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Motivation for Metals Tribology Research

wind turbine slip-rings
(sensors and blade pitch motors)

PCB sockets

cell phones

45 connectors

Estimated 150 Metric Tons ($6.9B) of Au
used in Electrical Contacts per Year:

Refs: Gold Survey, Gold Fields Mineral Survey Ltd, 2011
Gold Bulletin 2010, Vol. 43-3, C. Hagelüken and C.W. Corti,

Gold Bulletin 1986, Vol. 19-3, T.D. Cooke

\.6

CPU sockets



3 Metals Often Have Poor Tribological Properties

Whitehead, Proc. Royal Soc, 1950

Metals tend to show strong, rapid interfacial
bonding (cold welding) with galling.

5.̀

• .1

Cu in air @ 150 mN, p > 1.6

sliding direction

Au in dry N2 @ 75 mN, p > 0.7

•



4 More recent results: Low Friction starting from Bare, Soft, Pure Metals
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1 mN normal force

Pure Au in dry N2 ® 1 mN

200 400 600
cycle number

800 1000

Prasad, Scripta Mat. 2011

Pure Ni in dry N2 ® 98 riiN

"When surfaces are cleaned in a good vacuum, the
sliding friction... becomes vanishingly small."
- Bowden S Hughes, Natare1938.

"It was found quite unexpectedly that with some
metals, very low friction less than 0.10 was observed."
- Tamai, App Phys.1961

o

3.0

2.0

0.0

Pure Cu in UHV@ 10 mN

110mN :

10k 20k 30k
cycle number

50k

Low friction with pure metals is achievable.



5 Low Friction and Wear of Nanocrystalline Metals

Alloying reduces friction coefficient:
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1.0

0.5

99.999% pure Au

(add immiscible species like Ni or ZnO)

99.9% Au

0 0 
0 10 20 30 40 50 60 70 80 90 100

cycle number

...by reducing grain size:
99.9% Au 99.5% Au

Alloying improves
friction Et wear

performance by reducing
and stabilizing grain size

99% Au



6 Low Friction and Wear of Nanocrystalline Metals
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PTFE nano-
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coarse
grained
metals538

nanocrystalline
metals5'7'38-39

highly stable nanocrystalline PtAu

\ diamond-like carbon37
and MoS2 nanocomposites"

0.5

friction coefficient

1.0

J. F. Curry, et al., Advanced Materials (2018)



7 What do we know now?

Pure Cu in air @ 50 N, p - 0.37

Chen, Sci. Adv., 2016

Pure Au in dry N2 @ 1 mN, p - 0.2

Argibay, J. Mat. Sci. 2017

Pure Ni in dry N @ 98 mN, p - 0.2

Low friction is associated with
the formation of a highly

surface localized UNC layer.



8 What do we know? Friction depends on applied load
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Three different friction regimes, with transitions.



9 What about adsorbates? Test in UHV

Left Module:
- Linear Reciprocator
- Load metering
- Cryo stage (4-800K)
- 10° to 10-9 torr
- 0.1 mN to 1 N
- 100 pm/s - 100 mm/s
- 10 kHz acquisition
- capacitive displacement
sensors Et flexural
cantilevers

crossed-cylinders
and sphere-on-flat
configurations

Right Module:
- Rotary Module
- Dead weight
- 5 mN to 10 N
- 100 Hz acquisition
- 10° to 10-9 torr
- Strain gage sensor



10 Low friction of FCC metals (pure Cu) in ultra-high vacuum
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11 Low friction of BCC metals (pure Ta) in ultra-high vacuum
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sliding interface
(refined microstructure)

high friction and coarser grains

12 A cross-sectional view of metal sliding contacts

sphere-on-flat sliding contact

contact diameter (10s µm)

* drawn approximately to scale

shear layer
thickness
(100s nm)

low friction and ultra-fine grains

ultra-nanocrystalline layer

(TEM of self-mated pure Cu in dry N2)

g_

wear track topography map:
22177
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Contact diameters - 10s pm
Shear layers - 10s nm thick



13 The basis of friction in metals

sphere-on-flat sliding contact

contact diameter (10s iim)

* drawn approximately to scale

shear layer
thickness
(100s nm)

sliding interface
(refined microstructure)

For metals, the friction coefficient can be described as
the ratio of interface shear strength and bulk hardness:

P
H



14  How does grain size affect materials properties?

Grain
Boundary
Sliding

MD:
Low friction

3.0
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♦•••
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from Lu et al., Science, 2009

13..,C:2 co

o -
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Dislocation
Mediated
Plasticity

Nanotwinned Cu

o

0 10 20 30 40 50 60 70 80 90 100

mean grain size (nm)

MD:
high friction

Details of MD simulations can be found in Argibay, et al., J. Mat. Sci. (2017)



15 Hall-Petch breakdown occurs at about 10 nm (critical grain size)
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16 The Mechanism Behind Low and High Friction in Metals

Atomic lattices have periodicity

Commensurate interface
(higher energy barrier/higher p)

Incommensurate interface
(lower energy barrier/low p)

High resolution TEM

grain boundary
(incommensurate interface)

••••
•••• 

••••
.8.. •

76'‘ "

twin boundary/atomic lattice
(commensurate interface)



17 Evidence of Intragranular Amorphization
From Kaibyshev, Mat. Sci. Et Eng., 2002:

Fig. 4. CGBS during superplastic deformation: (a) fine structure of
the Zn-22%A1 alloy (TEM), (b) scheme of shear band formation in
the initial stage of SP deformation (e = 3%).

From Luo, et al., Nat. Comm., 2019:



18 Grain Size Dependent Strength of Metals
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19 Back to the future... an improved interpretation of old concepts

Rosenhain and Ewen predict amorphous

THE INTERCRYSTALLINE
1, • r• • •w• •••••

M.

• (SEC

BY WALTER ROSENHAIN,

DONA]

(BOTH OF THE NAT

IN their first paper on tl
have put forward what the
in favour of an hypothesis
crystalline cohesion in ME
be briefly termdd the " an
that the crystals of whicl
" cemented " together by
phous or non-crystalline m
substance of the metal or
different physical state.
intercrystalline layer is reE
least closely analogous ta
undercooled liquid which
the minute interstices wh
meet one another in variou

Slip at Grain Boundaries and Grain Growth in Metals

By N. F. MOTT,
H. H. Wills Physical Laboratory, Bristol

11, • _7 L CV I INA 0

(b) The observed fact that at the melting point the slip is the same as that which
would be given by a rnonomolecular layer of liquid appears in the theory as an
accident. The mechanism of flow in liquid aluminium cannot be anything like
that sketched here, because the temperature dependence is 10-20 times smaller ;
the viscosity of liquid metals depends on temperature according to the formula

a= croewihr,

where W is of the order of the latent heat of fusion (Frenkel 1946).
We must therefore modify our hypothesis. Let us suppose that the elementary

act which allows slip to occur is the disordering of atoms round each island where
fit is good. The free energy F necessary to do this will approach zero at the melting
point and nL at the absolute zero of temperature ; here L is the latent heat of fusion
per atom. At any other temperature, let us assume F to be given by

F=nL(1 —777v),

where Tm is the temperature of melting. Let us assume also, since the disordering
will result in a slip through a distance a, that a stress, a will decrease or increase
F by + icritwa. Then the rate of slip is now

v = 2va exp —nL(1 —T/T31)/12T}sinh (anwa/2k T),

which for small a reduces to

va2nwa nL —nL
kT exP (1W7-m) exP (kr)

Lg- Sui- -
a daries
> of the
)tained

. (1)

L. atom,

)-2

Mott provided a theory of slip based on the formation of
disordered, liquid-like islands of atoms

A review of these concepts is currently under peer-review at Applied Physics Reviews



20 The model works well for many other metals
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21 Amorphization model also works for alloys
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r = r0 + k • cl-° 5
where,

ro = 54 MPa

k = 4.27 -.0 5

Alloy (Ni-W)

amorphization model

H-P fit for
grain size > 10 nm

1 nm 10 nm 100 nm 1 µm 10 µm 100 µm 1 mm

grain size, d

Keep in mind:
1. Grain size estimates are particularly difficult and exhibit

higher uncertainty in the 1-10 nm range, and
2. these errors are relatively small compared to typical H-P fit

for far coarser grain size (e.g. earlier pure metal data)
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Proposed stress-dependent steady-state (asymptotic) grain size

A

critical grain size
(nanocrystalline)

low friction

coarsening

coarsenin

tie

high friction

refinement

refinement

microstructural evolution

average surface grain size

friction
coefficient

proposed

model

contact models

feedback
loop

d
grain size

surface
stress

microstructure
evolution models

• Effective refinement from recrystallization (Zener Et Holloman, 1944; McQueen et al., 1967)

• Known in rocks and ice cores (Derby et al., 1992)

• Recently extended to metals under severe plastic deformation (Pougis et al., 2014)

Argibay, et al., J. Mat. Sci. (2017)



23  Generalized friction regimes map for metals
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24 What is the lowest friction condition?
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25 I The challenge of grain size instability...

...and Mechanically

Grain growth in
nanocrystalline
metals is driven

Thermally...

NC Ni-Mn, after fatigue

S. Rajasekhara, K. Hattar, P. Ferreira, A. Kinghorn, B. G. Clark, unpublished.;H. A. Padilla and B. L. Boyce, Exp. Mech. (2010).



Regular Nanocrystalline Solution Model (Chris Schuh Group at
26  MIT)

Slide courtesy DI C. Schuh sad H. Murdoch otilp

LIJ

Thermodynamically

preferred grain ske!

Grain Size

Grain Size, d

References:
T. Chookajorn, et al., Science, 2012
Kirchheim, Acta Materialia, 2002
Weissmuller, J. Materials Research, 1994
D. S. Gianola et al., Acta Materialia, 2006

RNS Model:

Binary metal alloys exist possessing highly (intrinsically?)
thermodynamically stable nanocrystallinity.

Solute segregation at grain
boundaries:

X

gb)

Gtakr 
flooidaty

os
ktkoo,X0

Corop 

dG dA



27 So many alloys to choose from!

Solute

'A. X

A6 • •

N

• •
. • I 

• •
• • • •

•

Only noble metal alloy

••

ME 
.6..

-

,..mmummu
• m on

Murdoch Et Schuh, J. Mater. Res. 2013.

■ >75 kJ/mol

III 50 to 75 kJ/mol

25 to 50 kJ/mol

0 to 25 kJ/mol

0 to -25 kJ/mot

C, -25 to -50 kJ/mot

III -50 to -75 kJ/mol

■ <-75 kJ/mol

■ Non-Miedema

data source

Skew Non-

• Miedema data

source



28 Columnar grains, and Au segregates to Pt GBs

A) PtAu cross-section B) Au atomic fraction
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29 Excellent thermal stability. What about mechanical?
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Stable nanocrystalline PtAu exhibited long-lived low friction
30 (sliding against sapphire)
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J. F. Curry, et al., Advanced Materials (2018)



31 No evidence of microstructural evolution after prolonged tests

SEM of PtAu wear track after 100k passes

Nanoindentation hardness — 7 GPa

20 pm

TEM cross-sections of wear track

sliding direction —>

PtAu coating

steel substrate Ti adhesion layer
200 nm

No evidence of microstructural evolution
(maximum Hertzian stress of 1.1 GPa)

J. F. Curry, et al., Advanced Materials (2018)



32 Wear in Cross-Section: Ultra-low wear rate of PtAu (3x10-9 mm3/N-m)
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... when scissors beat rock!
total sliding distance = 200m
max Hertz stress = 1.1 GPa

50 100 150
position along wear track cross-section (pm)

200

J. F. Curry, et al., Advanced Materials (2018)



33  Significant improvement, more work to do...
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34 Friction Behavior in Anaerobic Environments

0.30
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+_.
c
.au) 0.20
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c
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N2 w/ trace organics
, 1 „,,,„„

open air test

N2 and ambient
organics

41/40.4444
5k 10k 15k 20k 25k 30k 35k

sliding cycles

Compounds Identified
trichloroethylene

acetic acid

benzaldehyde

tridecane

phenol

acetophenone

2-heptyl-1,3-dioxolane

butylated hydroxytoluene

benzoylformic acid

phenylmaleic anhydride

(20-100 ng/L)

... in situ tribo-chemical formation of DLC films from "thin air"!
(Albuquerque is at 6,000ft/1,800m of elevation, after all...)

N. Argibay et al., Carbon (2018)



35 TEM Reveals a Nanocomposite Structure (DLC/PtAu Nanoparticles)

FIB C
DLC/PtAu nanocomposite film

confirmed diamond-like carbon (DLC) using Raman analysis
with 20% hydrogenation using elastic recoil

N. Argibay et aL, Carbon (2018)
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38 Transportation — Passenger Car Energy Losses
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39 Competition between refinement and coarsening
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40 Grain-size dependent strength: Hall-Petch
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Electron diffraction of high and low friction wear tracks
41 from Au-Au sliding contacts

Electron microscopy of focused ion bearTiansmission Kikuchi Diffraction (TKD):
.(Yransmission diffraction performed in an SEM)

prepared wear track cross-sections
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Again we see fine grain size in both cases...
but the low friction case seems smaller.



Microstructurally small differences in grain size = BIG difference
42 in friction response
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43 Tensile and fatigue properties of PtAu — Experiments & Simulations

Tensile Testing (Fatigue and Yield Strength):
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PtAu alloys have high yield strength and remarkable fatigue resistance

Experimental Tensile Fatigue:
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generated an interesting result...
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J. F. Curry, et al., Advanced Materials (2018)



45  Raman Spectroscopy -- Highly Graphitic Hydrogenated (20%) DLC
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46  Friction behavior directly linked to hydrocarbon concentration (dry)
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Alcohol helps, but only in moderation.
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47 Bridging the Gap From Atomistic Modeling to Macroscale Applications
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48 1 ... as we know, correlation is not causation...

2000

4.95 per 1,000

Trzi

04.62 per 1,000

a)

a)
E4.29 per 1,000

20(i I

Divorce rate in Maine
correlates with

Per capita consumption of margarine

_ 2008 2009

8lbs

6lbs

4lbs

3.96 per 1,000 2lbs

2000

ref: www.tylervigen.com

2001 2002 2003 2004 2005 2006

-111- Margarine consurned4- Divorce rate in Maine

so please, for the sake of
married people in Maine...

... use only the pure
StUft-

2007 2008 2009

tylervigen.com



49 Some Perspective on the Value Proposition of Tribology Research
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Attempts to define wear & friction regimes remain
50 empirical/phenomenological
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WEAR-MECHANISM MAPS
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WEAR-MECHANISM MAPPING:
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W= fiF/A, , v, Mat. Props., Cnomet

But one such equation is not enough. There
dependent in a different way on the variables.
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plasticity and by brittle fracture.
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51  Yamakov et al. (Nat. Mat. 2004) plasticity mechanisms/grain size criteria
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52 1 Recasting the Yamakov et al. criteria for tribology (& time-dep)
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5 3
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Generalized friction regimes map for metals
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5 4 How can we test theory in one shot? Ramped contact force experiments
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55  We can predict a crossover critical grain size
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56 Crystal Structure of Metals (A Primer)
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57 Crystal Structure of Metals (A Primer)



58 Grain size evolution is a competition (growth/refinement)
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"All models are wrong, but
some are useful."

--George Box

"It is better to be vaguely right
than exactly wrong."

--Carveth Read

• Effective refinement from recrystallization (Zener Et Holloman, 1944; McQueen et al., 1967)

• Known in rocks and ice cores (Derby et al., 1992)

• Recently extended to metals under severe plastic deformation (Pougis et al., 2014)

N. Argibay, et al., J. Mat. Sci. (2017)


