SAND2020- 0692PE

PRESENTED BY
Ryan E. Grant,

Scalable System Software (1423)

~ SandiaNational Laboratories is amultimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, awholly owned
Images courtesy of: Sandia National Lat g \hqjdfj ary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Center for Computing Research

Why Threading?

e MPI use cases continue to evolve
 MPI+X implies the use of threads, e.g. OpenMP

 Potentially thousands of MPI processes on a single node (without
threading)

* Can complicate network resource management

e Sources of concurrency
* Many core architectures
* KNL was many core with 61 cores, now we have 56 core CPUS...

* Increasing core counts
* Traditional CPU design continues to add cores in new generations
* OpenMP
* Can we use MPI inside of OpenMP parallel regions?
* New runtimes
* Tasking runtimes potentially introduce many more concurrent uses of the MPI library

Living in a World with Threads

Desirable/required features:

e Low overhead

* Having many messages and ranks causes message matching/steering
overhead (Endpoints)

* Similar semantics to existing threading (minimal changes)
* Ease of programmability

* Each thread has access to the communication library (no funneling)
* Also ease programmability, e.g. use MPI calls in an OpenMP region

 Communication endpoint granularity matched to the work
* Not too fine, not too coarse, just right...

* Fine granularity at endpoints requires networking resources
* Keeping track of many ranks, caching state related to these ranks, etc.

The problem with threads

* Threads introduce significant issues with concurrency in existing MPI
implementations
e MPI_THREAD MULTIPLE is hard and implementations don’t do it well
* Difficult to support concurrency without encountering conflicts

* Fixing MPI concurrency issues is hard, so multiple approaches
proposed:
* 1) Expose the parallelism (Endpoints)
* Allow individual threads to have ranks in MPI (rank space explosion)
* Exposes lots of complexity, thread addressability on the network
* Uses MPI’s existing threading over entire library approch
 2) Allow for parallelism in a way that doesn’t require MPI to handle it

* New concept: threads can contribute independently to a larger communication operation
inside of MPI, doesn’t require the same synchronization methods

The Coming Thread Storm

Bl 9pt stencil
| I 27pt stencil
L [512 msgs
10* | :
£
2
0 10°
L
o
©
7}
n
]
® 107
S
<
10
10°
2 4 8 16 32 64 128 256
Threads

Data from Measuring Multithreaded Message Matching Misery, EuroPar 2018, Whit Schonbein et al.

The Coming Thread Storm

10

Bl 9pt stencil
. Bl 27pt stencil
10 - 3 512 msgs

106;

Average Time to Drain Queue (usecs)
[}
o
N

10! |

10°
2 4 8 16 32 64 128 256

Threads

The Coming Thread Storm

Average Time to Drain Queue (usecs)

10

=
o
[N

=
o
w

=
o
N

=
o
=

B 7pt stencil
| I 27pt stencil

IxIx1l 2x1x1 2x2x1 2x2x2 A4x2x2 4x4x2 4x4x4 8x4x4 8x8x4
(1) (2) (4) (8) (16) (32) (56) (104) (184)

Decomposition (Receiving Threads)

Message Rate (x106)

0.8 |

0.6 1

0.4 1

Exposing Parallelism in MPI

1

e 08
\‘l ‘, ©
‘ 2
] X
o 06
\ ©
Fl i
[e ey S = / Sl o
\./' V\\' g 0.4
A\ 0
] n
X [}
______________ \\ E
0.2

...............

R G o %Gy LS8y %7590, 5%, 258571,
o R R AR

P=1,T=4 --—-

Message Size (bytes)

Impact of communication concurrency on message rate per second
for P processes and T threads per process on an Intel Phi

Takeaway: Fewer threads =better performance, due to poor MPI multi-threading

James Dinan, Ryan E. Grant, Pavan Balaji, Dave Goodell, Douglas Miller, Marc Snir, Rajeev Thakur, “Enabling communication concurrency through flexible MPI Endpoints”, International Journal of High
Performance Computing Applications, Volume 28, Issue 4, pp. 390-405, November 2014. Impact factor: 1.63

| The Coming Thread Storm

* Trouble is around the corner

* Need a solution that gives us performance more like today
* Don’t want to expand rank space

* Don’t want to blow up the message queue

10 ‘|

GPUs and Accelerators

* GPUs cannot run MPI libraries natively

* Need coordination for network transfers

* But don’t want to setup communications from step one
on the GPU/Accelerator

* Minimize overhead of communication initialization
* Many potential notifications — must be lightweight

* Existing NIC hardware can use triggering
* Need a mechanism in MPI to do lightweight triggering

e Communication can be optimized by host CPU

* CPU can optimize to network before the transfer takes
place

* Optimize number of transfers, when things trigger

11

Allow for Better Parallelism in MPI

e Concept of many actors (threads) contributing to a larger operation in
MPI

e Same number of messages as today!
* No new ranks

* E.G. many threads work together to assemble a message
* MPI only has to manage knowing when completion happens
* These are actor/action counts, not thread level collectives, to better enable
tasking models
* No heavy MPI thread concurrency handling required
* Leave the placement/management of the data to the user
* Knowledge required: number of workers, which is easily available

* Bonus: Match well with Offloaded NIC capabilities
» Use counters for sending/receiving
» Utilize triggered operations to offload sends to the NIC

12

Persistent Partitioned Buffers

* Expose the “ownership” of a buffer as a shared to MPI

* Need to describe the operation to be performed before
contributing segments

* MPIl implementation doesn’t have to care about sharing
* Only needs to understand how many times it will be called

* Threads are required to manage their own buffer ownership
such that the buffer is valid
* The same as would be done today for code that has many threads
working on a dataset (that’s not a reduction)
* Result: MPI is thread agnostic with a minimal synchronization
overhead (atomic_inc)

e Can alternatively use task model instead of threads, IOVEC instead of
contiguous buffer

13

Example for Persistence

* Like persistent communications, setup the operation

int MPIX_Partitioned_send_init(. void *buf, int count, MPI_Datatype data_type,
int to_rank, int to_tag, int num_partitions, MPI_Info info, MPI_Comm comm,
MPI_Request *request);

e Start the request

MPI_ Start(request)

= Add items to the buffer

#omp parallel for ...

int MPIX_Pready(void* buf, int count, MPI_Datatype in_datatype,
int offset_index, MPl_Request *request);

* Wait on completion

MPI_Wait(request)

= Optional: Use the same partitioned send over again

MPI_ Start(request)

‘ Example from MPI-4.0

#define NUM_THREADS 8

#define NUM_TASKS 64

#define PARTITIONS NUM_TASKS

#define PARTLENGTH 16

#define MESSAGE_LENGTH PARTITIONS*PARTLENGTH

int main(int argc, char *argv[]) /* send-side partitioning */

{
double message[MESSAGE LENGTH];
int send_partitions = PARTITIONS,
send_partlength = PARTLENGTH,
recv_partitions =1,
recv_partlength = PARTITIONS*PARTLENGTH,;
int count =1, source=0, dest=1,tag=1,
flag = 0;
int myrank;
int provided;
MPI_Request request;
MPI_Info info = MPI_INFO_NULL;
MPI_Datatype send_type;
MPI_Init_thread(&argc, &argv, MPI_THREAD MULTIPLE, &provided);
if (provided < MPI_THREAD_SERIALZED)
MPI_Abort(MPI_COMM_WORLD, EXIT_FAILURE);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Type_contiguous(send_partlength, MPI_DOUBLE, &send_type);
MPI_Type_commit(&send_type);

if (myrank ==0) /* code for process zero */
MPI_Psend_init(message, send_partitions, count, send_type, dest,

tag,
info, MPI_COMM_WORLD, &request);
MPI_Start(&request);

#pragma omp parallel shared(request)
nu?'_threads(NUM_THREADS)

#pragma omp single
/[* single thread creates 64 tasks to be executed by 8 threads */
partitifgrz_(lnnl}m=0;partition_num<NUM_TASKS;partition_num++)
#pragma omp task firstprivate(partition_num)

/* compute and fill partition #partition_num, then mark ready: */

/* buffer is filled in arbitrary order from each task */
MPI_Pready(request, partition_num);
/*end task*/
}/* end for */
/* end single */
}/* end parallel */
while(!flag)

/* Do useful work */

MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
} /* Do useful work */
MPI_Request_free(&request);

else if (myrank == 1) /* code for process one */
MPI_Precv_init(message, recv_partitions, recv_partlength,
MPI_DOUBLE,
source, tag, info, MPI_COMM_WORLD, &request);

MPI_Start(&request);
while(Tflag)

/* Do useful work */

MPI_Test(&request, &flag, MPI_STATUS_IGNORE);
} /* Do useful work */
MPI_Request_free(&request);

} o
MPI_Finalize();
return O;

15

Works for non-Persistent Comms

* We can have similar functionality with a MPI_Psend

int MPIX_Ipsend(void *buf, int count, MPI_Datatype
data_type, int to_rank, int to_tag, int num_partitions,
MPI_Info info, MPI_Comm comm, MPI|_Request
*request);

* Works just like a regular send with contribution counts

* First thread to reach Psend gets a request handle back
that can be shared with other threads — some MPI
locking

* Setup happens on first call
* Track by comm and buff addr

16

Opportunities for Optimization |

MPI implementations can optimize data transfer under the
covers:

= Subdivide larger buffers and send
data when ready

= Could be optimized to specific
networks (MTU size)

= Number of messages will be:
1 < #messages < #threads/tasks
For a partition with 1 part per thread

= Reduces the total number of

messages sent, decreasing
matching overheads

17 ‘|

Different Approach to Threading

* Partitioned buffer operations can always be consider
as multi-threaded

* Using partitioned sends doesn’t necessarily require
locking in other parts of the MPI library — confine
threading in MPI

* Technically, using partitioned buffers would work
with MPI_THREAD_ SERIALIZED

* If only using partitioned sends, no need for locking in the
library

* No more thread _multiple?

* Not quite, but we can have alternative threading modes
for MPIl, where user management of data is guaranteed
and only inherently thread safe operations are called,
MPI_THREAD PARTITIONED

18

New Type of Overlap

“Early bird communication”

* Early threads can start moving data right away

* Could implement using RDMA to avoid message
matching

Egpetans Theesd 31 0ty | Thiwad K2 Dats vlhlﬂum 'l’hmﬂ#biu
S Trunler Transfe | Teaewler | Tessalur

" i |
Al eaas hiavss caned
ang eead call b jcued |

19

Performance Results

e Still not super tuned, basic library sitting on top of MPI
* Results with 32 threads

Bandwidth (MiB/s)

10000

8000 | --

6000

4000

2000 |

KNL O0ms Compute 0% Noise

—+— 32 threads Finebointsl
- *- 32 threads Multi Send
e- - 32 threads Single Send

Q Q Q QO QO L QO
SRS
o Sl

Total Buffer Size

N

20

Performance Results

e Still not super tuned, basic library sitting on top of MPI
* Results with 32 threads

Bandwidth (MiB/s)

20000

15000 |

10000

5000

KNL 100ms Compute 1% Noise

—+— 32 threads Finebointsl
- %- 32 threads Multi Send
-- o - 32 threads Single Send

Total Buffer Size (Bytes)

— %
P & PP PP
SRS R

Performance Results

e Still not super tuned, basic library sitting on top of MPI
 Results with 64 threads, full overlap, 12X more “bandwidth”

KNL 100ms Compute 10% Noise

120000 ! T T T . L
—+— 64 tﬂreags II\:/inIepgmt(s]I
- *- 64 threads Multi Sen
= 100000 1 o - 64 threads Single Send
m
= 80000
L
5 60000 |
=
Q 40000 |
@
20000 | o
“o- ¢ -0-0-0 -0 -

Q

R XX RO RPRP
’Ql\ b\k ,\GLN Q)b\&l\ 03)6& ’\® b&® ,\Q) b‘® ({/’JCOQ

22

Application Benefit

* Real reactor physics proxy app: SimpleMOC

Percentage Improvement of SimpleMOC with Finepoints

30
25
20
15
10

Percentage Improvement

10% m— |

|

% Noise
0% mm——
1% I
2% I
3%
K%

23

Partitioned Comm. Benefits

* Performance benefit of early-bird overlap
e Better than current fork-join-communicate methods

* Lightweight thread synchronization
* Single atomic

* Same message/matching load as today
* Avoid the coming storm

* A great way to adapt code to use RDMA underneath
» Keeping existing send/recv completion semantics

 Easy to translate code

* May be able to automatically translate send/recv with simple parallel
loops over to psend

24

Takeaways

* Implementation work already done for library

e Library works for OMPI and MPICH so very low effort for base
functionality

* Integration underway for OMPI

* There are things we cannot optimize at the library level because we do not know
enough about the low level network details

* Simplifies Multi-threading work
e Confines multi-threading to a small portion of the library
* Concentrate on performance only in multi-threaded specific calls

* Proposal builds a base to build other future multi-threaded
solutions
* This is essentially the shared-buffer partitioned send here

* Could have some receive-side partitioning when careful about
overheads

25

Thank you

Questions?

Latest Proposal Text: https://github.com/regrant/mpi-standard

~ NS4

Matignal Nuclear Security Administration

A5C

Acknowledgments:

This work was funded through the Computational Systems and Software Environment sub-program of the Advanced Simulation
and Computing Program funded by the National Nuclear Security Administration

: ‘References — more background reading

[1] B. W. Barrett, R. Brightwell, R. Grant, S. D. Hammond, and K. S. Hem- mert, “An evaluation of mpi message rate on hybrid-core
processors,” 2014.

[2] D. T. Stark, R. F. Barrett, R. E. Grant, S. L. Olivier, K. T. Pedretti, and C. T. Vaughan, “Early experiences co-scheduling work and com-
rlréunication tasks for hybrid mpi+ x applications,” in 2014 Workshop on Exascale MPI at Supercomputing Conference. IEEE, 2014, pp. 9—

l3] B. W. Barrett, R. Brightwell, R. E. Grant, S. Hemmert, K. Pedretti, K. Wheeler, K. Underwood, R. Riesen, A. B. Maccabe, and T. Hudson,
‘The portals 4.1 networking programming interface,” 2017.

[4] M. G. Dosanjh, R. E. Grant, P. G. Bridges, and R. Brightwell, “Re- evaluating network onload vs. offload for the many-core era,” in 2015
IEEE International Conference on Cluster Computing. IEEE, 2015, pp. 342—-350.

[5] R. E. Grant, A. Skjellum, and V. Purushotham, “Lightweight threading with mpi using persistent communications semantics,” 2015.

[6] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant, T. Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee, “A
survey of mpi usage in the us exascale computing project,” Concurrency and Computation: Practice and Experience, 2018.

[7] W. Schonbein, M. G. Dosani'h R. E. Grant, and P. Bridges, “Measuring multithreaded message matching misery,” in International
European Conference on Paral el and Distributed Computing (EuroPar), 2018.

[8] K. B. Ferreira, S. Levy, K. Pedretti, and R. E. Grant, “Characterizing mpi matching via trace-based simulation,” in 24th European MPI
Users’ GroupMeeting(EuroMPI). DOI:10.1145/3127024.3127040,2017,pp. 1-8. 10-Jan 2019

[9] S. Levy, K. B. Ferreira, W. Schonbein, R. E. Grant, and M. G. Dosanjh, “Using simulation to examine the effect of mpi message
matching costs on application performance,” Parallel Computing, vol. 84, pp. 63-74, 2019.

LlO] K. Ferreira, R. E. Grant, M. J. Levenhagen, S. Levy, and T. Groves, “Hardware mpi message matching: Insights into mpi matching
ehavior to inform design,” Concurrency and Computation: Practice and Expe- rience, p. e5150, 2019.

[11] R. E. Grant, M. G. Dosanjh, M. J. Levenhagen, R. Brightwell, and A. Skjellum, “Finepoints: Partitioned multithreaded mpi communica-
tion,” in International Conference on High Performance Computing. Springer, Cham, 2019, pp. 330-350.

[12] M. G. Dosanjh, W. Schonbein, R. E. Grant, P. G. Bridges, S. M. Ghaz- imirsaeed, and A. Afsahi, “Fuzzy matching: Hardware

accelerated mpi communication middleware,” in 19th Annual IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing
(CCGrid 2019), 2019.

[13] W. P. Marts, M. G. Dosanjh, W. Schonbein, R. E. Grant, and P. G. Bridges, “Mpi tag matching performance on connectx and arm,” in
Proceedings of the 26th European MPI Users’ Group Meeting, 2019, pp. 1-10.

[14] R. E. Grant and A. Afsahi, “Power-performance efficiency of asgm- metric multiprocessors for multi-threaded scientific applications,”
in Parallel and Distributed Processing Symposium, 2006. IPDPS 2006.

