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O Apply multiscale modeling and laboratory experiments to better understand the impacts of host rock properties on gas transport in the
subsurface. Create a bridge to engineering codes used to predict flow and transport in porous media
O Problem. Subsurface gas transport behavior can show significant deviations from conceptual models that do not include the chemical or
physical properties of the host rock.
» Existing gas transport codes: input parameters derived from core samples, assume homogeneous rock phases.
* Transferability of field data from test sites with similar geologic properties such as permeability.
O Solution: Focus on gas properties in pure mineral phases.
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Goal: Obtain a fundamental understanding of gas migration in mineral phases, particularly for which adsorption could affect the transport
properties depending on gas-rock interactions.
Science Question: To what extent do surface effects determine the relevance of pores and pore walls on gas transport in micropores?
Hypothesis. Nonadsorbed (diffuse) species will behave as a bulk fluid or gas beyond a critical distance from the surface.
Three factors that control subsurface gas transport:

* Pore size and fracture surface effects on gas adsorption and transport.

* Gas affinity for mineral surfaces along the transport pathway, including competitive adsorption effects.

¢ The effect of gas-water-mineral interactions on adsorption and diffusion.
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