

Towards Understanding Autoignition Chemistry of Fuel – Air(Oxygen) Mixtures Important for New IC-Engine Technologies Using a Novel High-Pressure Reactor Interfaced with a Synchrotron Photoionization Time-of-Flight Mass-Spectrometer

Arkke Eskola^{1*}, Leonid Sheps², David Osborn², Craig Taatjes²

¹ Molecule Science, Department of Chemistry, University of Helsinki, FI-00560 Helsinki, Finland

² Combustion Research Facility, Mail Stop 9055, Sandia National Laboratories, Livermore, California 94551-0969 USA

Autoignition of a homogenous or nearly homogenous fuel – air mixture during the compression stroke plays crucial role in modern internal-combustion (IC) engine technologies e.g. homogeneous charge compression-ignition (HCCI) and stratified-charge compression-ignition (SCCI) engines, which promise to combine high efficiencies with ultra-low emissions. Ignition timing in these engines is determined by autoignition of a fuel – air mixture during compression and not an external means like a spark in petrol engines or fuel injection in diesel engines. Consequently, autoignition chemistry and reaction kinetics play crucial roles in development of new IC-engine technologies. One especially important but not well-understood regime to understand and predict autoignition is low-temperature combustion, which largely determines when autoignition occurs.

In the first steps of the generally accepted fuel radical oxidation mechanism under low-temperature combustion conditions, a fuel radical adds to O_2 forming RO_2 that can isomerize *via* internal H-atom transfer to form a $QOOH$ radical. This $QOOH$ radical can then decompose to relatively unreactive alkene + HO_2 products or form oxygen heterocycle + OH products in a chain-propagation channel. Under high $[O_2]$ conditions, the carbon-centered $QOOH$ can efficiently react with a 'second' O_2 forming an $OOQOOH$ radical that, after internal abstraction and subsequent dissociation, forms the OH radical and a ketohydroperoxide (KHP). Further decomposition of the labile KHP produces an oxy-radical (QO) and OH , effectively leading to the release of two OH radical chain-carriers per fuel radical, resulting in chain-branching. Chain-branching precedes autoignition. Some decomposition channels of the labile KHP may not lead to chain-branching, complicating the situation significantly.

In this work product formation in photolytic low-temperature (500 K – 700 K) Cl-atom initiated oxidation of *n*-butane and neopentane was investigated using multiplexed photoionization time-of-flight mass spectrometry (MPIMS) employing the Advanced Light Source synchrotron radiation for ionization. Oxidation was initiated by excimer-laser photolysis of a Cl-atom precursor at 193 or 248 nm. Both high (760 – 1550 Torr) and low (4 – 10 Torr) pressure flow reactors were coupled to the MPIMS in order to investigate the effect of pressure and $[O_2]$ on product yields and kinetics. These experiments probe the time-resolved and isomer-specific formation of products in the initial kinetic steps of oxidation. Experimental results obtained using the high-pressure reactor were simulated using NUI Galway C5 model and will be shown and discussed in the presentation.

Acknowledgement

This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (DOE/BES). Part of work of A.J.E. is supported by the Academy of Finland, Grant No. 288377. L.S. is supported by DOE/BES under the Argonne-Sandia Consortium on High-Pressure Combustion Chemistry. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. DOE's National Nuclear Security Administration under contract DE-NA0003525. This work used resources of Advanced Light Source, an Office of Science User Facility supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

^{*}) Corresponding author: arkke.eskola@helsinki.fi