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Endogenous Assessment of the Capacity Value of
Solar PV 1n Generation Investment Planning Studies

Francisco D. Munoz, Member, IEEE, and Andrew D. Mills

Abstract—There exist several different reliability- and
approximation-based methods to determine the capacity contri-
bution of solar resources towards resource adequacy. However,
most of these approaches require knowing in advance the
installed capacities of both conventional and solar generators.
This is a complication since generator capacities are actually
decision variables in capacity planning studies. In this article we
study the effect of time resolution and solar PV penetration using
a capacity planning model that accounts for the full distribution
of generator outages and solar resource variability. We also
describe a modification of a standard deterministic planning
model that enforces a resource adequacy target through a reserve
margin constraint. Our numerical experiments show that at least
50 days worth of data are necessary to approximate the results of
the full-resolution model with a maximum error of 2.5% on costs
and capacity. We also show that the amount of displaced capacity
of conventional generation decreases rapidly as the penetration
of solar PV increases. We find that using an exogenously defined
and constant capacity factor based on time-series data can yield
relatively accurate results for small penetration levels (less than
5%). For higher penetration levels (up to 20%), the modified
deterministic planning model better captures avoided costs and
the decreasing value of solar PV. Although our results are not
general, they highlight the importance of accounting for the
variation in both energy and capacity value of solar resources
endogenously in capacity planning models. All numerical exper-
iments are performed using the IEEE Reliability Test System
and 7 years worth of demand and solar data from a utility in
Arizona.

Index Terms—Capacity Value, Solar, Generation Planning,
Approximation Techniques, Installed Reserve Margin.

NOMENCLATURE

Sets and Indexes:

G Set of conventional generators, indexed g

H Set of hours, indexed A

S(X) Set of outage scenarios, indexed s
Parameters:

AV Generator availability

CAP, Nominal capacity of generator [MW]

cC, Annualized capital cost of generator [$/MW-

year]

CPV Capacity value of solar PV [MW]

Dy, Demand level [MW]

Dy« Peak demand [MW]
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EUE Threshold of expected unserved energy, ex-
pressed as a percentage of total demand

FOR, Generator forced outage rate

MC, Marginal cost of generator [$/MWh]

ND;, Demand less solar PV output [MW]

P, Probability of outage scenario

PV, Solar PV output [MW]
RM Installed reserve margin
Variables:
Uhs Amount of unserved energy [MW]
Ty Generation investment decision (binary)
Ygas Generation dispatch level [MW]
X Vector of investment decisions, x4

I. INTRODUCTION

IGNIFICANT reductions in the price of solar generation
S technologies increasgly make it a viable economic alter-
native to supply power at competitive prices [1], to offset
greenhouse gas emissions [2], and to meet renewable targets
at minimum cost for consumers [3], [4]. Advancements in the
last decades have reduced the installed price of small solar
PV sytems from approximately $12 per W in 1998 to less
than $5 per W in 2013 [5], and projections indicated further
reductions in the near future [6]. Installed solar capacity in the
U.S. now exceeds 15,000 MW and, due primarily to growth in
utility-scale PV, is expected to exceeed 20,000 MW by 2016
[7].

Decisions by load-serving entities (LSEs) regarding the
selection of resource portfolios to meet forecasted demand,
maintain the reliability of the system, and fulfill policy ob-
jectives can be complex. Weighing one option over another
involves consideration of several attributes that determine the
economic value of a resource to the overall system [8]. Our
focus in this article is the contribution of solar PV (and other
variable energy resources like wind) to resoruce adequacy
requirements as part of these broader resource planning de-
cisions.

Several methods can be used to assess the capacity value
of varaible energy resources (VER). Probabilistic methods
are among the most accepted because they rely on standard
metrics such as the loss of load expectation (LOLE) or the
expected unserved energy (EUE) [9]. A popular method is the
computation of Effective Load Carrying Capability (ELCC),
which provides a measure of the amount by which demand
could be increased after adding a generator while maintain
the same reliability level [10]. Other reliability-based metrics
include the Equivalent Conventional Power (ECP) and the
Equivalent Firm Power (EFP), but these are rarely used in



practice [11]. Although these metrics can provide very accu-
rate measures of the capacity value of renewable generators,
they require extensive amounts of system data and can be
computationally difficult to evaluate.

Approximation methods, on the other hand, can provide rel-
atively good estimates of the capacity value of time-dependent
resources at a much lower computational cost. Some approx-
imation approaches aim at providing direct estimates of the
ELCC (e.g., Garver’s method [12], an extension of Garver’s
approach to multi-state capacity representation of power plants
[13], and the Z method [14]). Other approximation methods
base calculations on the availability of VER during risky
periods, such as peak load. Milligan and Parsons [15], for
instance, propose approximating the capacity value of wind by
computing the LOLP-weighted sum of hourly capacity factors
over a subset of peak-load hours. An even simpler method
that is used by several ISOs in the U.S. is to average the
capacity factor of a generator over, say, the top 10% load
hours [10]. Milligan and Parsons [15] find that for wind,
these approximations based on time-dependent data provide
sufficiently accurate results. Madaeni et al. [11] compare the
performance of approximation methods to reliability-based
approaches for solar PV and also conclude that capacity factor-
based metrics give good estimates of the capacity value for
this technology. However, they point out that due to the high
correlation between load and solar irradiance, setting a low
threshold of peak hours (e.g., less than top 30%) can result in
underestimation of the capacity value of PV.

An important limitation of these methods is that the installed
capacities of all generators need to be known in advance. It
is challenging to identify the optimal portfolio of resources
if the portfolio of resources has to be specified in order to
estimate contributions to adequacy. Instead, ELCC is estimated
for one technology at a time which foregoes the opportunity
to investigate portfolio interactions when multiple resources
are changed.

An alternative to determining the capacity contribution of
one resource at a time is to establish a portfolio-wide reliability
target, such as LOLE or EUE, and find the optimal mix
of resources that meet the constraint. Examples of capacity
expansion models with such capabilities include the algorithms
described in [16] and in [17], which are now part of the
EGEAS model managed by the EPRI [18]. These capacity
expansion tools find the optimal portfolio of generation in-
vestments that minimize capital and operating costs subject to
a constraint on the maximum amount of expected unserved
energy. By considering both production costs and the full
space of outages, the contribution of solar or wind towards
resource adequacy is done endogenously, without the need for
computing reliability metrics such as the ELCC.

In this article we examine the contribution of solar PV and
wind to adequacy using a probabilistic capacity expansion
model that uses a portfolio-wide EUE constraint. We also
compare the results of the probabilistic model to a simplified
alterniative model that is similarly designed to endogenously
represent the capacity contribution of VER without the full
probabilistic simiuation. We introduce these models in Section
IT and describe the data used in a case study in Section III.

In Section IV we evaluate the impact of using a sample of
all available days in the dataset. We then use the models to
estimate the capacity contribution of VER and find the avoided
cost associated with adding VER to the portfolio. Finally, we
conclude with the specific contributions in Section V.

II. CAPACITY EXPANSION MODELS

In this section we describe the probabilistic capacity expan-
sion model used with our case study. This model minimizes
total system cost subject to a reliability constraint and consid-
ers the full space of generator outage possibilities. We then
describe a standard deterministic capacity expansion model
that enforces resource adequacy through an installed reserve
margin constraint. We introduce a variation to this model
we call the virtual demand curtailment (VDC) model that
endogenously represents the capacity contribution of VER.
In all cases the objective is to minimize the sum of the
annualized capital cost and operations for a representative
year. For analysis purposes we specify the installed capacity
of solar PV in each case. However, the capacity expansion
models could be extended to account for different investment
alternatives in wind, solar, or hydro technologies. Examples
of such implementations are in [19]-[21].

For the sake of simplicity, we ignore ramping constraints,
unit commitment variables/constraints, and transmission lim-
its. Although it has been shown that relaxing unit commitment
constraints could result in biased generation investment port-
folios [22]-[24], the additional cost that result from using such
approximation are rather small [25].! Moreover, transmission
limits are often accounted for in resource adequacy studies
through the definition of reliability areas within decongested
regions. Thus, we believe that the impact of relaxing unit
commitment variables and transmission limits in our analyses
does not affect our conclusions. A simplification with a poten-
tially larger effect on our findings is ignoring ramping limits,
particularly for large penetrations of solar PV due to higher
magnitude of extreme ramp events in the early evening and,
therefore, the need for a more flexible fleet of conventional
generators.” However, studying the impact of these features
on the capacity value of solar PV is beyond the scope and we
leave it as a subject of future research.

A. Probabilistic model

To investigate capacity expansion decisions with solar PV
we use a benchmark probabilistic model that fully accounts
for forced outages in conventional generation and variability
in demand and solar PV. Variability in demand and PV is
accounted for through hourly profiles from historical data.

1Jin et al [25] find the generation investment portfolio found using a simple
economic dispatch model differs from the one found using a detailed unit
commitment simulation. However, the performance of the solution found using
the economic-dispatch based model is only 0.02% more expensive relative to
the one found using the unit-commitment based capacity expansion model.

>The California ISO projects that the total capacity of variable energy
resources (i.e., solar PV, solar thermal, distributed PV, and wind) will be
15,701 MW in 2016. This will result in an increment of system maximum
3-hour net-load ramps from 7,654 MW in 2012 to 10,190 MW in 2016.
Solar resources will be the largest contributors (52%) to maximum 3-hour
continuous net-load ramps in the evenings of the non-summer months in 2016
[26].



The objective of the probabilistic model (Equation (1)) is to
minimize the sum of the annualized cost of investments in
conventional generation and the expected costs of dispatching
those investments to meet net demand. We allow for spillage
of power from solar PV if PV}, > D; and define the net
demand as ND;, = max{D}, — PV}, 0}.

min Y CCyzg+ Y Pu(X) D> MCyygns )

geG seS(x) geG

Subject to constraints:

Zygh,s +ups =ND;, VheH,seS(x) )
geaG

Yahs < AVyns(X)CAPyzy Vg € G,h € H,s € S(x) 3)
> P> un<EUEY Dy @)
seS  heH heH

x4 €{0,1} VgeG )
Yghs, Uns >0 Vg€ G,h € H,s € S(z) (6)

The outage space S(X) depends on the vector of investment
decisions X = [r1,%2,...,2|g|] and defines all the possible
combinations of generator availabilities® for the units that have
been selected for construction (i.e., AV(X)ys = 0 if 24 = 0).
Thus, for a given X, the probabilities of each scenario are
defined as follows.

P(X)s = H(1 — AV,o(X))FORy + AV,s(X)(1 — FOR,) (7)
geqG

Constraint (4) requires the expected unserved energy, which
occurs when the generation capacity that is not on outage is
less than the net demand, to remain below a chosen threshold.
In addition, constraint (3) imposes a limit on the dispatch level
from any unit, which must be less than its capacity if the unit
is available (i.e., AV,,(X) = 1), or equal to zero if the unit
is on outage (i.e., AVys(X) = 0).

Fully evaluating the previously described problem is ex-
ceedingly challenging for realistic numbers of generators as
the number of possible combinations of outages grows ex-
ponentially.* Various methods have been developed to reduce
the complexity of the probabilistic production cost problem
included in the investment planning model without sacrificing
accuracy. These include the convolution of equivalent load
duration curves through the Baleriaux-Booth method [27],
[28], Monte Carlo simulations [29], and bounding techniques
[30], among others [31], [32]. Bloom [16] proves that the
model described by equations (1)-(6) can be separated into an
investment problem (master problem) and a dispatch problem
(subproblem) and solved to optimality using Benders decom-
position. The dispatch problem accounts for all combinations
of forced outages through the Baleriaux-Booth probabilistic
simulation method [27], [28]. Duals from the dispatch problem
with a candidate set of investment decisions are then passed
to the investment problem to identify candidate investments
that further reduce costs (e.g. an optimality cut) or bring the
reliability level closer to the target level (e.g. a feasibility cut).

3In this article we assume that there are no derated states (i.e., AV (X)gs €
{0,1}Vs € S(X),g € Q).

4For instance, on a system with 100 generators there exist 2100 outage
scenarios on each dispatch hour considered in the capacity expansion model.

We implement the Bloom method to solve the probabilistic
model to optimality. This model is our benchmark since it
fully accounts for all possible combinations of forced outages
when making investment decisions and estimating the oper-
ating cost of those units. In addition to the Bloom method
for finding optimal generation investment decisions, we also
employ standard methods for evaluating hourly unmet energy
and Expected Unserved Energy (EUE) (as detailed by Fockens
et al [33]), or Loss of Load Probability (LOLP) and Loss of
Load Expectation (LOLE) (as detailed in Billinton and Allan
[9D.

B. Deterministic model

In many instances the enumeration of forced outages in the
probabilistic model introduces too much complexity for typical
capacity expansion decisions, especially when considering
transmission constraints. A standard approximation method
is the use of a deterministic economic dispatch problem.
Deterministic planning models enforce reliability requirements
through an installed reserve margin constraint and derate the
capacities of conventional generators based on their forced
outage rates [34]. Examples of planning models that utilize
these approximations are described in [21], [34]-[39].

We formulate the deterministic planning model as follows.

min Z CCyzxg + Z MCgygn ®)
9eG geG

Subject to constraints:

> Ygns=ND, VheH ©)
geqG

Ygns < (1 — FOR,)CAPyz, VNgeG,heH (10)
ZCAngg 4+ CPV > (1+ RM)D- an
geG

x4 €{0,1} VgeqG (12)
Yghs >0 Vge G heH (13)

Note that in constraint (10) the capacity of generators is
derated in proportion to the expression 1 — FOR,, as in
[34]. Constraint (11) enforces an installed reserve margin
RM with respect to the peak demand, Dj«. The capacity of
all conventional generators counts 100% towards this reserve
margin. However, only a fraction of the installed capacity of
solar PV, denoted C' PV, counts towards the reserve require-
ment. The evaluation of C' PV, which is often replaced by the
estimate of the ELCC, is nontrivial for two reasons. First, the
capacity value of solar decreases rapidly and nonlinearly as
penetration increases [40]-[42]. Second, even if the capacity
of solar PV is known in advance, evaluating the ELCC for the
resource requires knowledge of the capacity of all conventional
generators (i.e., knowing the vector X'), which are actually a
variable in capacity expansion studies.

Existing deterministic capacity expansion models and re-
source adequacy studies use different assumptions to account
for the deterioration of the capacity value of solar at higher
penetration levels [8], [43]. Some ISOs use a constant pre-
determined value to determine capacity payments for all new
solar resources [8]. This is the same simplification used in
the capacity expansion models IPM [37] and PLEXOS LT



[39]. Other models account for the variation in the capacity
value of solar indirectly by, for instance, a requirement of
backup conventional generation that changes with penetration
levels [44]. However, the capacity value of solar in all of these
models and studies is exogenously defined, which could over
or underestimate the need for firm capacity to meet resource
adequacy targets. A potentially better approximation is the
one used in the ReEDS model [45]. Since ReEDS is solved
sequentially, using a rolling horizon, the model computes
the updated estimates of the average and marginal capacity
contributions of solar in between periods. Nevertheless, since
the parameters used within periods are constant and do not
depend on the investment variables, it is not clear whether
such approximation will provide the right economic signals
for large additions of solar PV.

C. Virtual Demand Curtailment model

A trivial modification to the installed reserves constraint
(11) is to enforce the reserve margin requirements with respect
to the peak net demand. This approach is used in the SWITCH-
WECC model [46] and it does not require the specification of a
value (or function) C'PV for the capacity value of solar. Since
the peak net demand is not necessarily known in advance—if
the installed capacity of solar PV is variable-this modification
requires enforcing the installed reserve margin on an hourly
basis. Here we enhance this formulation by adding variables
vy, that allow for small violations to the modified installed
reserve constraint (15).

> CAP,zy > (14+ RM)(NDy, —vs) VheH (14)
geG
> u<s> Dy (15)

heH heH

The v variables can be interpreted as virtual demand
curtailments. We control the maximum amount of virtual
curtailment through the parameter § on equation (15), which is
comparable to the expected unserved energy constraint (4) in
the probabilistic model. The value of ¢ is, however, chosen
independently of the EUE target used in the probabilistic
model. The purpose of relaxing some of the modified in-
stalled reserves constraints is to prevent low-probability events
from imposing too conservative minimum required investment
levels in conventional generation.’ In summary, the virtual
demand curtailment (VDC) model replaces the constraint
from the deterministic planning model (11) with the modified
installed reserve constraint (14) and the maximum virtual
demand curtailment constraint (15).

III. TEST-CASE AND DATA

For the conventional generation investment options we use
the 32 generators described in the IEEE Reliability Test
System [9], which total 3,405 MW of potential generation

SNot relaxing constraint (15) can result in a model that is extremely
sensitive to the selection of representative dispatch hours. For instance, if
the parameter J is set to zero, as in [46], a cloudy day in the dataset could
drive excessive investments in conventional generation. In that situation the
model will be ”blind” with respect to the contribution of solar PV towards
resource adequacy if PVyx = 0 and NDpx = Dp=

capacity. Investment cost and operating costs were updated to
reflect current estimates based on EIA data.

We developed an hourly dataset of load, PV and wind
generation based on information available for Arizona Public
Service. Historical hourly loads were collected from Ventyx
Velocity Suite. Inter-annual load growth trends were removed
from the data by projecting all years to 2012 based on the
long-term growth trends. The remaining load data still has
inter-annual variation due to weather and other factors, but
not due to long-term load growth. Historical solar generation
was estimated through historical satellite observations in the
National Solar Resource Database (NSRDB). The satellite data
was converted to PV production data using the NREL PV Watts
model assuming an AC to DC derate factor of 0.83. The
individual sites and orientation of PV (azimuth, tracking/flat,
etc) were based on previous information collected from APS
[47]. Based on the available load and PV data we were able
to create a time-synchronized dataset that covers seven years:
2003-2009. We also created a time series of wind data based
on a set of 30 MW wind sites in the Western Wind and Solar
Integration Study (WWSIS) dataset for 2004-2006 [48]. For
the remaining years we repeated the 2004-2006 wind dataset.
As a results the wind data is not fully time synchronous with
the load and PV data over the seven year period, though wind
is not the primary focus of our analysis.

We scale the load data such that the peak load hour over
the full seven year period is equal to 1500 MW. With these
assumptions choosing to build roughly half of the generation
investment options in the IEEE RTS would meet this peak
demand.

IV. RESULTS

In this section we summarize the results from a range of
numerical experiments using the probabilistic, deterministic,
and VDC planning models. In Section IV-A we study the
accuracy of two hour selection algorithms. In Section IV-B
we compute the contribution of solar PV towards resource
adequacy using the probabilistic model, the VDC model, and
a capacity-factor based approach. Section IV-C discusses the
implications of the decreasing marginal capacity contribution
of solar PV. Section IV-D describes the reduction in utility
costs as a function of solar PV penetration and highlights
the importance of using a model capable of computing the
capacity of the resource endogenously. Throughout Sections
IV-C - IV-D we also display results for a wind site as a point
of comparison to the results with solar PV.

All models were implemented in the Coopr open-source
Python library [49] and run on a 48-core workstation with
512GB of RAM. Solution times for the probabilistic method
range from 2 hrs. for the full 7-year dataset to 131 sec. for a
50-day sample.

A. Comparison of hour selection methods

For all models, the computational burden increases with the
length of the load, PV, and wind data. Here we investigate
two approaches for reducing the length of the time series:
daily sampling and clustering.

The daily sampling algorithm selects a sample of days that
minimizes the sum of the square differences of the means,



standard deviations, and correlations between the sampled
days and the full dataset for 10,000 random replications. This
method has been used in [50] and in [51]. We examine the
results of samples of 1 up to 300 days.

The clustering approach uses the k-means algorithm. This
method groups all hours of the dataset into & different clusters
trying to minimize the distance between each observation and
the centroids. The k-means algorithm has been used as a
scenario reduction approach in [51], [52], and [53]. We use the
centroid of each cluster to create representative hours, which
are weighted in the objective function in proportion to the
size of each cluster. We examine the effect of considering 5
to 2000 clusters and also consider a variant of this method by
forcing the top 10 peak load hours to be included as individual
clusters.

As a benchmark, we find the optimal investment decisions
with the seven years of hourly data using the probabilistic
model with 100 MW of PV (roughly 4% PV penetration on
an energy basis). We chose an EUE reliability target of 0.01%
of the annual demand.® The total installed capacity of the
22 selected conventional generators is 1527 MW with a total
cost of $339.4 million/yr (composed of $184.4 and $150.0
million/yr in investment and operational costs, respectively).

We assess the impact of only using a sample of hours (or of
using the clusters) by comparing the capacity expansion model
decisions and costs with sampling to the capacity expansion
model decisions costs with the full dataset. Figure 1 shows the
total capacity and cost from the decisions using sampled days
divided by the total capacity and cost determined with the full
set of seven years of hourly data. Our results suggest that using
a sample of less than 10 days is not sufficient to accurately
capture the variability of demand and solar resources. As
shown in Figure 1, a small sample can bias the investment and
operating costs by more than 20% with respect to the results
of the full dataset. However, as more days are included, the
results found using a sample of days quickly converge to the
results with the full seven years of data. A sample of 50 days
yields investment decisions and costs that are within +/- 2.5%
of the results with the full seven years of data.
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Fig. 1. Capacity expansion decisions and costs of the probabilistic model
using sampled days normalized by the results with the full seven-year dataset.

5An EUE target of between 0.01% to 0.005% led to a reserve margin of
about 9% to 12% of the median annual peak demand.

We similarly evaluate clustering and constrained clustering
with peak hours. The minimum number of clusters required
to be within +/- 2.5% of the result from the full sample is
more than 2,000 (83 days). Including the top 10 peak demand
hours allows 1000 clusters (42 days) to closely replicate the
investment decisions from a full seven years of data (within the
+/- 2.5% tolerance). This difference in the performance of the
clustering algorithm is because the regular k-means method
tends to average out the peak hours with some non-peak
load hours, which leads to too little investments in generation
capacity.’

For the remainder of this analysis we conduct all analyses
using the 50 sampled days.

B. Contribution of solar PV towards resource adequacy

The core of any method to assess resource adequacy is
to identify periods with high risk of not meeting demand.
These periods of high risk, which typically occur during
times of high demand, are evaluated endogenously in the
probabilistic capacity expansion model and the VDC model.
Figure 2 characterizes risk in each hour on a high demand day
using three different metrics: the expected energy not served

per hour (U, = > Psups) and the loss of load probability
SES
(LOLP).® The risk metrics for the Demand profile (solid blue

line), are based on the generation investments chosen by the
probabilistic model without any PV (or wind). As expected,
all three metrics show that the periods with high risk of having
unmet demand are between noon and 8pm.

We next add 500 MW of PV (roughly 20% PV penetration
on an energy basis) and re-solve the probabilistic model. The
addition of PV reduces the net demand in the afternoon (solid
red line). Since the capacity expansion with and without PV
both meet and EUE target of 0.01% of demand, the annual
risk level stays the same. The periods of high risk, however,
shift from the afternoon (without PV) to the early evening
(with PV), when solar resources are no longer producing. It
is this shift in high-risk periods to the early evening, depicted
through the Uj, and LOLP metrics in Figure 2, that causes
the deterioration in the capacity value of solar PV at higher
penetration levels [42].

Since PV production occurs during periods of high risk, the
addition of PV contributes to meeting the resource adequacy
constraint. Here we estimate the contribution of PV (or wind)
towards resource adequacy by finding the total installed ca-
pacity chosen by the probabilistic capacity expansion model
with increasing deployment of PV (or wind). The difference
between the installed conventional capacity found for demand
alone and the installed capacity with the addition of PV (or

7As a sensitivity analysis we also forced the inclusion of the peak days in
the sampling algorithm. However, we find that fifty samples without the peak
days provides more accurate results that 50 samples with the peak day. For
this particular case, including the peak day in the samples led to investment
decisions that over-built the system.

8Note the risk metric is a scaled representation of U; and LOLP. The
scaling factors were chosen such that each metric would be visible on the
same axis.
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Fig. 2. Periods of high risk with generation investments based on the demand
or net demand (with 20% PV).

wind) is referred to as the capacity contribution.’

As expected, we find that the capacity contribution of solar
(as a fraction of installed capacity of PV) decreases rapidly
for high penetration levels. For instance, Figure 3 shows that
the first 5% of solar penetration (125 MW of PV) displaces
50 MW of conventional capacity. However, since the high-
risk periods shift to the early evening for higher penetration
of solar PV, increasing the capacity of solar PV to meet 20%
of the annual demand (500 MW of PV) with this resource
would only displace 128 MW of conventional generation.

A simple approach to estimate the capacity value of solar
PV is to average the capacity factor of PV generation among
the top 10% load hours [11]. This method is justified because
the periods of high risk are correlated with periods of peak
demand. However, for large penetration levels this method
does not account for the shift of the high-risk periods shown in
Figure 2. The dashed green line shows the projected capacity
value of solar PV approximated by averaging the capacity
factor of solar PV based on this method. We find that this
capacity-factor based approach can provide a relatively accu-
rate estimation of the capacity contribution of solar towards
adequacy for small penetration levels (less than 5%). However,
using this approach for higher penetration levels (more than
10%) could significantly overstate the contribution of solar
PV. For a 20% penetration level this method predicts that
solar PV could displace 215 MW of conventional generation,
which is nearly double of the true value computed using the
probabilistic model.

On the other hand, we find that the VDC model described in
Section II-C can accurately replicate the capacity contribution
of solar PV (in terms of magnitude, change with penetration,
and difference between PV and wind) found with the proba-
bilistic model.!°

9As a validation experiment we computed the ELCCs for solar and wind
for all penetration levels. The capacity contribution measured using either
approach, the ELCC or the amount of displaced conventional generation, yield
the same results.

10Replicating the behavior of the probabilistic model with the approxima-
tion model depends in part on the selection of the reserve margin and 4. In this
case we chose parameter values that produce a good match to the probabilistic
model for the no PV case. The reserve margin is set to 20% and ¢ is 0.1%.
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Fig. 3. Capacity contribution of PV or wind with increasing shares based
on the change in investments found using the probabilistic model or the
approximation model.

C. Marginal Capacity Contribution

The decision of how much solar PV to add in a capacity
expansion model depends on the impact that solar has on the
total system cost. In general terms, the investment planning
model will add solar capacity until the marginal benefits of
this resource equal its marginal cost. One contributor to the
marginal benefits of solar is the marginal capacity contribution.
To illustrate how the marginal capacity contribution of solar
changes with penetration, we fit a 3rd or 4th order polynomial
to the capacity contribution line in Figure 3, and then took the
derivative of the fit to find the marginal capacity contribution,
depicted in Figure 4.
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Fig. 4. Estimated marginal capacity contribution of PV and wind.

The marginal capacity contribution of PV found by both the
probabilistic and the approximation method is above 40% of
the nameplate capacity at low penetration levels (less than 2%).
However, it falls below 20% for penetration levels above 15%,
approximately. In contrast, the marginal capacity contribution
of wind is below 20% for low penetration levels and only
decreases to 10% for penetration levels above for 15%. This
result highlights that taking into account the decreasing capac-
ity value of VERs in generation planning studies is particularly
important for solar PV.

We find that the most significant deviation of the results
from the probabilistic model and the approximation method
occurs with high penetrations of PV (>15% penetration).
The approximation method shows that the marginal capacity
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Fig. 5. Avoided total costs with increased PV and wind with both the

probabilistic model and the approximation method

contribution decreases toward 0% at penetrations above 20%
whereas the probabilistic models continues to show a larger,
though still low, contribution. In contrast, the capacity-factor
based approximation (dashed green line) yields a constant
marginal capacity value that is only accurate for extremely
low penetration levels.

D. Reduction in Utility Costs

The capacity contribution of solar is important in reducing
investments, as is the reduction in the need to dispatch
conventional generation. The combination results in the total
avoided costs of PV. Here we calculate the total avoided costs
as the difference of total system cost in the no PV case and
the case with PV, using both the probabilistic model and the
approximation method.!" The same analysis was also done for
wind as a comparison.

Figure 5 shows the results for a range of VER penetration.
The curves are non smooth due to the lumpiness of generation
investment alternatives. Again, the VDC model yields almost
identical estimations of avoided costs for solar PV for the
whole range of penetration levels analyzed.

Here we measure effect of the inaccuracy of the capacity-
factor based approximation (deterministic method) discussed
in Sections IV-B and IV-C in economic terms. For penetration
levels below 10%, the deterministic method provides an accu-
rate estimate of the avoided costs for both solar PV and wind.
However, since at larger penetration levels the deterministic
method overstates the capacity value of solar PV (Figure 3),
the estimates of the avoided costs computed using this method
are biased upwards. For instance, at 20% penetration, both
the probabilistic and VDC models estimate that the avoided
costs of solar PV are $74 M/year. However, the deterministic
approach overstates this value by 19%.

V. CONCLUSIONS

In this article we show that the contribution of PV (and
wind) to maintaining resource adequacy can be represented
in capacity expansion models endogenously. Our main con-
tributions are a threefold. First, we perform the first analysis
of the capacity contribution of solar PV (and wind) using a

Note that the avoided costs only take into account the economic benefits
of adding the resource and not its capital or operating costs.

probabilist capacity expansion model that considers the full
space of generator outages and that can be solved to optimality.
Second, we compare the accuracy of existing deterministic
planning methods to predict the economic value of solar PV
(and wind). Third, we propose a variant of the deterministic
reserve margin planning approach that can reasonably replicate
the behavior of the more detailed probabilistic model over a
range of penetrations of solar PV (and wind).

We find that daily or hourly sampling techniques can be
used to reduce the computational complexity in capacity ex-
pansion models. Our results suggest that only a small fraction
of hourly data (50 days) is needed to replicate the results of the
probabilistic model using a seven-year dataset (2557 days), but
which is more than what it is often used in capacity expansion
models.

With the probabilistic model we confirm that the capacity
value of solar PV decreases rapidly as penetration increases.
The contribution of PV to resource adequacy is high (>40%
of the nameplate capacity) at low penetration levels, but that
the marginal contribution declines with increasing penetration.
The decline was due in part to the periods of high risk
shifting from the late afternoon to early evening. In contrast,
a capacity-factor based approach (deterministic model) sig-
nificantly overestimates the contribution of solar PV towards
resource adequacy. For a 20% penetration the capacity-factor
based approximation estimates that the capacity value of solar
is nearly double (215 MW) its true contribution (128 MW).
This discrepancy is directly reflected in the estimated avoided
cost for the same penetration level. The deterministic model
overestimates the avoided cost of solar by 19% with respect
to what is computed using the probabilistic model.

Due to the importance of contributions to resource adequacy
to the overall economic value of PV, it is important that
capacity expansion models carefully represent this change
in contribution with increasing penetration. The VDC model
presented here is one promising approach that does not signif-
icantly increase the computational burden. However, for small
penetration levels the capacity-factor based method provides
a reasonably accurate estimate of the capacity contribution
and avoided cost of PV. Thus, in the context of identifying
cost-effective portfolios of generation, the VDC model (for
a range of VER penetrations) or deterministic model (for
low penetrations) could be help planners identify high quality
investments strategies. Though it is important to recognize
that they do not replace detailed probabilistic production cost
simulations.
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