
Kokkos CMake: Build Systems and for Modern C++

Jeremiah Wilke
Scalable Modeling and Analysis, Sandia National Labs, Livermore CA

Kokkos Bootcamp, Santa Fe, NM
1/17/2019

COMITY IMMEI Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energys National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2020-0654PE

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Harvard Business Review: Behavioral Economists

#1 Reasons People Make Bad Decisions

■ Not anticipating unexpected events

■ Indecisiveness

■ Remaining locked in the past

■ Having no strategic alignment

■ Over-dependence (and cyclic dependence)

■ isolation: Components separated so long they can't be brought together

■ Lack of technical depth

Modern CMake wants a clean separation of
'building' and 'using' libraries

■ CMake 3 (first "modern" version) released June 2014

■ Clean separation of building and using (targets and properties) has been

recommended method since release

■ All options should be applied specifically to TARGETS (libs, exes)

■ No more directly modifying CMAKE_CXX_FLAGS

■ No more global setting include directories and compiler flags

■ Your compiler/linker flags should be specific and exact to an individual library

■ All include directories and compiler flags should be clearly defined as:

■ PUBLIC: Flag needed to build Kokkos and needed downstream to use Kokkos

Kokkos headers

Flags like —fopenmp or CUDA flags needed for the backend

Minimum C++ standards

■ PRIVATE: Flag only needed to build Kokkos (not needed to use)

Certain warning flags

Certain optimization flags

What should CMake look like for using Kokkos?

A single CMake function should populate build with all the necessary flags to build
correctly and all the optimization/architecture flags to improve performance

FIND_PACKAGE(Kokkos REQUIRED)

ADD_LIBRARY(target S{SOURCES})

TARGET_LINK_LIBRARIES(target PUBLIC Kokkos::kokkos)

FIND_PACKAGE(Kokkos REQUIRED)

ADD_LIBRARY(target S{SOURCES})

TARGET_LINK_LIBRARIES(target PRIVATE Kokkos::kokkos)

KOKKOS_CHECK(

DEVICES CUDA OPENMP

OPTIONS CUDA_RELOCATABLE_DEVICE_CODE

ARCH VOLTA70

)

I need Kokkos to build — and
anyone using my API needs
Kokkos

I need Kokkos to build — but
using my API does not require
Kokkos

Assert that the Kokkos
configuration found meets
expectations

Installed Kokkos: cmake —DKokkos ROOM<PREFIX>

In-tree Kokkos: add subdirectory(kokkos)

PROFESSIONAL

CMAKE
A PRACTICAL GUIDE

Best 40 dollars
you will spend

Building and using makes "smaller" interfaces
between libraries, solves transitive dependencies

Application should only know
about its direct dependencies

TARGET_LINK_LIBRARIES(Ifpack2)
makes C++ App depend transitively on
KoIM) . R9(erticoilecting and

torwar• ng, e.g. '
KokkosKernels_CXX_FLAGS =

$(LOCAL_CXX_FLAGS) +

TARGEFIti'lqa=igiaghgFrfil%ck2_C)
does not make C App depend
transitively on Kokkos flags (PRIVATE)

Modern CMake (targets and properties) is much
more robust than CMake 2

Hyrum's Law:
With a sufficient number of users

it does not matter what
your public API is.

All observable behaviors
will be depended on by

somebody!

LhitZO: K4I/

CHANGE5 IN VERNON 10.17:
THE CPO NO LONGER OVERHEATS
WHERI ,(00 HOW GOI.1N 5PACEBPR.

OfsiGTMEWEel WRITS:
IRIS OPPFITE BROKE Mt WoRKFLOW!
rtYCONTIRM KEY 15 HARD ToREpat
50 L HOLD spACEBAR Nsitfo, ANC)
CoNFIGURED ErfiRC5 To INTERPREr A

TeMPERITORE. RISE As tOKROC,

AWN WWIES:
THAT1.5 HORRIFYING.

issarifieUsER4 IAMB:
WOK, MY 5ETuP WOW FOR VIE.-
Tog Avfl ANI OPTiON To REINRI3LE
5FFICEEAR HERING.

EVORYCHANGE 13REAKS SotlEME15 WORKFLad.

Modern CMake (targets and properties) is much
more robust than CMake 2

■ Modern CMake shrinks the interface size between two libraries from many,
many CMake variables to a single function call

■ Gives Kokkos the freedom to make interface changes without breaking

downstream codes

■ Modern CMake enables the use of so-called generator expressions that can
implement interesting build logic

■ Example: Library mixing C++/C/Fortan only adds Kokkos flags to C++ files

■ Example: Change preprocessor defines based on build type (debug/release) to

add extra checks/optimizations flags

■ Modern CMake helps resolves conflicting compiler features/options

■ Kokkos C++ standard vs. App C++ standard

■ Optimization/warning flags used to build Kokkos

■ Avoid CMake Gotchas: Type-o's are just empty variables

■ TARGET_LINK_LIBRARIES(Kokkos::kokkos) will crash if Kokkos hasn't been

correctly found or there are type-o's

Modern CMake will enable best usage of modern
C++ going forward to '20 and '23

■ CMake is de facto "standard" build system for modern C++ going forward

■ If you believe Reddit and CppCon

■ Precompiled headers introduced into most recent CMake release

■ No changes to your build system if Kokkos starts using precompiled headers.

■ Single call to TARGET_LINK_LIBRARIES(Kokkos::kokkos) handles all the complexity

of the Kokkos interface

■ C++ modules will (or won't) be coming soon

■ (Probably) no changes to your project build system if Kokkos starts using modules

(code changes, though)

■ Single call to TARGET_LINK_LIBRARIES(Kokkos::kokkos) would handle all the

complexity of the Kokkos interface and module dependency graph

■ Compatible interface properties

■ CMake allows adding arbitrary interface Boolean/String property checks

■ e.g. POSITION_INDEPENDENT_CODE is builtin

Harvard Business Review: Behavioral Economists

#1 Reasons People Make Bad Decisions

■ Not anticipating unexpected events

■ TARGET_LINK_LIBRARIES is smallest possible interface that allows Kokkos to be

most agile without breaking behaviors users depend on (Hyrum's Law)

■ Indecisiveness

■ CMake has well-defined best practices (Professional CMake, Craig Scott)

■ Remaining locked in the past

■ Good luck with modules/precompiled headers using Automake

■ Having no strategic alignment

■ Does full stack modern C++ require program commitment to modern CMake?

■ isolation:

■ Hard to bring tools from Kokkos ecosystem together if different build worlds

■ Lack of technical depth

■ CMake has a learning curve that is steeper than raw Makefiles

■ Make easy problems a bit more difficult if it makes hard problems tractable

Acknowledgments
Sandia National Laboratories is a multimission laboratory managed and
operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S.
Department of Energy's National Nuclear Security Administration under
contract DE-NA-0003525.

41k vAliao,

National Nuclear Security A dministration

Sandia
National
Laboratories

