds on the control message complexity
T, for any termination detection algorithm, where 1M1 is the total number of messages in
an underlying computation and IP 1 is the number of processors.

Tm = 0(11\41) = (112'1)-

Intuitively, the worst-case bound occurs when for every computation message, the termina-
tion detection algorithm is activated. The "dynamic" Dijkstra-Scholten termination algo-
rithm [2] for diffusing computations utilizes an engagement tree to obtain this bound tightly

20

but never performs better even in "best" case situations than 0(1M1). For distributed
applications in less tightly coupled applications or cases with partial processor engagement
in the computation, this algorithm tends to perform well in practice. Thus, even the best
case time complexity Te for the Dijkstra-Scholten algorithms is very costly (and is notably
not scalable with respect to 1P1):

= Q(1P1).

In contrast, in tightly-coupled cases when all processors are engaged in the computation, as in
the G ra pevine algorithm, 0(1M1) is overly costly to assume in practice. Thus, the 4-counter,
wave-based termination algorithm is often applied in these contexts that reaches a message
complexity lower bound of 2 x 1P1 in the best case scenario, but costs 0(1M1 x 1P1) in the
worst case. However, without arbitrary delays in the computation across all the processors,
a small factor on top of 2 x is a highly probable outcome when utilizing termination to
sequence phases in Grapevine. With the message complexity, we can also bound the time
complexity for the 4-counter termination detection algorithm:

= 0041 x log(IPD) = Q(2 x log(IPI)).

With T, in place, we bound the time complexity of the Grapevine algorithm, for a single
iteration, denoted as Gc. We assume that f, the fanout during the gossip phase, is a small
constant, where f < P.

where:

Cc = 0(f x min(k,logf(IPD) + 2 x Tc)

k = the number of gossiping rounds

f = the fanout during gossip where f« 1P1
P = the set of processors

0 = the set of objects where 101 = 0(1P1).

The Grapevine algorithm, as originally described, can cost 101 in the worst case during the
transfer phase. This is observed when the load L, of a single processor is composed of all
objects O in the system. The original algorithm contains a while loop that will attempt to
reassign all these objects living a single processor during a single iteration of the Grapevine
algorithm. For the Grapevine algorithm to be scalable in the worst case, we must bound the
number of possible transfers at each iteration by log(1P1).

2.3 Rounds vs. Iterations

We now empirically examine the comparative effect in terms of load imbalance as well as
of maximum load, of simultaneously increasing and decreasing the number of iterations and
rounds, so that i x k remains constant.

21

This is illustrated here in the case of o = 104 objects initially distributed across p = 24
amongst n = 212 processors, of the NodeGossiper simulator with an overload threshold of
T = 1.0 and a fanout factor of f = 6. The object times were also pseudo-randomly generated
with uniform sampling in [10'; 10-1], and that the o objects were also uniformly pseudo-
randomly assigned to a subset of p processors.

Because the time-to-solutions were approximately equal 52s) as a result of i x k being
equal to 20 in both cases, the x-axis of Figure 2.3 was re-normalized with respect to a
common actual runtime of 52s, and the state at the end of each balancing iteration is shown.
We note that in reality the time-to-solution in the i = 10 case was slightly higher than with
i = 2, as a result of the latter requiring 11 I/0 calls, in contrast with the 3 calls required by
the former. We observe that not only time-to-solutions are identical, but that allowing for
more iterations is better, ceteris paribus, than allowing for more gossiping rounds.

280-

270'

260-%

240-

230-

220-

210- 1,

200-

190-

18 ".

17

160-

150-

140-

130-

120-

110-

1C0-

90-

80-

70-

60-

50-

40-

30-

20-

10-

0
0 2 4 6 A fo -17 14 16 18 20 22 24 26 28

NodeGossiper n=4096 p=16 0=10000 uniform f=6 t=1.0

-.load imbalance (k=10)
-•-maximum load (k=10)
--load imbalance (k=2)
--maximum load (k=2)

Y x 60

Time (s)

Figure 2.3: Plot of global imbalance (/) and maximum load (Lmax)
versus time normalized to 52s (average time to solution); plot ordi-
nates are rescaled by a factor of 60 in the red inset for the second half
of the time interval to emphasize convergence.

22

Chapter 3

Statistical Properties of Some
Solvable Cases

The goal of this chapter is to examine the statistical properties of some cases for which they
can be explicitly calculated, hereby providing the basis for reference non-regression testing
as well as performance comparisons.

In particular, all observed load/processor distributions will be compared to an ideal equi-
distribution, in which all objects are assigned in such a way that all processors in the col-
lection P have identical load. We note that this does not require that all objects have the
same load.

Respectively denoting ILI and Si the total load across P, and the Dirac delta function on

processor pi E P, we can denote L = ilip11 Si the equi-distribution of loads (ignoring the

object dispatch details) on P, for which we have the following statistics: min L = max L =

L = a2 = it3,L = 0, a nd = 0 for obvious reasons.--

All observed load/processor distributions will have to be compared against this ideal baseline.

3.1 Dirac Distributions

By Dirac distribution, we mean here any case where all objects are assigned to a single
processor in the non-empty collection P. Without any loss of generality for the sake of
statistical properties, we can assume that this processor is /91, and we therefore consider the
load distribution L = IL161. Also denoting IP I the cardinality of P, we obviously have the
following statistics for L:

min L = 0,

maxL =

z=
1P1

23

Therefore, using the latter equation, we obtain the variance of L as:

1
1131 / iTi \ 2

CrL = V161(i) 4311)

1L12 [(1 1
 1

2 + 117)1 — 1

117 11:12

1L12(— 1) 1L12

11:3 12 113 3̀° 1P1

Concerning the third and fourth central moments of L, we have on one hand:

)113X

and on the other hand:

1P1iL4,L = E (1451(i) -1P1 1131

= 144 [(1 1)4 - 11
1131 IPI) ' 1P14

_ 144 x GPI - 1)4 + 1131 - 1
1'1 1P14

_ 144 (1P13 - 411312 + 61P1 - 3)
11314

The above results allow us to compute the skewness and kurtosis of the distribution, when
IPI > 1, respectively as follows:

P3,L 1P12 — 31171 ± 2
P71,f = 3 = ir/2 17

and
1-14,f 11'13 — 411'12 +611'1 3

'Y2L = — 1131*
CFL GPI — 1)2 1P1-00

Finally, we observe that Tc = 1[1 — 1 E's'
1PHo°

24

The results above shall be used for statistical verification of idealized cases, as upper bounds
on worst-case scenarii (paying attention to the fact that most statistical packages report
kurtosis excess, i.e., ry2 — 3).

3.2 Optimal Distributions

By optimal distribution, what is meant in what follows is the best possible load/processor
distribution that may be achieved given the sets of processors P and of objects O. It is
not necessarily unique; in fact, except in the uni-processor case, it is not, because if one
load distribution across 1P1 > 1 processors is optimal, then any distribution obtained by
exchanging all objects between two processors is also optimal.

3.2.1 Object Iso-Load Case

To start, we place ourselves in the idealize case where all objects Oi E P have the same load
load(0i) = f. Although it is safe to assume that this ideal case will very seldom, if ever, be
encountered in any real case, it is important that any proposed load-balancing algorithm be
able to perform optimally in this case.

statistic optimal iteration criterion 6 criterion 6'

min G 100
0 80
4 99 100

max G 100
0 123
4 116 100

cr,c 0.00
0 9.18
4 2.34 0.00

0 00
0 0.23
4 0.16 0.00

Table 3.1: Load/processor statistics before and after 4 iterations of
the original and modified algorithms, with 4 gossiping rounds, in an
iso-load case where 1P1 divides 101.

Evidently, if 1P1 divides 101, then any equi-distribution is optimal and is obtained by as-

signing exactly IPI object(s) to each processor in P. We therefore present in Table 3.1 the

respective results of the Grapevine algorithm with both original criterion 6 (left) and our
modified criterion 6 ' , for a case where P = 102, 0 = 104, i = k = f = 4, t = 1.0, and where
the unit load is chosen to be = 1. These results demonstrate that even with small numbers
of fanout, gossiping round, and iterations, our alternate approach rapidly converges to the
optimal solution whereas the original one does not, even with this simple academic case.
This first baseline case is thus discriminating enough to be retained.

25

In order to extend the set of baseline cases, we now consider a slightly broader class of
distributions, where all objects still have equal load f, but where it is no longer required
that IP I divide 101. In this context, denoting q = [101API] and r = 101 mod IP 1, consider a
distribution of q objects on 1P1 — r processors (0 < r < IP 1 by definition of the Euclidean
division) and q + 1 objects on the remaining r processors. All objects are indeed assigned
because r(q+1)+(I131 —r)q = r+q1131= 101. We thus have, if r 0 (i.e., in the non-divisible
case):

wherefrom we find that

minG = qe,

max r = (q + 1)f,

G = 101

1P1

q +1 0'1+4'1- 101 1P1 r
= 1 = > O.

101Api 101 101

We note that the case where r = 0, we have instead

= 1= q1P1 - 101 =0,
101

which amounts to the previously discussed distribution where IP 1 divides 101, that we already
proved to be optimal.

Furthermore, as soon as r 0, any other distribution assigning more than q + 1 objects
to at least one processor has a larger imbalance, because the denominator G in iL is fixed.
Therefore, a distribution G of 101 objects with identical load P across 1P1 processors is optimal
if and only if it can be written (with no loss of generality, up to a re-indexing of processors)
as follows:

r IPI
= (q +1)e E Si+ qe E

i=1 i=r+1

Because (Siåj = (Si if i = j, and 0 otherwise, we have

r2 = (q+ 1)2e2 E Si+ q2,e2 E Si
i=1 i=r+1

as all cross-products vanish, and thus

r r 1 f2 ,C2 = (q + 1)2e2 E + q2 e2
IPI
E = (q + 1)2e 1 + q2 e2 11' = (r + 2qr + q21P1) .1 Pi=1 i=r+1 1131 1P 1

26

This allows us to compute the variance of L, as follows:

ol = L2 — (L)2

= 'n-2
1P1

(+ 2qr + q21131) 11120112t2
\

r

,e2

= 1p12 [r1P1+ 2qr1P1+ q211:3 12 — (q1P1+ r)2]

t2r(IPI — r) < —t2

IP 12 4 '

with equality if and only if P = 2r. We note that in the particular case where r = 0, we
indeed retrieve the null variance result.

We thus tested the respective results of the Grapevine algorithm with both original criterion 6
and our modified criterion 6' when r 0, to assess how those respectively fared as compared
to optimal distributions. Because the algorithm endowed with the original criterion has
already not been able to obtain an optimal distribution in the easier r = 0 case, it is safe
to expect that it will also not attain an optimal one in this more complicated case. But it
is interesting to test whether the algorithm equipped with alternate criterion instead still
performs optimally in the case.

statistic optimal iteration criterion 6 criterion 6'

min L 39

max L 40

aL 0.2421

Zc 0.024

0
4 39

23
39

0 61
4 45 40
0 6.182
4 0.5192 0.2421
0 0.5616
4 0.152 0.024

Table 3.2: Load/processor statistics before and after 4 iterations of
the original and modified algorithms, with 4 gossiping rounds, in an
iso-load case where IP I does not divide 101.

For instance, keeping the same example as above, except that now P = 162, which results
in r = 16 0 (and q = 39), and the same initial seeding of the sampler, we obtained
the results presented in Table 3.2, compared against the optimal statistics computed from
the preceding theoretical results. We thus observe that once again, while (as expected)
the original algorithm fails to discover an optimal distribution, our version incorporating
modified criterion 6' succeeds at doing so.

We therefore propose that the two object iso-load cases (with r = 0 and with r 0 be
systematically used as baseline test cases for all distributed load balancers.

27

3.2.2 Iso-Load Approximations

It is a natural question to wonder whether the optimality results obtained in the idealized
iso-load case may also be used as approximations of the expected load-balancing results when
the objects are of relatively homogenous sizes.

statistic iteration s= 0 E = 10-3 = 10-2 s= 10-1 E = 1

min r
0 23 23.00 22.99 23.20 23.45
4 39 38.99 38.07 38.11 37.49

max
0 61 61.00 61.03 60.89 66.37
4 40 40.00 40.00 40.05 40.28

RL
0 38 38.00 38.04 37.69 42.92
4 1 1.01 1.93 1.94 2.79

aL
0 6.182 6.182 6.179 6.217 7.516
4 0.2421 0.2405 0.2556 0.3748 0.3804
0 0.5616 0.5616 0.5624 0.5586 0.6974
4 0.024 0.02399 0.02393 0.02525 0.03020

Table 3.3: Load/processor statistics before and after 4 iterations of
the original and modified algorithms, with 4 gossiping rounds, when

1131 does not divide 101, when uniform random noise of increasing
magnitude is added to the iso-load case.

For instance, ceteris paribus as compared to the case of Table 3.2, but now with load(0,) -
U(1 - E ; 1 + E) , we obtain the results presented in Table 3.3, with one experiment for each
of the reported values of E (now only using alternate criterion 6 '). At first glance, we may
be tempted to posit that the iso-load approximations provide good approximations unless
the object loads are allowed to fluctuate within a few percentage points about the mean f,
with a progressively worsening spread between processor loads, as indicated by the range
statistic RL.

However, this is a false impression because the results in Table 3.3 were obtained with i = 4
iterations of the algorithm: this number, albeit sufficient to reach an optimal distribution
in the iso-load case, results in stopping the convergence to a better-balanced solution in
the other cases, which translates into rejection rates that have not converged to 0. This
observation is hinting at the fact that, when E 0, the algorithm at its fourth iteration
continues to improve the results in the 11'1100 sense, and more markedly as E increases. For
instance, with E = 1 we still observe transfer acceptance rates higher than 10% at iteration
number 4.

And indeed, as illustrated in Table 3.4, when we let the algorithm run through 100 iterations,
we observe wholly different results: at that point all cases have converged, with rejection
rates of 0% since many iterations: specifically, we obtain better load-balancing results, as the
noise added to the atomic load provides flexibility in how the algorithm may compensate

28

statistic iteration E = 0 E = 10-3 E = 10-2 E = 10-1 E = 1

min L 100 39 39.00 38.95 39.07 39.07
max G 100 40 40.00 39.94 39.54 39.37
Re 100 1 1.00 0.99 0.47 0.30
o-L 100 0.2421 0.2403 0.2257 0.2581 0.03111
Tc 100 0.024 0.02384 0.02243 0.01205 0.006778

Table 3.4: Load/processor statistics after 100 iterations of the origi-
nal and modified algorithms, with 4 gossiping rounds, when 1131 does
not divide 101, when uniform random noise of increasing magnitude
is added to the iso-load case.

for the fact that 111 does not divide 101. In the strict iso-load case, there is just no way
to reduce the load imbalance between the processors that contain q objects, and those that
contain q + 1; in contrast, as E increases, the runtime finds more opportunities to displace
objects to better fill that gap. This is confirmed as the spread between the most underloaded
and overloaded processors decreases as well.

From these observations we can can conclude that the iso-load formulas of §3.2.1 are not
good predictors of the final outcome of the algorithm when it is allowed to run to convergence
in non-iso-load cases; however, they remain decent predictors of what is to be expected in
a non-iso-load case when the number of iterations is clamped to that which is sufficient for
convergence in the iso-load case. This will also therefore provide a good baseline testing
case.

29

This page intentionally left blank.

Chapter 4

Application to a Small Yet Real Case

In this chapter, we compare the results of the original Grapevine load-balancing algorithm,
with those obtained with our modified version therefore, when applied to a real case whose
input data, rather than being pseudo-randomly generated as in the previously discussed
cases, was provided by an object mapping output by a VT-based simulation.

We also illustrate the somewhat non-intuitive object transfers that were performed by our
algorithm in order to attain a near-optimal solution.

4.1 Experimental Setting

The case used here is that of a run performed on 8 processors using the Virtu a I Tra nsport
(VT) asynchronous many mapping was output every several time steps, using a data exchange
format (. vom) that we created for that purpose. The NodeGossiper is endowed with both a
reader and writer for this format, allowing it to compute a hopefully better-balanced object
mapping than the one it was handed by the simulation code.

2.5-

2

1.5-

0.5-

a

Ilnitial Per-Processor Loads

1 2 3 4 6 6

Figure 4.1: Histogram of the initial per-processor loads.

The experiment we are presenting used an object mapping read from the . vom files, whose
aggregrated per-processor times are illustrated in Figure 4.1: a cursory visual inspection of
this histogram readily indicates a poorly-balanced initial distribution.

In order to provide a quantitative assessment of the distributions obtained after having
applied the NodeGossiper (with either of its two of variants), with respect to the initial
situation, some key statistical properties are shown in Table 4.1: the first row provides the

31

D ID1
O 100
G 8

min D D max D RD o'D 71,D 72,D ID

0.00026703 0.042076 0.30404 0.30377 0.074587 2.8855 9.8574 N/A
0.004673 0.52595 2.3209 2.3162 0.69632 2.030 5.5987 3.4128

Table 4.1: Object mapping statistics of the initial object/processor
load distribution of a VT-based simulation on 8 ranks.

values for the object times themselves, while the second line presents those for our variable
of interest, the per-processor load L. These statistics indicate in particular overall load
imbalance that is almost half the size of the rank set, with the most heavily loaded rank
being assigned 500 times more work that the least loaded one. We shall now examine how
both versions of the algorithm perform in this case.

4.2 Comparative Results

We now compare the results obtained with the two different implementations (with original
criterion and 6 vs. with modified criterion 6') by using in both cases the following input
parameters: i = 5, k = f = 4, and an overload threshold T = 10, and identical seedings of the
pseudo-random number generator used by the samplers in the two phases of the algorithm.

criterion min G max L RL ac "Yi,L 1(2X IL
6 0.28542 1.7508 1.4654 0.46454 2.2364 6.0655 2.3288
6 ' 0.49539 0.57315 0.077759 0.024726 0.77394 2.3940 0.089739

Table 4.2: Object mapping statistics obtained after 5 iterations of
the load-balancing algorithm with both version of the decision criteria
(6 vs. 6') when k = f = 4.

The results obtained for each experiment presented in Table 4.2. Cardinalities and averages
are omitted as they are identical to those indicated in the last row of Table 4.1, as both
are invariant because we do not allow the number of ranks (nor of course the total load) to
change during the load-balancing process.

In particular, we observe that the original version of the algorithm only marginally improved
the results, with a global imbalance 1 keeping the same order of magnitude pre- and post-
load-balancing; in contrast, when using our variant 6 ' , the same was improved more than
thirty-fold. Furthermore, we can see that the range R in the latter case has a value (0.077759)
that is almost equal to that of the standard deviation of object times (0.074587): in other
words, our modified criterion allows the load-balancing to reach near-optimality in this case
as well, with modest values of i, k, and f . This quantitative comparison confirms what we
had demonstrated before, from first principles and analytical cases.

32

4.3 Prescribed Object Moves

In this section, we use the VOM viewer that we created to generate to create graphs rep-
resenting the object move counts prescribed by the load-balancer. In these graphs, vertices
represent the processors, while edges represent object moves, and are endowed with two
attributes: directed and undirected moves, i.e., respectively, the number of object transfers
in each direction, and the total count of movements in both directions. While the edge
coloring scheme indicates the latter, overlaid arrows using the same color scale indicate the
prescribed traffic in each direction. In particular, two-way traffic is indicated by pairs of
opposing arrows, whereas in the case where object moves are prescribed in a single direction
between two processors, a single overlaid arrow will indicate that — it will also, as a result,
have the same color as the edge over which it is drawn.

Object Moves
1 7
ni

Figure 4.2: Graph representing the number of inter-rank object moves
prescribed by the load-balancer after 5 iterations of our improved
version (with criterion 6 ') when k = f = 4.

Figure 4.2 supports the intuition in that we observe that, as one would expect by looking at
the original object/processor distribution in Figure 4.1, the most heavily loaded processor
(0) is the one that offloads the most objects to other ranks; in fact, every other processor

33

shall receive at least one object from processor 0, with processor 2 (which was minimally
loaded to begin with) will receive the most. On the other hand, we observe that marginal
load adjustments occur between the 5 last ranks (3-7) which in Figure 4.1 form a cluster of
similarly-loaded processors.

What is less intuitive is that the two processors which were essentially devoid of significant
load initially (1 and 2) are nonetheless prescribed to ship some of their respective objects to
other ranks; the most surprising being maybe that both processors are even asked offload
several of their respective objects onto the most heavily loaded of their peers (0). Upon
closer inspection, we see that this apparent paradox is easily explained by the positive skew
in the object times distribution (cf. Table 4.1) which indicates that there are relatively more
object with small than with large times, with a few outliers in the latter category pulling
the mean to the right. In other words, our variant of the algorithm not only performs
gross load adjustments, but also keeps moving small pieces of work until the distribution is
near-optimally distributed.

Object Moves
1 3
111 ■

5

7

Figure 4.3: Graph representing the number of inter-rank object moves
prescribed by the load-balancer after 5 iterations of the original al-
gorithm (with criterion 6) when k = f = 4. Note that the cluster of
ranks {0; 1; 2; 3; 4} is enlarged in the upper right corner for legibility.

In contrast, as illustrated in Figure 4.3, the original algorithm becomes quickly trapped in
a local, very sub-optimal minimum. Indeed, once the most heavily loaded processor (0) has
shipped all possible objects to the least loaded once without making them overloaded, the 3
processors whose initial load is closest to the mean 0.52595, albeit slightly underloaded,
are forced by the same criterion 6 to rejected all proposed object transfers that can make them
overloaded, even slightly. This results in a locked configuration where no global improvement
can further occur, although the global imbalance I remains high.

34

Chapter 5

Conclusion

Because of the results presented in this report, both theoretical and experimental, we propose
to use exclusively our variant of the algorithm in the future VT load-balancer implementation.

Consider the case where P = {p1;p2}, 0 = {01; 02}, and load(0i) = load(02) = (in
the sense of time needed to perform these tasks), and denote as follows the 4 possible
object/processor mappings: = {01 —> pi; 02 -> pd. Both m12 and m21 have null
imbalance, whereas for both m11 and m22 I = 1. In other words, in terms of object/processor
balance, as has been the scope of this entire report, of the 4 possible distributions, exactly
2 are optimal and occur when exactly one object in O is assigned to each processor in P.

But now, consider the additional piece of information whereby an some data must be com-
municated between 01 and 02 before the work (with time f) can be completed by each. For
the sake of simplicity, assume and that it takes no time to perform this data exchange when
both objects reside on the same rank, whereas it takes a time T > 0 to do it when they do
not. When factoring in this new parameter, we see that the total time T that is required
to perform the entire work (i.e., executing all objects to completion) takes on the following
values:

11(mn) = (m22) = 2f ; 71(m12) = 71(m21.) = f + T.

Evidently, depending on the relative values of and T the best use of the available resources
is not necessarily and optimal object/processor distribution. Specifically, these two concepts
coincide in our example if, and only if, T <

How the taking into account of the inter-object communication costs will affect the overal
compute time, and modify what is considered an optimal distribution, will be the focus of
our future work.

35

This page intentionally left blank.

References

[1] K Mani Chandy and Jayadev Misra. How Processes Learn. Distributed Computing,
1(1):40-52, Springer, 1986.

[2] Edsger W Dijkstra and Carel S Scholten, Termination Detection for Diffusing Compu-
tations. Information Processing Letters, 11(1):1-4, Elsevier, 1980

37

DISTRIBUTION:

1 MS N/A Philippe P. Peba5.7, 08753

1 MS N/A Jonathan Lifliander,

1 MS 0899 Technical Library, 8944 (electronic copy)

v1.40

39

Sandia National Laboratories

40

