
SANDIA REPORT
SAND2019-3616
Printed Click to enter a date

Sandia
National
Laboratories

oftware Resilience using Kokkos
Ecosystem
Jeffery S. Miles
Keita Teranishi
Nicolas M. Morales
Christian R. Trott

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico
87185 and Livermore,
California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National
Technology & Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of
their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily
constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency
thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily
state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Offlce of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@osti.gov
http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
Nadonal Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone:
Facsimile:
E-Mail:
Online order:

(800) 553-6847
(703) 605-6900
orders@ntis.gov
haps://classic.ntis.gov/help/order-methods/

ABSTRACT

Due to the cost of hardware failures within mission critical and scientific applications, it is necessary
for software to provide a mechanism to prevent or recover from interruptions. The Kokkos
ecosystem is a programming environment that provides performance and portability to many
applications that run on DOE supercomputers as well as smaller scale systems. These applications
require a higher level of service due to the cost associated with each simulation or the critical nature
of the mission. Software resilience enables an application of manage hardware failures reducing the
cost of an interruption. Two different resilience methodologies have been added to the Kokkos
ecosystem: checkpointing has been added for restart capabilities and a resilient execution model has
been added to account for failures in compute devices. The design and implementation of each of
these additions are described, and appropriate examples are included for end users.

3

4

CONTENTS

1. Software REsilience 7
1.1. Resilient Memory Space 7

1.1.1. File System Memory Space 8
1.1.2. HDF5 File Memory Space 9

1.2. Checkpointing with Kokkos 9
1.2.1. Automatic Checkpointing 10

1.3. Resilient Execution Space 12

References 1 5

LIST OF FIGURES

Figure 1-1. Simple Resilient Memory Space Example 8
Figure 1-2. Illustration of Global Checkpointing 10
Figure 1-3. Listing of the usage of Kokkos::checkpoint 11
Figure 1-4. Graphical illustration of resilient execution space 1 2
Figure 1-5. Resilient Cuda Execution Space 13

LIST OF TABLES

No table of figures entries found.

5

ACRONYMS AND DEFINITIONS

Abbreviation Definition

HDF5 Hierarchical Data Format v.5

MPI Message Passing Interface

RCES Resilient Cuda Execution Space

RCMS Resilient Cuda Memory Space

6

1. SOFTWARE RESILIENCE

Mission critical and scientific applications rely on systems that maintain state information and can
autonomously handle failures due to environmental input and hardware faults. The benefits of
adding resilience to these applications include reduced cost due to having to re-start failed
simulations, increased interoperability by exposing state information, and increased level of service
for mission critical applications. The choice of resilience implementation is determined based on the
cost of a failure relative to the cost of resilience. For instance, in mission critical systems where
failure can result in the loss of expensive equipment or human life, the cost of a failure is the highest
possible. In scientific simulations that produce data for research, the cost of a detected failure is the
expense associated with re-running the simulation; however, when the failures are not detected, the
cost is even greater because of incorrect results leading to fault engineering designs. Applications
that require state information to be passed to different stages or process also gain a benefit from a
resilient architecture. The Kokkos ecosystem provides performance and portability to DOE
applications through abstraction of parallel execution and memory concepts [1]. Through
extensions to the parallel execution model and additions to the memory abstraction both execution
and data resilience will expand the benefits of Kokkos implemented applications.

Two new concepts are added to the Kokkos ecosystem to enable application developers to quickly
provide support for resilience with minimal change to existing or new Kokkos integrations. Failures
can occur within hardware components that affect both the data in memory as well as the results of
program execution. Resilience in program memory is accomplished through the concept of
checkpointing. Checkpointing is defined as storing the internal state of application memory to a
persistent media such that it can be recovered later if a failure is detected. The application can then
restart from the last checkpoint and not loose hours of computations. Using existing parallel
concepts, resilient program execution is accomplished by replicating a parallel code block such that
the results are redundant. With the results from multiple replicas a program can choose the correct
result by each against the others ignoring inconsistent contributions. The two resilience concepts
above are accomplished within Kokkos by adding new spaces to already abstracted concepts.
Checkpointing is enabled by adding a persistent memory space that accepts and receives data from
the other Kokkos memory spaces. Likewise, resilient execution is accomplished by wrapping a
resilient execution space around the parallel execution space.

The remainder of this document describes the details of resilient memory spaces and checkpointing
as well as the resilient parallel execution model. Resilient Memory Space describes persistent
memory spaces within Kokkos; Checkpointing with Kokkos provides examples of how to
effectively add checkpointing to a Kokkos application; Resilient Execution Space provides details
for the resilient execution space. Each section will describe the Kokkos implementation and
provide examples demonstrating use. Note that the initial implementation will be limited to a small
set of supported persistent memory spaces and one resilient execution space. These initial
implementations are intended to demonstrate the concepts within Kokkos as well as test the
modifications necessary to the Kokkos infrastructure.

7

1.1. Resilient Memory Space

The Kokkos data resilience concept starts with a Resilient Memory Space. The Resilient Memory
space is an extension of the existing Kokkos memory space concept, where the data resides in a
persistent memory architecture. Persistent data accessible through a Kokkos memory space allows
applications to easily move data from volatile memory to persistent memory using Kokkos views
and the deep copy function.

1.1.1. File System Memory Space

The simplest form of a persistent memory space is the local file system. A file system memory space
enables an application to quickly move data from a Kokkos View to a local file and from the local
file to a Kokkos View. The following example shows a code snippet illustrating the how to copy
data from host space memory to the file system using Kokkos Views.

typedef Kokkos::LayoutLeft Layout;
typedef Kokkos::default_memory space defaultMemSpace; // default
typedef Kokkos::FileMemSpace filesystemspace; // file system

typedef Kokkos::View<double*, Layout, defaultMemSpace> local_view e;
typedef Kokkos::View<double*, Layout, fileSystemSpace > file view type;

fileSystemSpace::set_default_path("path_to_date);
file_view_type F("file_name", N);
local_view_type A(N);
localview e::HostMirror h_A = Kokkos::create_mirror_view(A);

for (; ;)
Kokkos::deep_copy(A, h_A); // host to device
Kokkos::parallel for (N, [=](const size t j)

Aa) =
});

Kokkos::deep_copy(h_A, A); // device to host

// Consistency check on result (h_A)
if !consistency_check()
Kokkos::deep_copy(h_A, F); // restore data and try again

} else {
Kokkos::deep_copy(F, h_A); // save result and continue
break;
}

}

Figure 1-1. Simple Resilient Memory Space Example

In the Figure 1-1 the application data moves from the host space to the device space before the
code block. Then the results are moved back to host space from the device space before eventually

8

being moved to the file system space. The data must go through the host space because the device
space cannot access the file system. The name associated with the file system view is also used for
the file stored on the local file system. For convenience the file system space uses a default path to
store the files, but the name associated with the view and the file can also include path information.
To make checkpointing more seamless the resilient memory space is further extended to include
management hooks to connect data views with file system views automatically. The details of this
concept are included in Checkpointing with Kokkos below.

1.1.2. HDF5 File Memory Space

Many scientific applications utilize the HDF5 file system for storing persistent data. HDF5
provides flexibility in the data layout within a stored file which may be necessary when storing large
complex files. Using MPI, access to the file can also be parallelized using the HDF5 MPI I/0 API.
Using the HDF5 format also makes the persistent storage compatible with other applications that
use the same format. This property is sometimes necessary for systems that move data between
applications that are implemented in different architectures.

1.2. Checkpointing with Kokkos

In general application checkpointing involves writing multiple datasets to persistent storage at select
stages of a computer simulation. This data can be used to restart the application in the event of a
failure, but it is also useful for post processing operations. Regardless of the need, the checkpoint
data must be store together with a little overhead as possible. The additions to the view and
memory space concepts required to enable this type of checkpoint operation are as follows.

o A tracking mechanism to manage the file space views and the linked volatile memory views

o A mechanism to automatically create file space mirrors of host space views

o Functions to trigger the checkpoint and restore operations

o User provided function to check for consistency in order to determine system failure.

With these additions, the application designer can control the checkpoint operation for multiple
dataset with minimal code additions. The code snippet in Figure 1-2 illustrates this approach.

Views are tracked by the label assigned when they are first created. This constraint requires that all
checkpointed views have a unique name because the view label is also used to store the checkpoint
file. All checkpointed files also use a file system space managed path, which is set using the
file_system_space::set_default_path method. As seen in this example, the create_chkpt_mirror
function connects the memory space view with the resilient space view. This operation is the hook
that informs the underlying implementation which views are to be persisted. Note that the return
type for this operation is the C++ concept "auto". The "auto" type is used for this command
because the view type is constructed in-place with the C++ template defining the
create_chkpt_mirror function. The create_chkpt_mirror function also accepts an override for the
file path which is different from the file space default.

9

typedef Kokkos: :LayoutLeft Layout;
typedef Kokkos::DefaultExecutionSpace::memoiy_space

defaultMemSpace; // default device
typedef Kokkos::FileMemSpace filesystemspace; // file system

fileSystemSpace fs;
typedef Kokkos::View<double*, Layout, defaultMemSpace> local view type;

local_view_type A("view_A", N); local_view_type B("view_B", N);
local_view_type::HostMirror h A = Kokkos::create_mirror_view(A);
local view_type::HostMirror h B = Kokkos::create_mirror_view(B);

auto F_A = Kokkos::create_chkpt_mirror(fs, h_A);
auto F_B = Kokkos::create_chkpt mirror(fs, h B);

fileSystemSpace::restore_all_views(); // restart from existing...
for (; ;)
Kokkos::deep_copy(A, h A); Kokkos::deep_copy(B, h_B);
Kokkos::parallel_for (N, KOKKOS_LAMBDA(const int j)
A(j) = j; B(j) = j*2;

});
Kokkos::deep_copy(h_A, A); Kokkos::deep_copy(h_B, B);

if !consistency_check()
fileSystemSpace::restore_view("view_A"); // restore data
fileSystemSpace::restore_view("view_B"); // restore data

} else {
fileSystemSpace::checkpoint views(); // save result

}
}

Figure 1-2. Illustration of Global Checkpointing

Also needed for the implementation seen above is a mechanism to check the consistency of the data
in an application. Default consistency checking can only impose minimum constrains on the data
stored in the view. Without knowledge of the fmal solution, testing the results of an operation
directly is not feasible. Likewise, it may be too costly to verify the overall solution in shorter cycles.
Thus, the consistency check applied in the context of data resilience is a reasonable solution to verify
data integrity. For example, a view referencing a density field would expect that all values be
positive non-zero numbers. Additionally, a view holding lookup indexes into another view would
expect only values that are valid for the range of the reference view ranks. The checking operation
is either a local function or a functor/lambda enabling a parallel execution pattern in order to
maintain consistency.

1.2.1. Automatic Checkpointing

Automatic checkpointing is a process by which existing non-checkpointed code can adapt a
checkpointing system without extensive overhead. The VeloC library from Argonne and Lawrence

10

Livermore National Labs provides an internal API to enable the checkpointing/restore process [2];
however, integrating his API is manual and not consistent with the Kokkos ecosystem. With
automatic checkpointing VeloC functions to checkpoint data can be hidden from the user by
capturing all the views that are used in a selected scope and providing them to the VeloC API. See
Figure 1-3 below:

// Usage
Kokkos::View< > a("a",);
Kokkos::View< > b("b",);
Kokkos::View< > c("c",);

for (int iter = 0; iter < 100; ++iter)
{
// Will generate "compute stuff/<view>.<iter>.bin" for all captured views
Kokkos::checkpoint("compute_stuff', iter, true, KOKKOS_LAMBDA
Kokkos::parallelfor(N, KOKKOS_LAMBDA(int i){
// Some computation with a and b

});

Kokkos::parallel_for(N, KOKKOS_LAMBDA(int i){
// Some other computation with a and c

);
});
}

Figure 1-3. Listing of the usage of Kokkos::checkpoint

The fundamental operation is the call to Kokkos::checkpoint, which takes a lambda (or functor) as
the parameter. Similarly to Kokkos::parallel_for the checkpoint function introspects captured
Kokkos views. Then each of these views are add to the checkpointed list using the VeloC API. In
the example above, the files compute_stuff/a.<i>.bin, compute_stuff/b.<i>.bin, and
compute_stuff/c.<i>.bin are generated for each iteration i after the lambda is executed. When VeloC
detects a restart, each view is loaded from checkpointed data, and the lambda is not executed.

This model allows users to enable checkpointing making minimal changes to their code. Using a
lambda provides a natural syntactical way of defining the scope, allowing users to group operations.
Most use cases require checkpointing before and after a set of operations, so the grouping
mechanism is imperative.

There are a few limitations to this particular model. Only views are checkpointed, so any variables
that are necessary for computation should be wrapped in a Kokkos view. Additionally, similarly to
Koldcos::parallelfor, checkpoint should not be called within a member function where this is
implicitly captured because views may not be copied by value. Any view not captured by value will
not be checkpointed.

11

1.3. Resilient Execution Space

Execution resilience is a parallel execution space where the policy is replicated thus creating
redundant execution paths. A significant difference between the design of a resilient execution
space and a resilient memory space is simplicity of the user additions required to enable resilient
execution. A resilient execution space is pro-active redundancy meaning the implementation
guarantees the integrity of the results. In the basic process flow of a resilient execution space, the
resilient execution space spawns 3 equivalent internal execution spaces based on the requested
policy. The 3 execution spaces then replicate the incoming data prior to execution and perform a
consistency check on the final result by examining the resulting data from the 3 different execution
paths. A very simple consistency check used in this design is a voting comparison where two or
more results that are the same are taken as the final version. Below is a graphical illustration of this
process.

Figure 1-4. Graphical illustration of resilient execution space

The only requirement on the application to take advantage of the resilient execution model is to
specify a resilient execution space in the outer policy. How the resilient execution space is specified
has yet to be determined, but the method will pass this information to the parallel_for via the
execution policy. The policy may be an execution space that wraps an existing parallel execution
space, or the policy may be an existing policy with new parameters specifying resilient execution.

The implementation overhead for a resilient execution space is more significant than data resiliency
because it involves capturing the views, managing the internal execution space and recombining the
data. Capturing the views is similar to the process used in automatic checkpointing, but instead of
linking two views together, duplicate view are created. Managing internal execution spaces involves
constructing multiple parallel structures and executing each asynchronously. Finally, recombination
of the view data requires a map of typed instances connecting the redundant views because of the
comparison operation. The type information and pointers to the data are captured with the view
and used after executing the policy during recombination.

12

The key aspect of implementing a resilient execution space is replicating views without significant
interface changes in the Kokkos user context. Kokkos views can be implicitly managed by
monitoring view copies when a capturing functor is copied. In most cases, the functor is copied
into the ParallelFor structure which provides a manageable location to control the functor and
subsequent view copies. The resilient version of the execution space simply aggregates multiple
instances of the ParallelFor structure of the basic execution space. The resilient execution
ParallelFor contains only a reference to the functor so that the only copies are those associated with
the internal ParallelFor instances.

Figure 1-5. Resilient Cuda Execution Space

Figure 1-4 illustrates the Cuda Resilient Execution Space (CRES). The CRES works with the
Resilient Cuda Memory Space (RCMS) to manage replicated views. When a const View is copied in
the RCMS, the copy operates the same data as the CudaSpace. The view points to the original data

13

(managed via ref-counting) and only the mapping object is replicated. When a non-const View is
copied in the RCMS, the copy creates a new memory allocation, copies the data from the original
view, and creates an entry in a static map storing pointers to the data and objects containing the type
information. This map of entries connecting duplicated views is maintained so that the data can be
recombined and freed after executing the internal policy.

In the RCES, the ParallelFor creates 3 different instances of the Cuda Execution Space ParallelFor,
which in-turn makes 3 different copies of the Functor and associated views. Note that the Copy of
the non-const View on the device acts like a const View copy pointing to the duplicate's data
because the device global memory must be copied from the host. After the 3 different ParallelFor
closure methods are complete, the CRES ParallelFor uses functions in the RCMS to re-combine the
duplicates back to the original views. After the non-const views are recombined successfully, the
duplicate views are then freed, and the ParallelFor structures are cleared.

This same architecture can be applied to other execution spaces such as OpenMP or HPX; however,
the value of the resilient execution may be limited if hardware isolation cannot be managed. Many
OpenMP implementations for instance provide limited ability to selectively control at runtime which
core each thread is launched. Without the ability to explicitly manage the threads' execution
hardware, isolating thread blocks for redundant execution may be problematic.

14

REFERENCES

[1] H. C. Edwards, C. R. Trott and D. Sunderland, "Kokkos: Enabling manycore performance portability
through polymorphic memory access patterns," Journal of Parallel and Distributed Computing , vol. 74, no. 12,
pp. 3202-3216, 2014.

[2] Argonne National Laboratory, "Veloc," Argonne National Laboratory, 2018. [Online]. Available:
https://veloc.readthedocs.io/en/latest/.

15

DISTRIBUTION

Email—lnternal

Name Org. Sandia Email Address

Technical Library 01177 libref@sandia.gov

This page left blank

17

This page left blank

18

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International inc. for the U.S.
Department of Energy's
National Nuclear Security
Administration under contract
DE-NA0003525.

