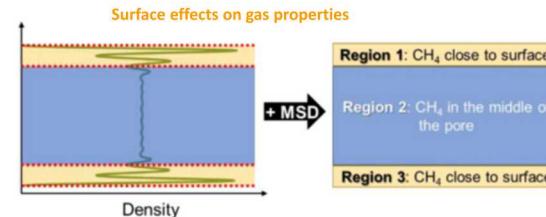

Predicting Gas Transport in the Subsurface

Jeffery Greathouse, PI, Geochemistry
 Guangping Xu, Geochemistry
 Todd Zeitler, Geotechnology & Engineering
 Nancy Brodsky, PM, Geochemistry

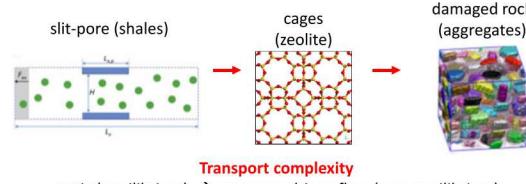
Objective/Problem to Be Addressed



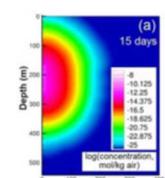
- ❑ Apply multiscale modeling and laboratory experiments to better understand the impacts of host rock properties on gas transport in the subsurface. Create a bridge to engineering codes used to predict flow and transport in porous media
- ❑ **Problem.** Subsurface gas transport behavior can show significant deviations from conceptual models that do not include the chemical or physical properties of the host rock.
 - Existing gas transport codes: input parameters derived from core samples, assume homogeneous rock phases.
 - Transferability of field data from test sites with similar geologic properties such as permeability.
- ❑ **Solution:** Focus on gas properties in pure mineral phases.

Gas properties in pure mineral phases and "synthetic rocks" → Predicted transport in different lithologies (shale, granite, tuff)

Research Strategy


- ❑ **Goal:** Obtain a fundamental understanding of gas migration in mineral phases, particularly for which **adsorption** could affect the transport properties depending on gas-rock interactions.
- ❑ **Science Question:** To what extent do surface effects determine the relevance of pores and pore walls on gas transport in micropores?
- ❑ **Hypothesis.** Nonadsorbed (diffuse) species will behave as a bulk fluid or gas beyond a critical distance from the surface.
- ❑ Three factors that control subsurface gas transport:
 - Pore size and fracture surface effects on gas adsorption and transport.
 - Gas affinity for mineral surfaces along the transport pathway, including competitive adsorption effects.
 - The effect of gas-water-mineral interactions on adsorption and diffusion.

J. Chem. Theory Comput. 2018, 8, 516


Molecular Dynamics (MD) Modeling

Effect of (gas and pore) size interactions on adsorption and transport

Transport Modeling

- ❑ Pressure-induced flow (advection) and diffusion are primary transport modes
- ❑ Partition coefficient (K_d) and diffusion coefficient inputs from Tasks 1 and 3
- ❑ Output will be gas concentration (saturation) profiles as a function of time
- ❑ Stochastic sampling of hydrogeologic input parameters
 - Porosity
 - Permeability

Example of a 2-D concentration profile at 15 days for an initially pressurized subsurface gas source. (Sci. Reports 2015, 5, 18383)

Experimental Measurements

- ❑ Characterization. Pore size distribution, porosity, water content.
- ❑ Measurements
 - Adsorption/desorption (temperatures and water content)
 - Breakthrough
 - Diffusion

Breakthrough Modeling

Bridge between MD modeling and column experiments

Exceptional
service
in the
national
interest