SAND2019-3788 National

Laboratories

SANDIA REPORT @ Sandia

Printed April 4, 2019

SIERRA Code Coupling Module:

Arpeggio

User Manual — Version 4.52
Samuel R. Subia, James R. Overfelt, David G. Baur

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185
Livermore, California 94550

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology &
Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government.
Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its
use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or
subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States
Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from

U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62

Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech
Available to the public from

U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: https://classic.ntis.gov/help/order-methods

ABSTRACT

The SNL Sierra Mechanics code suite is designed to enable simulation of complex multiphysics
scenarios. The code suite is composed of several specialized applications which can operate either in
standalone mode or coupled with each other. Arpeggio is a supported utility that enables loose
coupling of the various Sierra Mechanics applications by providing access to Framework services that
facilitate the coupling. More importantly Arpeggio orchestrates the execution of applications that
participate in the coupling. This document describes the various components of Arpeggio and their
operability. The intent of the document is to provide a fast path for analysts interested in coupled
applications via simple examples of its usage.

CONTENTS

Contents

List of Figures

1. Introduction

L
1.2,
1.5
L.
L3
1.6.

L7

Coupled Physics Approacheso i i
Sieera Megharilst oAl . . oxur: snnms txmnrismnny vemus EveEry comn sumATL s 0
Cominniileation af Data (Tratsfer Serviees) . o 5o s snwas sanss ssnmis sanss sasnns sous
Solution Control
CORPIE DITETIEE » s cnunns saumes cauns 19Wsss SEFNI CRAET FRARES RN SRR S 85D
e Wl RSB . oo cosnis s sims s o h s s § s e

Outline of the Manual.ot

2. Getting Started

Z.1
3.8
z.5
2.4.
2.5,
2.6.

2.7

3. Model
e
352,

3.3.

Setting The Environment-Users External to SandiaLabs...............
Serting The Envirenment-Usetsat Sandia Tabs . ; covvsvosns sssons snons ssmnnssnns

Running Arpeggio.

Definition
Model OVEIVIEW . . oottt e e e e e e e e
Finite Element Model oo

Parameters For Blockot

10
ot
I

2
15

16

17
7
17
7
18
19
25

25

3.4.

3.5.

3.6.

3.7

4.1

4.2.
43
4.4.
4.5.
4.6.
A7,
4.8.

4.9.

5.IL.

5.2.

SUBCPElE » ccsms vanmss somms cavmss comns saRME T ABERY (ARSI FFUEES ARHES CANHGS FH 0
Sequential
TNItIAliZE . o oottt e

Parameters For ..ot

. Transfer Reference

(@ 27<) 2 11"/ PP

T2 21 < P

. Input Output Region Reference
6.1. Input_Output Region Overview i i
Ga. Input OGrpos REBIGH «us: sonmes samns sumars summs suess s 45883 sMMAS EBEET 4098
. Examples
g 8 One-Way Coupling From File. oo o i
72. One-Way Coupling Using Transfer From Different Mesh - ... c cowvnscomms sonnsssans
v KineWay Coupling Using Thansler : c s cusaniianss ronsssomnns sanns iasans cama
7.4. Two-Way Coupling With Transfer............ oo it
7.5. estack Regression Test

50
50
60
61
65
70
74
78
82

83

92
922

98

108
108

109

114

7.6, tvRegression Testiiiiii i 152
Bibliography 157

Index 159

LIST OF FIGURES

Li-1. Loose Coupling Schematic (Z Scheme). o oo 10
. Slerrs Meehumles IS IVEES. « cxuwes suoss smonsronsss sonns semmes sunns sumnes euss 1
141 Oneway Loose Coupling At Same TMeESIe: - oo snsns covms s snnns snaes sonsns cnas 13
1.5-2. Deferred One-way Loose Coupling At Same Time Step. ...t 14
1.5-3. One-way Loose Coupling with Subcycling Schematic. 14
1=l Two-way Loose Coupling SCHEMAE, « 1o wss sumessswuss smmusssnmas sumas sunens smas 15
1.6-1. Thermal-Mechanical With Thermal One-Way Element Death. 16
1.6-2. Thermal-Mechanical With Two-Way Element Death.............. 16
2.4-1. Schematic UML class diagram for the Expression subsystem.................. 19
s.0-1. Valid Transfer Operationsoiuuiiiiiiiiiii i 93
s.1-2. Invalid Transfer Operationo 94

1. INTRODUCTION

The SNL Sierra Mechanics code suite is designed to enable numerical simulations of complex
multi-physics scenarios. The code suite is composed of specialized applications which can operate either
in standalone mode or in a coupled mode with other Sierra Mechanics applications. Arpeggio is a
supported utility that enables loose coupling of the various Sierra Mechanics applications by providing
access to Framework services that facilitate application coupling. Utilizing these services Arpeggio is able
orchestrate the execution of applications that participate in code coupling. This document describes the
Framework services used by Arpeggio for coupling and the inter-operability of these services for
coupling of Sierra SM and Sierra TF applications. Through the use of simple examples, the document
also provides a resource for analysts interested performing in coupled-physics simulations.

1.1. COUPLED PHYSICS APPROACHES

When modelling tightly-coupled physics, the numerical representation of all PDEs within a region of
interest are often combined a single system matrix and solved using a nonlinear solution strategy specific
to the application. This approach to solving coupled-physics problems is available for a limited set of
physics in the Sierra Mechanics TF module. Relaxing the notion of tight-coupling one could
alternatively obtain solutions for each of the physics independently and patch the individual solutions
together in some prescribed manner, this is the essence of loosely-coupled physics simulations.

The numerical analysis community has long recognized the need to include results from various physics
in a single simulation. However, the fact that most application codes are often developed around single
physics often limits the extent to which coupled-physics simulations can be achieved. Early approaches
to coupled-physics simulations often simplified the coupling by level of importance by assigning
primary physics and secondary physics roles. Here the primary physics depended upon secondary
physics and the dependence of secondary physics upon primary physics was deemed less important.
Under this assumption coupled physics simulations can be realized by first performing independent
simulations of the secondary physics followed by a simulation of the primary physics utilizing results of
the initial simulation. Figure r.1-1 illustrates the coupling approach for a quasi-static solution step from a
state ¢, to state ¢, 1. Broadly speaking, loose-coupling strategies are classified as Z-methods, since a Z
describes the basic pattern of data communication between the physics applications. The one-way view
of loosely-coupled physics lends itself to file-based approaches where single state results are obtained on
a common spatially meshed discretization. Here the problem solutions are generally obtained at cell
vertices (nodes) or cell centers (elements). Quite often each physics simulation lends itself to a particular
spatial discretization and this gave rise to the introduction of an intermediate mapping step whereby the
secondary physics results were mapped onto the primary physics discretization as in the MAPVAR
utility [1]. For transient coupled-physics simulations best results are obtained when sharing a common

9

th th+1

Secondary Physics | -

Primary Physics [———+

Figure 1.1-1.. Loose Coupling Schematic (Z Scheme).

time discretization but in many cases this is impractical and the coupling is based upon closest-time
matched solutions or interpolations of solutions in time.

1.2. SIERRA MECHANICS COUPLING

Sierra Mechanics physics applications deal with solving PDEs on a physical geometric domain, a
Region. In defining a coupled physics problem, users configure one or more Regions corresponding
to some particular physics. Each Region considers one or more PDEs to be solved on either the entire
input mesh or on a portion of the mesh. When the Region physics are coupled one can elect whether
to solve the physics in a tightly-coupled manner in a single application or by loosely coupling individual
Region results. Here we note that for loose coupling the physical geometry and spatial discretization
must overlap but need not be identical in each of the participating Regions.

In the context of Sierra Mechanics, loosely-coupled physics nonlinear solutions are obtained on each of
the Regions and then combined to form an overall coupled solution. Not surprisingly there are
numerous ways one can approach loose-coupling since different strategies are appropriate to different
problem sets. That is, the solution for one Region may depend strongly upon the solution in another
Region but not vice-versa (one-way coupled), or the the solution for each Region may depend upon
the solution the other Region (two-way coupling). The goal of Sierra Mechanics is to provide services
which enable one to easily perform variants of a multi-physics coupling.

Some considerations which are relevant to the loose-coupling solution strategies include
* Communication of data from one Region to another Region (Transfer),
* Initialization of the individual Regions,
* Solution for the individual Regions (Advance),
* Time stepping or pseudo-time stepping for the individual Regions,
* Time synchronization of participating Regions,
* Conditional convergence,

I0

* Drive mesh adaptivity,
* Sequencing for all of the above.

Within Sierra Mechanics communication of data between application Regions is handled by the
Framework Transfer service and all aspects of solution behavior are managed by another Framework
service, Solution Control. Mesh Adaptivity is managed through the Percept library.

1.3. COMMUNICATION OF DATA (TRANSFER
SERVICES)

In Sierra Mechanics application data is generally associated with nodes, elements, faces or edges of a
meshed discretization as shown in Figure 1.3-1. A loose-coupling between applications implies the
dependence of one application on data supplied from some external source. Since the physical location
of data on the external source may or may not map geometrically onto the the other application
solution, provisions must be made to perform this data mapping in a flexible manner. It is important to
note that these mappings can be accomplished both for the case of different mesh and different element
types. Within Sierra Mechanics this responsibility is handled by Framework Transfer services. Here it is
important to note that Framework Transfer services enable the external source data to include element,
face and edge data as well as nodal data.

Node Element Face Edge

Figure 1.3-1.. Sierra Mechanics Data Types.

1.4. SOLUTION CONTROL

The Solution Control subsystem controls the execution of coupled multi-physics applications. Solution
control provides two basic operations for controlling the solution of a multi-physics system by defining
the order for object execution and by setting parametric values on the controlled objects at the proper
time. For transient problems this approach enables the applications to easily transition through the
designated time periods. The same system can also service steady-state simulations by treating them in a
sequential manner. The solution controllers are able to initialize Region data, set parameter values,
advance Regions, execute transfers, call events and send notifications based on the input file
specifications.

II

1.4.1. Region Initialization

When beginning execution, all applications require some baseline initialization operations at the
Region level. When performing some loose-coupling simulations the dependence of data may may
require that initialization of data be performed in some specific manner. Here the manner in which
initialization occurs is determined by how the application solution variables are defined and the
application code implementation of initialization. As an example for a thermal-mechanical coupling
one might initialize the reference temperature state in the solid before any temperature change in the
solid were allowed to occur. Solution Control provides a means for performing various types of
non-standard data initialization.

1.4.2. Solution

Each set of coupled physics represents a System of equations which must be solved. While participating
in loose-coupling an application physics will attempt to advance its solution to a later state. In the
parlance of Solution Control this step is known as an advance event. Here the details of code operations
associated with advancing the solution are controlled entirely by the physics application. Additionally,
because the advance can occur conditionally it provides flexibility in how the coupling is performed.

1.4.3. Time Stepping

Within Sierra Mechanics each application is allowed to define its own notion of solution time. The
Solution Control time step controller probes the individual application solution time and uses that
information to determine how time should be advanced for the coupled physics. For couplings of
transient simulations with quasi-static applications, the time step controller manages a unified notion of
pseudo-time and physical time seamlessly, even when the time step selection is adaptive.

1.4.4. Conditional Events

In loosely-coupled simulations the need often arises to perform some high level operations
conditionally. Here Solution Control is able to probe the application for current states or variables to
determine whether whether some coupling action should occur. These conditionals can be applied to
both the data transfer or advance Solution Control events. Examples of conditional events are included
in Chapter 4.

1.5. COUPLING STRATEGIES

Using the Solution Control one can easily define loose couplings between two or more Regions. For
example, some or all of a solution from one Region may be transferred to another Region where it is
treated as a constant, external field. The aggregate nonlinear problem including the contributions from
all of the Regions may be iterated to convergence. The details of which physics are solved in each

12

Region and the nonlinear solution strategy used within and between Regions is completely specified
through the input file. Furthermore, a Sierra Mechanics user may pick a simple, minimal algorithm
without needing to fit it into an overly-generalized worst-case scenario that represents the union of all
possible algorithms.

Dynamically-specified loose coupling has many potential advantages that users may leverage to obtain
solutions. First, the resulting linear system is considerably smaller than a fully-coupled system and
contains far fewer off-diagonal contributions which can significantly improve the performance of linear
solvers. Furthermore the resulting linear system may have a more desirable mathematical properties,
such as being symmetric positive-definite, this permits the use of tailored iterative solutions techniques.
Other extensions to loose coupling include subcycling of transient simulations where each Region may
advance in time with its own time step size and in-core coupling to other applications based upon the
Sierra framework.

The simplest loose-coupling strategy is a one-way coupling between two applications, App I and App
I1, is shown schematically in Figure 1.5-1. Here it is assumed that information (data) from App L is
needed by App II but App I is independent (decoupled) from App II. Furthermore it is assumed that
the applications can proceed at the same time step. In this case the solution for each application can
proceed in locked step.

tn (n+1 th+2 th+3
At

At | |
Appl | , - -

7 Ve /
7 7 7
7 7 7
7/ 7 7
7 7 7

AppIl ~f g -

Figure 1.5-1.. One-way Loose Coupling At Same Time Step.

A variant of the simplest loose-coupling would be the case where the dependence of App II solutions on
App I data is such that update of the App I data can be deferred for several steps. This type coupling
behavior can be enforced using a conditional advance event in Solution Control. As an example, a data
transfer event defined for every two time steps of each application is shown schematically in

Figure 1.5-2.

In some couplings the temporal response of one application physics, App I, is much faster than that of
another physics, App II. Here one may wish to advance the App I physics many time steps before
requiring an update of its contribution to the App II information, Figure 1.5-3. Here Solution Control
provides a facility denoted as subcycling o invoke this behavior.

When the coupling between App I and App 11 is circular in nature, (i.e. App I solutions depend upon
App II and vice versa) the coupling can be achieved by adding an additional Transfer step to the
one-way coupling approach. However, if the coupling dependency is fairly strong it may be prudent to
ascertain a converged solution between the physics models before advancing to the solution step. Here
the conditional event aspect of Solution Control can be employed to iterate App I and App Il until a

3

Appl | - n -

transfer ------ooooom T -

AppIl P~

Figure 1.5-2.. Deferred One-way Loose Coupling At Same Time Step.

oy Worly o a2 toed

App I : ! !
pp H_’_'_M_*_H_H_H_'_M
7/ 7/ Va
v / a
2 / 7
& Vi P
transfer -----------. o s 5 4 5 < FEe e s ¢ 5 P
/ s, P
7 7 ,
7 7 Y
Ve Y s
7 Y P

App Il g

Figure 1.5-3.. One-way Loose Coupling with Subcycling Schematic.

solution of the desired quality is obtained. The strategy is depicted in Figure 1.5-4 and is supported as
the Nonlinear option within Solution Control.

14

tIl tIl+1 tn+2 At tn+3

Appl | 3! g -
|

transfer .- ez somd e anns #lenmnnan Lo SO L.

App 11

Figure 1.5-4.. Two-way Loose Coupling Schematic.

1.6. COUPLING WITH ARPEGGIO

While the previous sections have described the component utilities needed to enable coupled physics
simulations but little has been said of existing tools composed of these utilities. Previous efforts in the
development of Sierra Mechanics focused upon thermal-mechanical coupling of the Calore and Adagio
applications with the Calagio utility to analyze problems of thermal stress. Here Sierra Mechanics
utilities were used to solve the temperature state, then initializing the reference temperature state in
Adagio followed by subsequent solves and transfer of the temperature state to Adagio to obtain a
thermal stress state in the deformed configuration. Within the Calagio utility extra efforts were made to
obscure the use of Framework utilities lying outside the realm of Calore and Adagio. Early one-way
coupling efforts were later followed by two-way couplings where the deformed configuration was
communicated to Calore and the heat transfer problem could be solved in the updated geometry.
Although couplings with Calagio were largely successful it was recognized that incremental
improvements in coupling capability came with a high price in terms of code development effort both
to alter the predefined coupling strategies and to hide the underlying implementation from the analyst
within the application code. Moreover, the predefined coupling strategy approach prevented the analyst
from fully exploiting the resources available within Sierra Mechanics and the applications themselves.
These shortcomings provided a motivation for creation of the Arpeggio utility in which the analyst
tully specifies details of the coupling strategy.

1.6.1. Coupling Including Element Death

Coupling strategies in predecessors of Arpeggio precluded the possibility of simulations that required
syncronization of the meshed discretization such as element death. Here the transfer capability in
conjunction with a consistent notion of an application code indicator of element death (Death_Status)
enables coupled simulations that include element death. Prevalent uses of this capability are one-way
coupled thermal-mechanical simulations with thermally-driven element death 1.6-1 and two-way
coupled thermal-mechanical simulations with element death driven by either application 1.6-2. For both
types of coupling the mechanical code behavior is essentially the same as for a two-way coupling. On the
other hand, in the case of two-way coupling the one-way coupling thermal invocation of a death criteria
test is altered by the addition of an Aria Region level command line: Transfer Element Death.

I5

Figure 1.6-1..

Thermal
Jacobian Test
Solve Nonlinear

Elem Death Test
— Thermal Criteria

Thermal-Mechanical With Thermal One-Way Element Death.

Thermal

Elem Death Test
— Death_Status
Jacobian Test

Solve Nonlinear

Temperature
—_—

Death_Status

Temperature
—_—

Death_Status

-

Displacement

Mechanical

Elem Death Test
— Death_Status

Jacobian Test

Solve Nonlinear

Mechanical

Elem Death Test
— Death_Status
— Temperature Criteria
Jacobian Test
Solve Nonlinear
Elem Death Test
— Structural Criteria

Figure 1.6-2.. Thermal-Mechanical With Two-Way Element Death.

1.7. OUTLINE OF THE MANUAL

Chapter 2 discusses the overall Sierra Mechanics environment for running Arpeggio, including the
layout for the Arpeggio input file. Sierra Mechanics users familiar with the overall environment need
only browse the input file structure and move directly to the sections describing Framework Transfer s
and Solution Control 3.7. Experienced Sierra Mechanics users may opt to move directly to examples of
coupling in Chapter 7

16

2. GETTING STARTED

2.1. SETTING THE ENVIRONMENT-USERS EXTERNAL
TO SANDIA LABS

To access Sierra/Arpeggio one will likely need to setup the user environment. This setup will differ
upon location and the local system administrator can provide information on setting up your local
environment.

2.2. SETTING THE ENVIRONMENT-USERS AT SANDIA
LABS

The environment for using Arpeggio is the same as for individual Sierra applications and can be
configured by module files. The modules ensure that the look and feel of running Sierra applications is
the same across a multitude of compute platforms. To obtain the proper environment for code
execution one simply runs:

% module load sierra

2.3. RUNNING ARPEGGIO

This section includes some very simple examples of how to run Arpeggio. For more information on
running on some of Sandia’s clusters, etc. see [2].

In its simplest form, Arpeggio can be run like this:
% sierra arpeggio -i myrun.i

In this example, myrun. i is the Arpeggio input file. The output — nonlinear iterations, time step
information, etc. — will be written to a file called myrun. log. So, you can monitor the progress of the
simulation by watching the log file. Alternatively, you can have all of the output sent to the display by
using the -1 logfile command line option. If you set the log file to be - (a single “minus” character)
all of the output will be sent to the standard output (usually your display):

% sierra arpeggio -i myrun.i -1 -

17

If you would like to use aprepro in your input file, add the -a command line option to have your
input file automatically processed:

% sierra arpeggio -i myrun.i -1 - -a

Oftentimes we want to run Arpeggio remotely or locally in a batch mode, save any standard output and
perhaps even logout from a session. Unfortunately, termination of the session through either voluntary
(interactive) or involuntary (timeout) logout may in effect terminate the Arpeggio job. In this case one
can prevent the job from terminating by using the Unix nohup command in conjunction with the
standard execution command line.

% nohup sierra arpeggio -i myrun.i -1 YourLogFile -a

If one wishes to run the job in a background mode the nohup command should be terminated with &
at the end of the command line.

2.4. ARPEGGIO ENVIRONMENT OVERVIEW

The Sierra Mechanics code suite is composed of several specialized applications which can operate either
in standalone mode or coupled with each other. The various application models and algorithms are
integrated into the Sierra framework through the architecture illustrated in Figure 2.4-1. A Sierra-based
application has four layers of code: Domain, Procedure, Region, and Model/Algorithm.

The outermost layer of an application is the Domain, or “main” program of the application. This
domain layer is implemented by the Sierra Framework to manage the startup/shutdown of an
application, and to orchestrate the execution of an application-proved set of procedures.

Code at the Procedure level is responsible for evolving one or more loosely coupled set of physics
through a sequence of steps. This sequence may be a set of time steps, nonlinear solver iterations, or
some combinations of these or other types of steps.

An application mauy define multiple procedures to implement hand-off coupling between physics
within the same main program. In hand-oft coupling the first (or preceding) procedure completes
execution, mesh and field data is transferred to a succeeding procedure, and the succeeding procedure
continues the simulation with a different set of physics. For example, the first thermal procedure could
calculate a temperature distribution inside a differentially heated fluid, and the second procedure could
simulate natural convection of the fluid due to the density gradients set up by the resulting temperature

field.

Code at the Region level is responsible for evolving a tightly coupled set of physics throug a single step.
Loose coupling of Regions is supported by the advanced transfer services provided by the Sierra
framework.

Each Region owns (1) a set of models or algorithms that implement its tightly coupled set of physics
and solvers and (2) an in-memory parallel distributed mesh and field database. This mesh and field data
is fully distributed among parallel processors via domain decomposition.

18

“Main” ~___
SN

Parallel
Synchronous

‘ FTransfel:l 4

Figure 2.4-1.. Schematic UML class diagram for the Expression subsystem.

2.5. OVERVIEW OF THE INPUT FILE STRUCTURE

An Arpeggio model is described by commands contained in an ASCII input file. The structure of the
input file follows a nested hierarchy. The topmost level of this hierarchy is named the domain. Below
the domain lies a level named procedure, followed by the region level as depicted in Figure 2.4-1.

The domain level contains one or more procedures. At the domain level, one will also find commands
associated with describing the finite element mesh, the linear solver set-up, material properties
associated with a defined material, and user functions associated with source terms and boundary
conditions that are added into Arpeggio’s intrinsic set of functions.

The procedure level contains one or more regions. The procedure level is also used to specify the time
stepping parameters, and interactions between regions, such as data transfers. Essentially at the
procedure level, loose coupling algorithms are specified. Loose coupling here is defined within the
context of Arpeggio’s implicitly full-coupled paradigm. Whenever an independent variables’s
interaction with other variables in the solution procedure is not fully represented in the global matrix,
the algorithm for loose coupling of that variable and its associated equation will be described at the
procedure level. This loose coupling algorithm is known as a “solution control description”. The
procedure level contains a command block specifying the solution control procedure. An analogy to
this block in simpler codes would be top level loop. For example in time dependent applications, the
solution control description block would involve a block to solve the time dependent problem repeated
for each time step until the desired solution time is reached.

The Region level is used to specify details about the physics to be solved. Details related to the solve

9

include boundary conditions and initial conditions, where materials models are applied, and where
surface and volumetric source terms are applied. Here the meshed discretization and material properties
described at the domain level are tied into the problem statement by virtue of their names.

Global constraint equations are also specified at the region level. At the region level, specification of
information written to the output file and the frequency at which output occurs. Additional
post-processing associated with the output is specified. For example, additional volumetric fields which
are functions of the independent variables may be specified to be added to the output file.

There are two types of commands in the input file. The first type is referred to as a block command. A
block command is a grouping mechanism. A block command contains a set of commands made up of
other block commands and line commands. A line command is the second type of command. The
domain, procedure, and region levels are all parsed as block commands. A block command is defined in
the input file by a matching pair of Begin and End lines. For example,

Begin SIERRA myJob
. block commands
End STERRA myJob

A set of key words for the block command follows the “Begin” and “End” keywords. In most cases a
user-specified name is added to the block commands. In the example above the keywords, SIERR A
my]Job, are added. Optionally, the keyword may be left off of the end of the block.

The second type of command is the line command. A line command is used to specify parameters
within a given block command. In the remaining chapters and sections of this manual, the scope of each
block and line command is identified, along with summaries of the meanings. Note that the ordering of
any commands within a command block is arbitrary. Thus,

Begin Finite Element model fluid
Database name is pipeflow2d.g
Use Material water for block_1

End Finite Element model fluid

will have the same effect as

Begin Finite Element model fluid
Use Material water for block_1
Database name is pipeflow2d.g

End Finite Element model fluid

And the ordering of command blocks within the domain/procedure/region blocks are
arbitrary—allowing you conderable freedom to collect and arrange commands. Note that the terms
“command block” and “block command” are interchangeable.

The Sierra command block must contain a block for a procedure containing at least one Region. For a
case where only an Aria Region is being used:

20

Begin procedure myProcedureName
Begin Aria region myRegionName

End Aria region myRegionName
End procedure myProcedure

and similarly for a case using both Aria and Adagio Regions:

Begin procedure myProcedureName
];%egin Adagio region myAdagioRegionName
E1.1d Adagio region myAdagioRegionName
]'Begin Aria region myAriaRegionName

End Aria region myAriaRegionName
End procedure myProcedure

The procedure command block is used to contain all of the application code commands that are
associated with a solution procedure defined for a set of Regions. The myProcedureName and name
keywords of the procedure and region blocks are left up to you. Note that the procedure command
block must be present in the input file and must contain at least one application code Region

command block. The procedure command block also contains other important command blocks such

as the SOLUTION CONTROL block.

2.5.1. Syntax Conventions for Commands

In this section we describe the conventions used in presenting all the command descriptions in the
remainder of this manual. There are four basic kinds of tokens, or words, that an application code
expects to find as it parses an input file. These are keywords, names, parameters and delimiters.

2.5.1.1. Keywords

The words which distinguish one block command, or line command, from another we term keywords.
Keywords are denoted in this manual in the monospaced font, for example, BOUNDARY CONDITION.

21

2.5.1.2. Names

The word, or words, that you supply on the same line of the begin line of a block command, is the
name. Many times you may need to supply this name as a character parameter in a separate line
command. Names are denoted in italics, name , as are parameters.

It is worth noting that the interpreter used to process standard input command lines is also used to
process lines defining algebraic operations. This means that a "-" appearing within a name would be
interpreted as a subtraction operation and as a consequence, the use of "-" within a name is not allowed.

Thus instead of
Begin Adagio region name-1
one could perhaps use

Begin Adagio region name_1.

2.5.1.3. Parameters

There are three types of input parameters one will need to supply to line commands: character strings,
integers, and real numbers. These are denoted in the documentation as (C), (R), and (I), respectively.

In most cases character strings may be specified in a free format. One exception to this paradigm is when
a string begins a number. In this case the character string must be specified within quotation marks in
order to be properly interpreted.

Real numbers may be entered in decimal form or exponential form. For example 0.0001, .1E-3, 10.0d-5
are all equivalent. Furthermore, if a real(R) is expected, an integer can be used.

Integer values (I) need not include a decimal point in their specification.

2.5.1.4. Multiple Parameters

For the case when a list of one or more paremeters is allowed, or required, for a command, (C,...)
denotes a list of character strings, (I,...) a list of integers, and (R, ...) a list of real numbers. For a list of
character strings, the separator between the strings must be one or more spaces or tab characters.
Therefore, phrases with multiple spaces and words in them are tokenized into multiple character
parameters before being processed by the application. For a list of real or integer numbers the comma
can also be used as a separator.

2.5.1.5. Enumerated Parameters

Certain commands have predefined parameters, called enumerations, which are listed within {}. Each
parameter in the list is separated using | . The default parameter for the list of parameters is enclosed by
L2

22

2.5.1.6. Delimiters
The keywords of a line command are often required to be separated from the parameters by a delimiter.
You have a choice of delimiters to use: the equal sign, =, or a word. In this manual, we denote the

choices surrounded by {3}, and separated by |. You may use any one of the delimiters from those listed.
For example, the line command to specify the density within the Calore Material Block command is

Density {= |IS} (R)

Examples of valid forms you could write in the input file are
Begin Property Specification for Calore Material water
Density = 1.0E-3 # kg/m\"3 at 20C

End
and

Begin Aria Material water
Density is constant rho = 1.0E-3 # kg/m\~3 at 20C

End

2.5.1.7. White Space

Command keywords, names, and parameters and delimiters must have spaces around them.

2.5.1.8. Indentation

Allleading spaces and/or tab characters are ignored in the input file. Of course, we recommend that you
use indentation to improve the readability for yourself and others that may need to see your files.

2.5.1.9. Case Sensitivity

None of the command keywords, parameters, or delimiters read from the input file are case sensitive.
For example, the following two lines are equivalent:

Use Material water for block_1

and

23

USE material wATer for blOCK_1

The exception to this rule are file names used for input and output, because the current operating
systems on which SIERR A applications are run are based on UNIX, where file names are case
sensitive.

2.5.1.10. Comments and Line Continuation

You may place comments in the input file starting with either the § or # character. All further characters
on a line following a comment character are ignored.

You can continue a command in the input file to the next line by using the line continuation character $,
or you may optionally following it with a comment#. All further characters on the same line following a
line continuation character $ are ignored, and the characters on the following line are joined and parsing
continues. An example is the line command used to specify the title of a thermal model:

Begin SIERRA Job_Indentifier
This thermal model for Calore simulates a convective heat transfer

Title The title command is used to set the analysis title $\
Convective heat transfer to a part. The analysis $\
makes use of conjugate heat transfer to account for $\

cooling of a part due to flowing water.

End SIERRA Job_Indentifier

2.5.1.11. Checking the Syntax

Errors in the input deck can be checked by adding the command, “~check-syntax” to the aria command
line. For example,

sierra arpeggio --check-syntax -i input.i

This command will print the code echo of the input deck and any syntax errors within it to the

display.

24

2.6. FIELDS

Fields are defined as variables which are distributed on mesh objects (e.g. nodes, elements, faces or
edges). The mesh object and Field data may be distribued among parallel processors via a domain
decomposition algorithm. Each application registers Fields by name on its own Region. In a
coupled-physics simulation Framework transfer services may be called on to communicate these Fields
to another application. For example, the temperature Field in one application may be communicated to
a solid mechanics application in order to perform a thermal-stress analysis.

2.7. USER FIELDS

Situations often arise where one wishes to provide Field data storage so that data can be transferred into
or out of the application. Each of the application codes provide some mechanism for enabling this type
of data access. Additionally, User Fields are often used to as additional storage needed in user supplied
subroutines.

25

3. MODEL DEFINITION

3.1. MODEL OVERVIEW

Sierra Framework services provide overall control of input commands, discretization input data and
output data, IO. Additionally they provide a directed interaction of Framework services at the so-called
Domain level with with the application code at the Region level. This controlled interaction is enabled
by commands that follow.

The model discretization (mesh) and the mesh components to be used in the model are defined at the
Domain level and are later referenced by the application at the Region level. The association of material
properties with portions of the mesh are also defined here within the Finite Element Model command
block/s. For some couplings using the same mesh a single Finite Element Model may be used but for
most cases one will use separate Finite Element Model command blocks for each Region. A sample
outline of a setup for coupling of a solid mechanics application sm and a thermal-fluid tf is shown
below.

Begin Sierra myJob
1.3egin Finite Element Model my_fem_model_sm
Eﬁd
]é%egin Finite Element Model my_fem_model_tf
Eﬁd
Begin Global Constants
Eﬁd

Model definition commands

Material definitions for sm
Function definitions for sm
Local Coordinate Systems for sm

Material definitions for tf

26

- Function definitions for tf
- Local Coordinate Systems for tf

27

Begin Procedure My_Procedure
ﬁrocedural commands
- Solution Control Description
- Transfer operations
éegin Adagio Region My_Adagio_Region
ﬁse Finite Element Model my_fem_model_sm
- sm Region level commands
End
éegin Aria Region My_Aria_Region
ﬁse Finite Element Model my_fem_model_tf
; tf Region level commands
Eﬁd
End'

End Sierra myJob

Note that a given application may not support the entire set of available options available in the Finite
Element Model command block, particularly in the Parameters for Block section. Rather than
attempting to include the entire set of command lines available in the Finite Element command block,
only a small subset of key command lines are shown here. One should consult documentation for the
specific application to find a complete listing of the relevant Finite Element Model command lines.

3.2. FINITE ELEMENT MODEL

Scope: Sierra

Begin Finite Element Model Label
Alias DatabaseName As InternallName
Component Separator Character Option Separator
Create GroupType NewSurfaceName Add SurfaceName. ..
Coordinate System {=|are|is} CoordinateSystem
Database Name {=|are|is} StreamName

2.8

Database Type {=|arel|is} DatabaseTypes

Decomposition Method {=|arel|is} Method

Global Id Mapping Backward Compatibility Optionl Optionl
Omit Block BlockList...

Omit Volume VolumelLzst...

Time Scale Factor Option Scale

Use Generic Names

Use Material MaterialName For VolumeLzst...

Begin Parameters For Block Blockname

End

Begin Parameters For Phase Phase Name

End

Begin Parameters For Surface Surface_Name

End

End

Summary Describes the location and type of the input stream used for defining a geometry model
for the enclosing region.

3.2.1. Alias

Scope: Finite Element Model

Alias DatabaseName As InternallName

Parameter Value Default
DatabaseName string undefined
InternalName string undefined

Summary Name the database entity "DatabaseName" as "InternalName"

Description This "InternalName" may then be referenced in the data file in addition to the original
name.

29

3.2.2. Component Separator Character
Scope: Finite Element Model

Component Separator Character Option Separator

Parameter Value Default
Option {=11is} undefined
Separator string undefined

Summary The separator is the single character used to separate the output variable basename (e.g.
"stress”) from the suffices (e.g. "xx", "yy") when displaying the names of the individual
variable components. For example, the default separator is "_", which results in names
similar to "stress_xx", "stress_yy", ... "stress_zx". To eliminate the separator, specify an

empty string (") or NONE.

3.2.3. Create

Scope: Finite Element Model

Create GroupType NewSurfaceName Add SurfacelName. ..

Parameter Value Default

Group Type {edgeset | elemset | faceset | nodeset | undefined
sideset | surface}

NewSurfaceName string undefined

SurfaceName string. .. undefined

Summary Create a new set (node, edge, face, element, side/surface) as the union of two or more
existing sets. The sets must exist in the mesh database or have been created by a previous

CREATE command.

3.24. Coordinate System

Scope: Finite Element Model

Coordinate System {=|arel|is} CoordinateSystem

Parameter Value Default
CoordinateSystem {axisymmetric | barycentric | cartesian undefined
| cyclidic | cylindrical | polar |
quadriplanar | skew | spherical | toroidal
| trilinear}

Summary The interpretation of the geometry data stored in this database. Optional. Defaults to
Cartesian.

30

3.2.5. Database Name

Scope: Finite Element Model

Database Name {=|are|is} StreamlName

Parameter Value Default
StreamName string undefined

Summary The base name of the database containing the output results. If the filename begins with
the’/’ character, it is an absolute path; otherwise, the path to the current directory will be
prepended to the name. If this line is omitted, then a filename will be created from the
basename of the input file with a ".g" suffix appended.

3.2.6. Database Type

Scope: Finite Element Model

Database Type {=|are|is} DatabaseTypes

Parameter Value Default
DatabaseTypes {catalyst | dof | dof_exodus | exodus undefined
| exodusii | generated | genesis |
parallel_exodus}

Summary The database type/format used for the mesh.

3.2.7. Decomposition Method

Scope: Finite Element Model

Decomposition Method {=|arel|is} Method

Parameter Value Default
Method {block | cyclic | external | geom_kway | undefined
hsfc | kway | kway_geom | linear | metis_sfc
| random | rcb | rib}

Summary The decomposition algorithm to be used to partition elements to each processor in a
parallel run.

31

3.2.8. Global Id Mapping Backward Compatibility

Scope: Finite Element Model

Global Id Mapping Backward Compatibility Optionl Optionl

Parameter Value Default
Options {=11is} undefined
Optionz {false|no|off |on|true|yes} undefined

Summary (Unsupported, do not use)

3.2.9. Omit Block

Scope: Finite Element Model

Omit Block BlockList...

Parameter Value Default
Block List string. .. undefined

Summary Specifies that the element blocks named in the blockList be omitted from the analysis.

Description If an element block is omitted, then it is illegal to refer to it later in the input file e.g an
initial condition may not be specified on an omitted element block. The elements, faces,
etc are never created and it is as if the omitted element blocks did not exist in the mesh
file. If a surface is completely determined by the omitted element block, then it is illegal
to specify boundary conditions on that surface. However, if the surface spans multiple
element blocks, boundary conditions may be applied on the portion of the surface
supported by the element blocks that are not omitted.

3.2.10. Omit Volume

Scope: Finite Element Model

Omit Volume VolumeList...

Parameter Value Default
Volume List string. .. undefined

Summary Specifies that the volumes named in the volumeList be omitted from the analysis.

Description If a volume is omitted, then it is illegal to refer to it later in the input file e.g an initial
condition may not be specified on an omitted volume. The elements, faces, etc are never
created and it is as if the omitted volumes did not exist in the mesh file. If a surface is
completely determined by the omitted volume, then it is illegal to specify boundary
conditions on that surface. However, if the surface spans multiple volumes, boundary
conditions may be applied on the portion of the surface supported by the volumes that
are not omitted.

32

3.2.11. Time Scale Factor

Scope: Finite Element Model

Time Scale Factor Option Scale

Parameter Value Default
Option {=|1is} undefined
Scale real undefined

Summary The scale factor to be applied to the times on the mesh database. If the scale factor is 20
and the times on the mesh database are 0.1, 0.2, 0.3, then the application will see the mesh
times as 2, 4, 6.

3.2.12. Use Generic Names
Scope: Finite Element Model

Summary If this command is present then the name of all blocks and sets in the mesh will be of the
form "type_"+id. For example, an element block with id=42 will be named "block_42"; a
sideset with id 314 will be named "surface_314". If there are any names in the mesh file,
those names will be aliases for the blocks and sets. If this command is not present, then if
a name is in the mesh file, it will be used as the name and the generic generated name will
be an alias. This is used a a workaround in codes that do not correctly handle named
blocks and sets or as a workaround in meshes which contain non-user-specified names.

3.2.13. Use Material

Scope: Finite Element Model

Use Material MateriallName For VolumeList...

Parameter Value Default
MaterialName string undefined
Volume List string. .. undefined

Summary Associate the given volumes with the indicated material name.

3.3. PARAMETERS FOR BLOCK

Scope: Finite Element Model

Begin Parameters For Block Blockname
Include All Blocks

Inversion Aversion Exponent {=|arel|is} ta_exzponent

33

Inversion Aversion Stiffness {=|arel|is} %a_stiffness

Inversion Aversion Transition Jacobian {=|are|is}
transition_jacobian

Local Coordinate System {=|are|is} Mesh Enttities
Material MatName

Material = MatName

Phase PhaseLabel {=|arel|is} MaterialName

Remove Block {=|are|is} EzcludeBlockList. ..

End

Summary Specifies analysis parameters associated with each element block.

3.3.1. Include All Blocks

Scope: Parameters For Block

Summary Use this parameters definition for all blocks.

When using this option within the FINITE ELEMENT MODEL command block the
PARAMETERS FOR BLOCK will not use a Blockname.

3.3.2. Inversion Aversion Exponent

Scope: Parameters For Block

Inversion Aversion Exponent {=|arel|is} <a_exzponent

Parameter Value Default
la_exponent integer 5

Summary Sets the exponent used to compute the smooth approximate nodal jacobian ratio. A
higher exponent results in a more-accurate approximation to the ratio. This is only active
for uniform gradient elements. Default = s.

34

3.3.3. Inversion Aversion Stiffness

Scope: Parameters For Block

Inversion Aversion Stiffness {=|are|is} za_sttffness

Parameter Value Default
ia_stiffness real 1.e5

Summary Sets a stiffness parameter for the inversion aversion penalty. This is only active for
uniform gradient elements. Default = 1.0es.

3.3.4. Inversion Aversion Transition Jacobian

Scope: Parameters For Block

Inversion Aversion Transition Jacobian {=|are|is} transttion_jacobian

Parameter Value Default
transition_jacobian real 0

Summary Sets the critical relative nodal Jacobian ratio for inversion aversion. If this value is
nonzero, an additional recoverable energy term is added which penalizes further element
distortion. This energy is only active for uniform gradient elements.

3.3.5. Local Coordinate System

Scope: Parameters For Block

Local Coordinate System {=|are|is} Mesh Entities

Parameter Value Default
Mesh Entities string undefined

Summary Associate coordinate system with mesh entity.

Description Specify the local coordinate system to be used in conjunction with given element blocks.

3.3.6. Material

Scope: Parameters For Block

Material MatName

Parameter Value Default
MatName string undefined

Summary Associates this element block with its material properties.

35

3.3.7. Material =

Scope: Parameters For Block

Material = MatName

Parameter Value Default
MatName string undefined

Summary Associates this element block with its material properties.

3.3.8. Phase

Scope: Parameters For Block

Phase PhaselLabel {=|are|is} MaterialName
Parameter Value Default
PhaseLabel string undefined
MaterialName string undefined

Summary Associate phase PhaseLabel with material Material Name on this block.

3.3.9. Remove Block

Scope: Parameters For Block

Remove Block {=|arel|is} EzcludeBlockList. ..
Parameter Value Default
ExcludeBlock List string. .. undefined

Summary List of blocks to exclude.

3.4. GLOBAL CONSTANTS

Scope: Sierra

Begin Global Constants empty
Gravity Vector {=|are|is} Gravity, Gravity, Gravitys
Ideal Gas Constant {=|arel|is} Sigma
K-E Turbulence Model Parameter Param {=|arelis} Value
K-W Turbulence Model Parameter Param {=|arelis} Value
Les Turbulence Model Parameter Param {=|arelis} Value
Light Speed {=|are|is} LightSpeed

36

Planck Constant {=|are| is} PlanckConstant
Stefan Boltzmann Constant {=|are|is} Sigma
Turbulence Model Param Number {=|are|is} Value

End

Summary Set of universal constants for a simulation.

3.4.1. Gravity Vector

Scope: Global Constants

Gravity Vector {=|are|is} Gravity; Gravity, Gravitys

Parameter Value Default
Gravity real_1 real_2 real_3 undefined

Summary Gravity constant in vector form, acceleration components.

3.4.2. Ideal Gas Constant

Scope: Global Constants

Ideal Gas Constant {=|are|is} Sigma

Parameter Value Default
Sigma real undefined

Summary Ideal gas constant. extbf NOTE: Another ideal gas constant value can be specified while
using certain code capabilities. This global constants value will be discarded for any other
specified ideal gas constant values.

3.4.3. K-E Turbulence Model Parameter

Scope: Global Constants

K-E Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string undefined
Value real undefined

Summary %k — e RANS turbulence model parameters.

37

3.4.4. K-W Turbulence Model Parameter

Scope: Global Constants

K-W Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string undefined
Value real undefined

Summary &k — w RANS turbulence model parameters.

3.4.5. Les Turbulence Model Parameter
Scope: Global Constants

Les Turbulence Model Parameter Param {=|are|is} Value

Parameter Value Default
Param string undefined
Value real undefined

Summary LES turbulence model parameters.

3.4.6. Light Speed

Scope: Global Constants

Light Speed {=|are|is} LightSpeed

Parameter Value Default
LightSpeed real undefined

Summary Speed of Light. Depending on the units involved in the specific problem by the user, this
value will differ.

3.4.7. Planck Constant

Scope: Global Constants

Planck Constant {=|are|is} PlanckConstant

Parameter Value Default
PlanckConstant real undefined

Summary Planck Constant. Depending on the units involved in the specific problem by the user,
this value will differ.

38

3.4.8. Stefan Boltzmann Constant
Scope: Global Constants

Stefan Boltzmann Constant {=|are|is} Sigma

Parameter Value Default
Sigma real undefined

Summary Stefan-Boltzmann constant. Depending on the units involved in the specific problem by
the user, this value will differ.

3.4.9. Turbulence Model

Scope: Global Constants

Turbulence Model Param Number {=|are|is} Value

Parameter Value Default
Param string undefined
Value real undefined

Summary Turbulence model Schmidt and Prandtl numbers

3.5. DEFINITION FOR FUNCTION

Scope: Sierra

Begin Definition For Function FunctionName
Abscissa {=|are|is} Name...
Abscissa Offset {=|arel|is} Abscissa_offset
Abscissa Scale {=|are|is} Absctissa_scale
At Discontinuity Evaluate To Option
Column Titles Titles; Titlessy...
Data File = filename [X From Column zcol Y From Column ycol]
Debug {=|arel|is} Option
Differentiate Expression {=|are|is} Ezpr
Evaluate Expression {=|are|is} Ezpr
Evaluate From z0 To zi By Dz
Expression Variable: Ezpr = VarType wvalue_var_mame...

Expression Variable: Ezpr

39

Ordinate {=|arelis} Name...

Ordinate Offset {=|are|is} Ordinate_offset
Ordinate Scale {=|are|is} Ordinate_scale
Scale By =z

Type {=|arel|is} Type

X Offset {=|arel|is} X_offset

X Scale {=|are|is} X_scale

Y Offset {=l|arelis} Y_offset

Y Scale {=|are|is} Y_scale

Begin Expressions empty

End

Begin Values empty

End

End

Summary Defines a function in terms of its type and values.

3.5.1. Abscissa

Scope: Definition For Function

Abscissa {=|arel| is} Name. ..

Parameter Value Default
Name string... undefined

Summary Specifies a string identifier for the independent variable. Optionally specify a scale and/or
offset value which transforms the abscissa values into scaled _abscissa = scale * (abscissa +
abscissa_offset).

40

3.5.2. Abscissa Offset

Scope: Definition For Function

Abscissa Offset {=|are|is} Abscissa_offset

Parameter Value Default
Abscissa_offset real undefined

Summary Alias for X OFFSET

3.5.3. Abscissa Scale

Scope: Definition For Function

Abscissa Scale {=|are|is} Abscissa_scale

Parameter Value Default
Abscissa_scale real undefined

Summary Alias for X SCALE

3.5.4. At Discontinuity Evaluate To

Scope: Definition For Function

At Discontinuity Evaluate To UOption

Parameter Value Default
Option {left | right} undefined

Summary Control the behavior of a piecewise constant function when evaluated at a discontinuity
(plus or minus a small tolerance). The default behavior is to take the value to the right of
the discontinuity. If "Left" is specified, the value to the left of the discontinuity is taken
instead.

3.5.5. Column Titles

Scope: Definition For Function

Column Titles Titles; Titles,y...

Parameter Value Default
Titles string_1 string 2... undefined

Summary Name the columns (and also defined the expected number of columns) for Multicolumn
Piecewise Linear tabular data.

41

3.5.6. Data File

Scope: Definition For Function

Data File = filename [X From Column zcol Y From Column ycol]

Parameter Value Default
filename string undefined

Summary Function will read tabular data from an input file. Compatible with the piecewise linear
function type. File must be of form like:

——————————————— # EXAMPLE FILE 1.099 1191 1.101 221 §.9011 133.1

Lines headed by a # are considered comments and will be ignored. Data itself must by in
tabular columns seperated by whitespace or commas.

3.5.7. Debug

Scope: Definition For Function

Debug {=|arel|is} Option

Parameter Value Default
Option {off | on} undefined

Summary Prints functions to the log file.

3.5.8. Differentiate Expression

Scope: Definition For Function

Differentiate Expression {=|are|is} Ezpr

Parameter Value Default
Expr (expression) undefined

Summary Specifies the expression of derivative of evaluation expression.

42

3.5.9. Evaluate Expression

Scope: Definition For Function

Evaluate Expression {=|arel|is} Ezpr

Parameter Value Default
Expr (expression) undefined

Summary Specifies the expression to evaluate.

Description This will greatly help with manufactured solutions, and be useful for other purposes as
well.

This first implementation goes like this:

begin definition for function pressure

type is analytic

evaluate expression is "x <= 0.0 7 0.0 : (x<0.57
x*¥200.0 : (x < 1.07 (x - 0.5) *50.0 + 100.00 :
150,00 33"

type is piecewise linear

begin values

0.0 0.0

0.5 100.0

1.0 150.0

end values

end definition for function pressure

Also, notice that semicolon at the end. Be sure to put it there for now. You can actually
provide multiple expressions to be evaluated, each terminated with a semicolon. This
will be handy when multi-dependent variable come into the fold.

The following functions are currently implemented.
Operators All C-language operators are supported, e.g. + — %/ || 2 : etc
Parens ()
Math Functions
abs(x) absolute value of x
mod(X, y) modulus of x|y
ipart(x) integer part of x
fpart(x) fractional part of x
min(x0, x1, ...) minimum value of xn

max(x0, x1, ...) maximum value of xn

43

Power functions
pow(X, y) x to they power
sqrt(x) square root of x

Trig functions
sin(x) sine of x
sinh(x) hyperbolic sine of x
asin(x) arcsine of x
cos(X) cosine of x
cosh(x) hyperbolic cosine of x
acos(x) arccosine of x
tan(x) tangentofx
tanh(x) hyperbolic tangent of x
atan(x) arctangent of x

atan2(y, x) arctangent of y/x, signs of x and y determine quadrant (see atanz
man page)

Logarithm functions

log(x) natural logarithm of x

IN(X) natural logarithm of x

exp(x) e to the x power

logn(x, y) they base logarithm of x
Rounding functions

ceil(x) smallest integral value not less than x

floor(x) largest integral value not greater than x
Random functions

rand(X) random number between 0.0 and 1.0, not including 1.0

srand(x) seeds the random number generator
Conversion routines

deg(x) converts radians to degrees

rad(X) converts degrees to radians

recttopolr(x, y) maginitude of vector x, y

44

recttopola(x, y) angle of vector x, y
poltorectx(r, theta) x coordinate of angle theta at distance r

poltorecty(r, theta) y coordinate of angle theta at distance r

3.5.10. Evaluate From

Scope: Definition For Function

Evaluate From z0 To z! By Dz

Parameter Value Default
X0 real undefined
X1 real undefined
Dx real undefined

Summary Specifies the range and evaluation interval.

3.5.11. Expression Variable:

Scope: Definition For Function

Expression Variable: Exzpr = VarType wvalue_var_name...
Parameter Value Default
Expr string undefined
VarType {element | element_sym_tensor | undefined

element_tensor | element_vector | face
| global | nodal | nodal_sym_tensor |

nodal_tensor | nodal_vector}
value var name string. .. undefined

Summary Specifies what the arguments of an expression correspond to. For example:

BEGIN DEFINITION FOR FUNCTION dx_shear TYPE = ANALYTIC
EXPRESSION variable: mx = NODAL model_coordinates(x) EXPRESSION variable:
my = NODAL model_coordinates(y) EXPRESSION variable: time = GLOBAL time
EVALUATE EXPRESSION = "(time/term Time)*(stretchx*(mx - 0.0) +
((my-0.25)/0.5)*stretchxy)" END

Assuming the above expression is being evaluated on nodes the current values for x and y
model coordinates would be placed into mx and my and current analysis time placed into
time

45

3.5.12. Expression Variable:

Scope: Definition For Function

Expression Variable: Ezpr

Parameter Value Default
Expr string undefined

Summary Specifies what the arguments of an expression exists, but does not define it correspond
to. For example:

BEGIN DEFINITION FOR FUNCTION dx_shear TYPE = ANALYTIC
EXPRESSION variable: mx EXPRESSION variable: my EXPRESSION variable: time
EVALUATE EXPRESSION = "(time/term Time)*(stretchx*(mx - 0.0) +
((my-0.25)/0.5)*stretchxy)" END

Call function must determine what each variable actually is is based off of the string
name

3.5.13. Ordinate

Scope: Definition For Function

Ordinate {=|are|is} Name...

Parameter Value Default
Name string. .. undefined

Summary Specifies a string identifier for the dependent variable. Optionally specify a scale and/or
offset value which transforms the ordinate values into scaled_ordinate = scale * (ordinate
+ ordinate_offset).

3.5.14. Ordinate Offset

Scope: Definition For Function

Ordinate Offset {=|are|is} Ordinate_offset

Parameter Value Default
Ordinate_offset real undefined

Summary Alias for Y OFFSET
46

3.5.15. Ordinate Scale

Scope: Definition For Function

Ordinate Scale {=|are|is} Ordinate_scale

Parameter Value Default
Ordinate_scale real undefined
Summary Alias for Y SCALE
3.5.16. Scale By
Scope: Definition For Function
Scale By =z
Parameter Value Default
X real undefined
Summary Specifies a scale factor to be applied.
3.5.17. Type
Scope: Definition For Function
Type {=|arel|is} Type
Parameter Value Default
Type {analytic | constant | multicolumn undefined
piecewise linear | piecewise analytic |
piecewise constant | piecewise linear |
piecewise multivariate | xtable}
Summary Specifies the type of function.
3.5.18. X Offset
Scope: Definition For Function
X Offset {=|arel|is} X_offset
Parameter Value Default
X_offser real undefined

Summary Sets an offset for the x-axis

47

3.5.19. X Scale

Scope: Definition For Function

X Scale {=|arel|is} X_scale

Parameter Value Default
X scale real undefined
Summary Sets a scale factor for the x-axis
3.5.20. Y Offset
Scope: Definition For Function
Y Offset {=|arelis} Y_offset
Parameter Value Default
Y offser real undefined
Summary Sets an offset for the y-axis
3.5.21. Y Scale
Scope: Definition For Function
Y Scale {=|arel|is} Y_scale
Parameter Value Default
Y scale real undefined

Summary Sets a scale factor for the y-axis

3.6. VALUES

Scope: Definition For Function

Begin Values empty
Xyvalues. ..

End

Summary Lists the values of the function. The values should be listed one pair per line,
independent variable first, with whitespace or comma as a separator.

48

3.6.1.
Scope: Values

Xyvalues. ..
Parameter Value Default
Xymlue; real... undefined

Summary For a piecewise linear function, lists an x-y pair for the nth interpolation point.

3.7. RESTART OVERVIEW

Sierra Framework services provide convenient utilities for restarting an analysis from previous results.
The most general capability supplements the results of a previous analysis with internal state variables
to continue an analysis. In this case the input mesh is supplied from the Input Database Name from the
Finite Element Model command block 3.1 and the restart information is obtained from the the Input
Database Name from the Restart Data command block. Continuation of a job using restart data output
is invoked using the command line which follows.

3.7.1. Restart Time
Scope:

Restart Time {=|are|is} Time

Parameter Value Default
Time real undefined

Summary Specify restart file read at a specified time.

Description NOTE: This command must be placed at the Sierra scope of the input file.

Specify the time that the analysis will be restarted. In addition to this line command,
each Region in the analysis (strictly, only the region(s) that will be restarted) must have a
restart block specifying the database to read the restart state data. The restart ’time’ must
be greater than zero and less than or equal to the termination time.

By default, use of this command will cause previous output files (e.g., results, history,
heartbeat, restart) to be overwritten. If this command is chosen, the onus is placed on the
user to ensure that previous output files are not overwritten.

49

4. SOLUTION CONTROL REFERENCE

4.1. OVERVIEW

Arpeggio uses the solution control (SC) library from the SIERR A Framework to orchestrate execution
of simulations. All Arpeggio input files must include a Solution Control Description block in the
Procedure section of the input file. This description contains directives for executing either a
steady-state (sequential) or transient analysis either of which can include nested nonlinear iteration or
subcycling. Within the description one selects a named solution control system where the details of
execution are more clearly spelled out. Because there are similarities between the Sequential, Transient,
Nonlinear Iteration and Subcycling many operations are shared between these directives. However,
each of these segments must be uniquely named internally so they can be properly managed under
solution control.

Within each SC system, execution of a problem defined at the Region level corresponds to an Advance
directive. Thus a steady-state analysis could conceivably be carried out with a single Advance directive.
For transient analysis the system can contain several time blocks, each with a corresponding Advance
directive. Examples of different control structures are given below.

As an example, the solution control command block for a steady-state Aria analysis would reflect the
structure indicated below:

Begin Sierra myJob
. Materials, Solvers, Finite Element Model
Begin Procedure myProcedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance myRegion
End
End
End

Begin Aria Region myRegion

50

ICs, BCs, equations, output instructions
. myRegion output
End Aria Region myRegion
End Procedure myProcedure
End Sierra myJob
A solution control command block for steady-state analysis containing nonlinear iteration for Aria and
Adagio would reflect the general structure indicated below. Note that advancement of the solution can
be governed by a user specified criteria, Parameters for Nonlinear Iteration:
Begin Sierra myJob
. Materials, Solvers, Finite Element Model
Begin Procedure myProcedure
Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Begin Nonlinear Iteration
Advance myAriaRegion
Advance myAdagioRegion
transfer adagio_to_aria
End Nonlinear Iteration
End
End
End
Begin transfer adagio_to_aria
. transfer commands
End transfer adagio_to_aria

Begin Aria Region myAriaRegion

ICs, BCs, equations
. myAriaRegion output

End Aria Region myAriaRegion

SI

Begin Adagio Region myAdagioRegion

ICs, BCs, equations
. myAdagioRegion output

End Adagio Region myAdagioRegion
End Procedure myProcedure

End Sierra myJob

52

In the case of transient analysis the solution control command block will contain specification of times
for which the analysis will be carried out. Additionally parameters defining the time integration must
also be supplied by the user. Details concerning time integration parameters are included in the user
manual for the application. A simple example the solution control command block for transient
analysis would resemble the structure indicated below:
Begin Sierra myJob
. Materials, Solvers, Finite Element Model
Begin Procedure My_Aria_Procedure
Begin Solution Control Description

Use System Main

Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region

End

Begin Transient Time_Block_2
Advance My_Aria_Region

End

End

Begin Parameters For Transient Time_Block_1
Start Time 0.0
Number of steps = 8
Begin Parameters For Aria Region My_Aria_Region
Time Step Variation = Fixed
Initial Time Step Size = 0.001
End
End

Begin Parameters For Transient Time_Block_2
Begin Parameters For Aria Region My_Aria_Region

Time Step Variation = Adaptive
Initial Time Step Size = 0.001
Predictor-Corrector Tolerance = le-3
Minimum Time Step Size = le-6

53

End
End

End
Ena Procedure My_Aria_Procedure
Ena Sierra myJob
Similarly subcycled iterations in a one-way coupling between Aria and Presto could also be carried out
in a transient analysis. In this case Presto subcycles at a small time, Aria has a larger time step and Aria is
advanced when the two time steps arrive at the same solution time.
Begin Sierra myJob
éegin Procedure My_Aria_Procedure
Begin Solution Control Description

Use System Main

Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Transfer Presto_to_Aria
Advance My_Aria_Region

Begin Subcycle PrestoSubcycle
Transfer Aria_to_Presto
Advance PrestoRegion

End

End

End
Begin Parameters For Transient Time_Block_1

Start Time = 0.0
Number of steps = 8

Begin Parameters For Aria Region My_Aria_Region
Time Step Variation = Fixed
Initial Time Step Size = 0.001

End

54

Begin Parameters for Presto Region PrestoRegion
initial time step = 1.0e-6
time step scale factor = 1.0
time step increase factor = 10.
step interval = 500
End
End

End
Begin Aria Region myAriaRegion

End Aria Region myAriaRegion

Begin Presto Region myPrestoRegion

End Presto Region myPrestoRegion
End Procedure myProcedure

End Sierra myJob

It is important to note that Solution Control can orchestrate the execution of one Region or the
execution of many Regions. Within a loosely-coupled code analysis SC is also used to control the
movement of data between the coupled codes using the Transfer subsystem.

The outline views of various couplings include both Transfer and Advance events. In the examples
above the event will always occur in the sequence specified. Alternatively one can specify that the event
be carried out conditionally subject to criteria described syntactically as a "C" language

[When — expression| where the expression criteria includes internal code variables or explicit
evaluations. Here the input [When — expression| is parsed and transformed into an executable "C"
statement. While some of the internal code variables used by a [When — expression] are intuitive (i.e.
CURRENT_TIME and CURRENT_STEP) many others are application dependent. The most widely used
explicit evaluations are measures of convergence based upon solution residuals adagio.norm(0.0)
for solid mechanics applications and aria.MaxResidualNorm(0.0) for thermal-fluid applications.
Several examples of [W hen — expression| are given below noting that the "C" expression must be
enclosed in quotes within the input file.

Convergence based upon comparison of application residuals:

Begin parameters for nonlinear converge_step_pl

55

following two lines shown must be a single input command line
converged when $"(aria.MaxResidualNorm(0.0) < 1.e-6 && adagio.norm(0.0)
< 1.e-6) || CURRENT_STEP > 2000"
End parameters for nonlinear converge_step_pl
Transfer at first step and then every four steps:
Transfer aria_to_adagio when "(CURRENT_STEP == 1) || (CURRENT_STEP %, 4 == 0)"
Advance the region at second step:

advance aria_region when "CURRENT_STEP == 2"

Additionally, one may also use application specific global variables in the [W hen — expression|
criteria. Global variables that are generally available for use are listed as such in the simulation log file.
Unfortunately these variables may not be directly accessible to the user. Hence consultation with an
application developer may be required in this regard.

56

In the case of transient analysis it is sometimes necessary to initialize a distribution of values before the
analysis actually begins. As an example, one may want to initialize a Field that will be transferred to
another Region with a distribution of values with the goal of setting a reference state. For this purpose
solution control provides a means of initialization, Initialize.
Begin Sierra myJob
. Materials, Solvers, Finite Element Model
Begin Procedure My_Aria_Procedure
Begin Initialize
Transfer varl_Region_to_var2_My_Aria_Region
End Initialize

Begin Solution Control Description

Use system Initialize
Use System Main

Begin System Main

Simulation Start Time = 0.0
Simulation Termination Time = 10.0
Simulation Max Global Iterations = 1000

Begin Transient Time_Block_1
Advance My_Aria_Region
Advance varl_Region

End

End

Begin Parameters For Transient Time_Block_1
Start Time = 0.0
Number of steps = 8
Begin Parameters For Aria Region varl_Region
. parameter commands
End
Begin Parameters For Aria Region My_Aria_Region
. parameter commands
End
End

End

. Varl_Region commands

57

. My_Aria_Region commands
End Procedure My_Aria_Procedure

End Sierra myJob

58

There are certains steps one will have to take when it is desired to just advance either the Aria or Adagio
region in one of the transient blocks in an Arpeggio simulation.

The example shown below displays an Adagio-only second transient block. All transferred fields from
the disabled app to the still-enabled app need to be handled using the steps described below. With this

example, the only relevant transferred field is the temperature.

The first step taken was to switch new and old temperature states in Aria between the transient blocks.
This will allow the Adagio region in the next transient block to use the latest temperature solution from
Aria. The other notable syntax in the second transient block is to keep the aria to adagio transfer
command in place. This input syntax will make sure the Adagio region uses a consistent temperature
value while the region is being advanced.

Use System Main
Begin System Main
Begin Transient time_block
Advance aria_region

#begin subcycle
Transfer aria_to_adagio
Advance adagio_region
#end subcycle

Transfer adagio_to_aria
End Transient time_block
Transfer T_switch

Begin Transient time_block2
Advance aria_region

#begin subcycle
Transfer aria_to_adagio
Advance adagio_region
#end subcycle

End Transient time_block2
End System Main

Begin Transfer aria_to_adagio

Copy Volume Nodes from aria_region to adagio_region

Send Field solution->TEMPERATURE State NEW to Temperature State NEW
End Transfer aria_to_adagio

59

Begin Transfer adagio_to_aria

Copy Volume Nodes from adagio_region to aria_region

Send Field DISPLACEMENT State New to Solution->Mesh_Displacements State New
End Transfer adagio_to_aria

Begin Transfer T_switch
Copy Volume Nodes From Aria_region to Aria_region
Send Field solution->Temperature State 0ld to solution->Temperature State Ne
Send Field solution->Temperature State New to solution->Temperature State 01
End

4.2. SOLUTION CONTROL DESCRIPTION

Scope: Procedure

Begin Solution Control Description Name
Use System Name

Begin Initialize Name

End

Begin Parameters For

End

Begin System Name
End

End

Summary Contains the commands needed to execute an analysis using the arpeggio procedure that
utilizes Solver Control.

4.2.1. Use System

Scope: Solution Control Description

Use System Name

Parameter Value Default
Name string undefined

Summary This set the name of which system to use.

60

4.3.

Scope:

SYSTEM

Solution Control Description

Begin System Name

End

Adapt Region_mame... Using Field_name... [When When-expression
]
Compute Indicator On Region_name... Using Indicator_mame... [

When When-expression]
Event Name... [When When-ezpression]

Execute Postprocessor Group Group_name... On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Mark Region_mame... Using Marker_name... [When When-expresstion

]

Markadapt Regton_name Using Marker [When When-expression]
Output Name [When When-expression]

Simulation Max Global Iterations {=|arel|is} Number
Simulation Start Time {=|are|is} Number

Simulation Termination Time {=|are|is} Number

Transfer WName [When When-expression]

Use Initialize Name

Begin Adaptivity Name

End

Begin Sequential Name

End

Begin Transient Name

End

61

Summary This block wraps a solver system for a given name. The NAME parameter is the name
used to define the system. There can be more than one system block in the Solver
Control Description block. The "use system NAME" line commmand controls which
one is to be used.

4.3.1. Adapt

Scope: System

Adapt Region_name... Using Fteld_name... [When When-expression]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.3.2. Compute Indicator On

Scope: System

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name gtrifg. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.3.3. Event

Scope: System

Event Name... [When When-exzpression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

62

4.3.4. Execute Postprocessor Group

Scope: System

Execute Postprocessor Group Group_name... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.3.5. Indicatemarkadapt

Scope: System

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression

]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt ...

4.3.6. Mark

Scope: System

Mark Region_name... Using Marker_name... [When When-ezpression]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

63

4.3.7. Markadapt

Scope: System

Markadapt Region_name Using Marker [When When-ezpression]

Parameter Value Default
Region_name string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.3.8. Output

Scope: System

Output Name [When When-expresston]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.3.9. Simulation Max Global Iterations

Scope: System

Simulation Max Global Iterations {=|are|is} Number

Parameter Value Default
Number integer undefined

Summary The Total number of Solves.

4.3.10. Simulation Start Time

Scope: System

Simulation Start Time {=|are|is} Number

Parameter Value Default
Number real undefined

Summary Simulation starting time. (by default 0.0)

64

4.3.11. Simulation Termination Time
Scope: System

Simulation Termination Time {=|are| is} Number

Parameter Value Default
Number real undefined

Summary The drop dead time.

4.3.12. Transfer

Scope: System

Transfer Name [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

4.3.13. Use Initialize

Scope: System

Use Initialize Name

Parameter Value Default
Name string undefined

Summary This set the name of which initialization to use.

4.4. TRANSIENT

Scope: System

Begin Transient Name

Adapt Regton_name... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_mame... [

When When-expression]
Event Name... [When When-ezpression]

6s

Execute Postprocessor Group Group_mame... 0On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-ezpression

]

Markadapt Regton_name Using Marker [When When-expression]
Output Name [When When-ezpression]

Transfer Name [When When-expression]

Begin Adaptivity Name

End

Begin Nonlinear Name

End

Begin Subcycle Name

End

End

Summary This block is used to wrap a time loop.

44.1. Adapt

Scope: Transient

Adapt Region_name... Using Field_name... [When When-expresstion]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

66

4.4.2. Advance

Scope: Transient

Advance Name... [When When-expression]
Parameter Value Default
Name gtring. .. undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.4.3. Compute Indicator On

Scope: Transient

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.44. Event

Scope: Transient

Event Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

67

4.4.5. Execute Postprocessor Group

Scope: Transient

Execute Postprocessor Group Group_mame... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.4.6. Indicatemarkadapt

Scope: Transient

Indicatemarkadapt Region_name Using Indicator Marker [When When-expresstion

]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adape...

4.4.7. Involve

Scope: Transient

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

68

4.4.8. Mark

Scope: Transient

Mark Region_mame... Using Marker_name... [When When-expresston]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

44.9. Markadapt

Scope: Transient

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.4.10. Output

Scope: Transient

Output Name [When When-expresston]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.4.11. Transfer

Scope: Transient

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

69

4.5.

NONLINEAR

Scope: Sequential

Begin Nonlinear Name

Adapt Region_mame... Using Field_name... [When When-expression
]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_mname... [

When When-expression]
Event Name... [When When-exzpression]

Execute Postprocessor Group Group_mame... 0On Region_mname... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_mame... Using Marker_name... [When When-expresstion

]

Markadapt Regton_name Using Marker [When When-expression]
Output Name [When When-expresston]

Transfer Name [When When-expression]

Begin Subcycle Name

End
End
Summary This block is used to wrap a nonlinear solve loop.
4.51. Adapt
Scope: Nonlinear
Adapt Region_mame... Using Field_mame... [When When-expression]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block

should be performed.

70

4.5.2. Advance

Scope: Nonlinear

Advance Name... [When When-expression]
Parameter Value Default
Name gtring. .. undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.5.3. Compute Indicator On

Scope: Nonlinear

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.5.4. Event

Scope: Nonlinear

Event Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

71

4.5.5. Execute Postprocessor Group

Scope: Nonlinear

Execute Postprocessor Group Group_mame... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.5.6. Indicatemarkadapt

Scope: Nonlinear

Indicatemarkadapt Region_name Using Indicator Marker [When When-expresstion

]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adape...

4.5.7. Involve

Scope: Nonlinear

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

72

4.5.8. Mark

Scope: Nonlinear

Mark Region_mame... Using Marker_name... [When When-expresston]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.5.9. Markadapt

Scope: Nonlinear

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.5.10. Output

Scope: Nonlinear

Output Name [When When-expresston]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.5.11. Transfer

Scope: Nonlinear

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

73

4.6.

SUBCYCLE

Scope: Nonlinear

Begin Subcycle Name

Adapt Regton_mame... Using Field_name... [When When-expression
]

Advance Name... [When When-exzpression]

Compute Indicator On Region_mame... Using Indicator_name... [

When When-expression]
Event Name... [When When-ezpression]

Execute Postprocessor Group Group_name... 0On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_mame... Using Marker_name... [When When-ezpression

]
Markadapt Regton_name Using Marker [When When-expression]
Output WName [When When-expression]

Transfer Name [When When-expression]

End
Summary This block is used to wrap a subcycle time loop.
4.6.1. Adapt
Scope: Subcycle
Adapt Region_name... Using Fteld_name... [When When-expresstion]
Parameter Value Default
Region_name string. .. undefined
Field_name string. .. undefined
Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block

should be performed.

74

4.6.2. Advance

Scope: Subcycle

Advance Name... [When When-expression]
Parameter Value Default
Name gtring. .. undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.6.3. Compute Indicator On

Scope: Subcycle

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string... undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.6.4. Event

Scope: Subcycle

Event Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

75

4.6.5. Execute Postprocessor Group

Scope: Subcycle

Execute Postprocessor Group Group_mame... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.6.6. Indicatemarkadapt
Scope: Subcycle

Indicatemarkadapt Region_name Using Indicator Marker [When When-expresstion

]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adape...

4.6.7. Involve

Scope: Subcycle

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

76

4.6.8. Mark
Scope: Subcycle

Mark Region_mame... Using Marker_name... [When When-expresston]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.6.9. Markadapt
Scope: Subcycle

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.6.10. Output
Scope: Subcycle

Output Name [When When-expresston]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.6.11. Transfer
Scope: Subcycle

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

77

4.7.

Scope:

SEQUENTIAL

System

Begin Sequential Name

End

Adapt Region_mame... Using Field_name... [When When-ezpression
]

Advance Name... [When When-expression]

Compute Indicator On Region_name... Using Indicator_mname... [

When When-expression]
Event Name... [When When-ezpression]

Execute Postprocessor Group Group_name... 0On Region_name... [
When When-expression]

Indicatemarkadapt Region_name Using Indicator Marker [When
When-expression]

Involve Name

Mark Region_name... Using Marker_name... [When When-expression

]

Markadapt Regton_name Using Marker [When When-ezpression]
Output Name [When When-expresston]

Transfer Name [When When-expression]

Begin Adaptivity Name

End

Begin Nonlinear Name

End

Summary This block is used to wrap a sequential solution. It is used to wrap a sequence of

Non-Linear or pseudo time solve step solves.

78

4.71. Adapt

Scope: Sequential

Adapt Region_name... Using Field_name... [When When-expresston]
Parameter Value Default
Region_name string. .. undefined
Field_name FEPINE . o undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.7.2. Advance

Scope: Sequential

Advance Name... [When When-expression]
Parameter Value Default
Name string... undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.7.3. Compute Indicator On

Scope: Sequential

Compute Indicator On Region_name... Using Indicator_name... [When
When-expression]

Parameter Value Default
Region_name string. .. undefined
Indicator_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

79

4.7.4. Event

Scope: Sequential

Event Name... [When When-exzpression]
Parameter Value Default
Name string... undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.7.5. Execute Postprocessor Group
Scope: Sequential

Execute Postprocessor Group Group_mame... On Region_name... [When
When-expression]

Parameter Value Default
Group_name string. .. undefined
Region_name string. .. undefined

Summary Used within a Solver Control block to cause the group named group_name to be
executed on region region_name.

4.7.6. Indicatemarkadapt

Scope: Sequential

Indicatemarkadapt Region_name Using Indicator Marker [When When-expression

]

Parameter Value Default
Region_name string undefined
Indicator string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Compute Indicator On ... Mark ... Adapt...

4.7.7. Involve
Scope: Sequential

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

8o

4.7.8. Mark

Scope: Sequential

Mark Region_mame... Using Marker_name... [When When-expresston]
Parameter Value Default
Region_name string. .. undefined
Marker_name string. .. undefined

Summary Used within a Solver Control block to indicate a mesh adaptment on the specific block
should be performed.

4.7.9. Markadapt

Scope: Sequential

Markadapt Region_name Using Marker [When When-expression]

Parameter Value Default
Region_name string undefined
Marker string undefined

Summary Shortcut line command... equivalent to: Mark ... Adapt ...

4.7.10. Output

Scope: Sequential

Output Name [When When-expresston]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.7.11. Transfer

Scope: Sequential

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

81

4.8. INITIALIZE

Scope: Solution Control Description

Begin Initialize Name
Advance Name... [When When-expression]
Event Name... [When When-exzpression]
Involve Name
Transfer Name [When When-expression]

End

Summary This block wraps a initializer for a given name. The NAME parameter is the name used
to define the initialization block. There can be more than one initialize block in the
Solver Control Description block. The "use initialize NAME" line commmand controls
which one is to be used.

4.8.1. Advance

Scope: Initialize

Advance Name... [When When-expresstion]
Parameter Value Default
Name gtring. .. undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.8.2. Event

Scope: Initialize

Event Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

82

4.8.3. Involve

Scope: Initialize

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

4.8.4. Transfer

Scope: Initialize

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

4.9. PARAMETERS FOR

Scope: Solution Control Description

Begin Parameters For
Converged When Convergence-expression
Incremental Number 0f Steps {=|arel|is} Number
Initial Deltat {=|arel|is} Number
Number Of Adaptivity Steps {=|are|is} Number
Number 0f Steps {=|arel|is} Number
Reinitialize Transient
Start Time {=|are|is} Number
Termination Time {=|arel|is} Number
Time Step Quantum {=|are|is} TimeStepQuantum
Time Step Style TimeStepStyle. ..
Total Change In Time {=|arel|is} Number

Begin Parameters For Aria Region RegionlName

83

End

End

Summary A Solver Control PARAMETERS block to set up control data for the SC_type

parameter. Inside this block one sets the time step parameters or nonlinear parameters.

4.9.1. Converged When

Scope: Parameters For

Converged When Convergence-expression

Parameter Value Default
Convergence-expression (expression) undefined

Summary Set the convergence expression.

4.9.2. Incremental Number Of Steps

Scope: Parameters For

Incremental Number 0f Steps {=|arel|is} Number

Parameter Value Default
Number integer undefined

Summary The incremental number steps to run the time for nonlinear loop. Number of time steps
to run after restarting. NUMBER OF STEPS is total number of steps to run

4.9.3. Initial Deltat

Scope: Parameters For

Initial Deltat {=|are| is} Number

Parameter Value Default
Number real undefined

Summary Assign an initial delta T

84

4.9.4. Number Of Adaptivity Steps

Scope: Parameters For

Number O0f Adaptivity Steps {=|are|is} Number

Parameter Value Default
Number integer undefined
Summary The number steps to run the time or nonlinear loop
4.9.5. Number Of Steps
Scope: Parameters For
Number 0f Steps {=|arel|is} Number
Parameter Value Default
Number integer undefined
Summary The number steps to run the time for nonlinear loop
4.9.6. Reinitialize Transient
Scope: Parameters For
Summary Reset time and re-initialize regions each step of the adaptivity loop.
4.9.7. Start Time
Scope: Parameters For
Start Time {=|are|is} Number
Parameter Value Default
Number real undefined
Summary Assign a start time.
4.9.8. Termination Time
Scope: Parameters For
Termination Time {=|are|is} Number
Parameter Value Default
Number real undefined

Summary Assign a final time to stop

85

4.9.9. Time Step Quantum

Scope: Parameters For

Time Step Quantum {=|are|is} TimeStepQuantum

Parameter Value Default
TimeStepQuantum real undefined

Summary Set the time stepping quantum time for SNAP style stepping.

4.9.10. Time Step Style

Scope: Parameters For

Time Step Style TimeStepStyle. ..

Parameter Value Default
TimeStepStyle {clip|noclip |nosnap | snap} CLIP NOSNAP

Summary Set the time stepping style.

When CLIP is specified, the time step size will be clipped at the last step of the transient
loop so that it ends at the transient loop’s end time. If clip is not specified, the last time is
allowed to exceed to the transient loop’s end time and the following transient loop will
start at the exceeded end time.

When SNAP is specified, the time step is broken down into "quantum” time units. By
default this quantum time is 12 orders of magnitude down from the difference between

the start and end time for the transient loop. This value can be overridden using the
TIME STEP QUANTUM line command. All time values are "snapped” to multiples of
the quantum time by rounding to the nearest quantum multiple.

4.9.11. Total Change In Time

Scope: Parameters For

Total Change In Time {=|arel|is} Number

Parameter Value Default
Number real undefined

Summary Use this number and the initial time to compute termination time.

86

4.9.12. Advance

Scope:

Advance Name... [When When-expression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that advances the solution.
The name is that matches the physics.

4.9.13. Converged When
Scope:

Converged When Convergence-expression

Parameter Value Default
Convergence-expression (expression) undefined

Summary Set the convergence expression.

4.9.14. Event

Scope:

Event Name... [When When-ezpression]
Parameter Value Default
Name string. .. undefined

Summary Used within a Solver Control block to indicate a single step that has no time associated
with it. It can cause a solution transfer between regions or cause something to print.

4.9.15. Initial Deltat
Scope:

Initial Deltat {=|are| is} Number

Parameter Value Default
Number real undefined

Summary Assign an initial delta T

87

4.9.16. Involve
Scope:

Involve Name

Parameter Value Default
Name string undefined

Summary Specifiy a physics participant to a coupled problem solved using matrix-free nonlinear.

4.9.17. Number Of Adaptivity Steps
Scope:

Number Of Adaptivity Steps {=|arel|is} Number

Parameter Value Default
Number integer undefined

Summary The number steps to run the time or nonlinear loop

4.9.18. Number Of Steps
Scope:

Number Of Steps {=|arel|is} Number

Parameter Value Default
Number integer undefined

Summary The number steps to run the time for nonlinear loop

4.9.19. Output
Scope:

Output WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Output line command which execute a perform I/O on the region.

4.9.20. Reinitialize Transient
Scope:

Summary Reset time and re-initialize regions each step of the adaptivity loop.

88

4.9.21. Simulation Max Global Iterations
Scope:

Simulation Max Global Iterations {=|are|is} Number

Parameter Value Default
Number integer undefined

Summary The Total number of Solves.

4.9.22. Simulation Start Time
Scope:

Simulation Start Time {=|are|is} Number

Parameter Value Default
Number real undefined

Summary Simulation starting time. (by default 0.0)

4.9.23. Simulation Termination Time
Scope:

Simulation Termination Time {=|are| is} Number

Parameter Value Default
Number real undefined

Summary The drop dead time.

4.9.24. Start Time
Scope:

Start Time {=|are|is} Number

Parameter Value Default
Number real undefined

Summary Assign a start time.

89

4.9.25. Termination Time
Scope:

Termination Time {=|are|is} Number

Parameter Value Default
Number real undefined

Summary Assign a final time to stop

4.9.26. Time Step Quantum
Scope:

Time Step Quantum {=|are|is} TimeStepQuantum

Parameter Value Default
TimeStepQuantum real undefined

Summary = Set the time stepping quantum time for SNAP style stepping.

4.9.27. Time Step Style
Scope:

Time Step Style TimeStepStyle. ..

Parameter Value Default
TimeStepStyle {clip|noclip | nosnap | snap} CLIP NOSNAP

Summary Set the time stepping style.

When CLIP is specified, the time step size will be clipped at the last step of the transient
loop so that it ends at the transient loop’s end time. If clip is not specified, the last time is
allowed to exceed to the transient loop’s end time and the following transient loop will
start at the exceeded end time.

When SNAP is specified, the time step is broken down into "quantum” time units. By
default this quantum time is 12 orders of magnitude down from the difference between
the start and end time for the transient loop. This value can be overridden using the
TIME STEP QUANTUM line command. All time values are "snapped” to multiples of
the quantum time by rounding to the nearest quantum multiple.

90

4.9.28. Total Change In Time
Scope:

Total Change In Time {=|arel|is} Number

Parameter Value Default
Number real undefined

Summary Use this number and the initial time to compute termination time.

4.9.29. Transfer
Scope:

Transfer WName [When When-expression]

Parameter Value Default
Name string undefined

Summary A Solver Control Transfer line command which executes all transfers defined from the
specified region. All transfers with a send region of 'name’ will be executed.

4.9.30. Use Initialize
Scope:

Use Initialize Name

Parameter Value Default
Name string undefined

Summary This set the name of which initialization to use.

4.9.31. Use System
Scope:

Use System Name

Parameter Value Default
Name string undefined

Summary This set the name of which system to use.

91

5. TRANSFER REFERENCE

5.1. OVERVIEW

Recall that Sierra Mechanics supports application data associated with nodes, elements, faces or edges of
a meshed discretization as in Figure 1.3-1. The Sierra Transfer utility provides the means by which to
communicate data between two Sierra application Regions. Generally speaking the same type of data is
most often communicated but data movement need not be for the same type, e.g. nodal data can be
communicated to element data and vice-versa.

The Transfer utility is fairly flexible as it provides the ability to move data directly onto another problem
domain either by direct copy or by interpolation. Analysts without prior experience with transfer are
often uncertain as to which type of transfer to use. The two capabilities function exactly as their names
imply but understanding which method to use requires a basic understanding of how each method
works.

Copy transfer assumes that the discretization for applications involved in the transfer are identical.
Moreover, copy transfer also assumes that the mesh is identical so that global IDs of nodes and elements
within each mesh are the same. Under these assumptions a geometric search of source to destination
locations is not necessary and a simple algorithm is able to perform the data transfer in a straightforward
manner.

Interpolation transfer is much more general than copy transfer since it assumes only that data from one
application must be geometrically mapped for use in another application. A mathematical definition of
this mapping is made possible using the results from a geometric search of points on the destination
mesh and their image on the sending mesh. With regard to code performance copy transfer will always
more efficient than interpolation transfer but is rarely applicable in mainstream simulations. Interpolate
transfer is designed to deal with complications that arise in mapping data from one application to the
other and is more reliable. As a rule, one should always use interpolation transfer and not copy transfer.
At the same time an analyst should strategize model construction so as to offset some of the
performance costs of interpolation transfer.

Even with a basic understanding of transfer users of what transfer operations should be defined. Several
proper transfer source and destinations are illustrated in Figure 5.1-1, here the numbers on the figures
correspond to the ExoduslI global IDs of nodes or elements.

Problematic transfer source and destination configurations are illustrated in Figure 5.1-2. Once again the
numbers on the figures correspond to the ExodusII global IDs of nodes or elements.

In using the transfer utility one must clearly define the sending region (where the data resides) and the
the receiving region (the data destination). Additionally one must also specify the general geometric

o

2 6 10 14 —_— 2 6 10 14
3 7 11 5] o |3 7 11 15
4 8 12 16 NODE 4 8 12 16
COPY
[L]
10 1 11 12 7 4 25 12 17
6 4 9 13 — ‘2 10 23 8 11
14 8 5 7] — >
NODE
3 2 16 150 INTERPOLATE {24 15 9 3 13}
L L]
4 65 22 45 1 8 4
— 2 12 16
34 2 23 16
ELEMENT 3 20 13
INTERPOLATE

Figure 5.1-1.. Valid Transfer Operations

location of data sender and receiver based upon existing mesh entities (blocks or surfaces). Sender and
receiver need not be of same topology but the source and target destinations should overlap
geometrically. Clearly the definition mesh entities influences time spent in the geometric search process
and should be a key consideration in model construction.

The following section outlines the commands to be used in setting up transfer operations. Special
attention should be paid to the syntax of the SEND command line since it differs between COPY and
INTERPOLATION transfer.

Since several different uses of transfer can arise and several of those examples for steady problems are
included below. The same basic setup of transfer would apply to transient problems as well.

A skeleton outline of one-way transfer from Region_1 to Region_2 in a steady-state problem would

be:

Begin Sierra
Begin Transfer my_transfer
transfer commands for first_region to second_region

End

93

1 5 9 13 1 4] 7 10 13
2 6 10 14 o2 5 8L 1 144
3 7 11 15
4 8 12 16 NoDE 43 6, 9l 12] 15

COPY

@ L] 00— —0—0
1 4] 7 10 13 5 9 7 10 13
2 5 8 11 14 2 1 8 3 4

@ L J o ————0—0—0

3 s 9 12 150 NODE J2 6, 14 11 15

COPY
@ L] @ L]
1 4 7 1 5 6
® L J [L
2 5 8 2 7 9
EREREN RN
ELEMENT
COPY

Figure 5.1-2.. Invalid Transfer Operation

Begin Procedure My_Aria_Procedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_transfer
Advance second_Region
End
End
End

Begin Aria Region first_region
eq energy for temperature On block_1 using ql with lumped_mass diff
End

Begin Aria Region second_region

94

eq energy for temperature On block_1 using ql with xfer
End
End

End Sierra

95

A skeleton outline of two-way transfer between Region_1 to Region_2 in a steady-state problem would

be:
Begin Sierra
Begin Transfer my_first_transfer
transfer commands for first_region to second_region
End
Begin Transfer my_second_transfer
transfer commands for second_region to first_region
End
Begin Procedure My_Aria_Procedure
Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region
transfer my_second_transfer
End
End
End

Begin Aria Region first_region

eq energy for temperature On block_1 using ql with diff
eq species_3 for temperature On block_1 using ql with xfer

End
Begin Aria Region second_region

eq energy for temperature On block_1 using ql with xfer
eq species_3 for species_3 0On block_1 using ql with diff

End

96

End

End Sierra

97

Assume an input mesh for an Input_Output Region 6.1 contains a nodal variable ConvCoeft. In this
case a skeleton outline for one-way transfer of ConvCoeft to to Region_2 in a steady-state problem
would be:

Begin Sierra
éegin Transfer my_first_transfer
éransfer commands for input_output_region to second_region
éEND field hNd state none TO ConvCoeff state none
Ena
éegin Procedure My_Aria_Procedure

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance first_Region
transfer my_first_transfer
Advance second_Region
End
End
End

Begin Input_Output io_region
USE FINITE ELEMENT MODEL my_input_transfer
End
Begin Aria Region second_region
USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
End

End

End Sierra

5.2. TRANSFER

Scope: Procedure

98

Begin Transfer Transfer_name
Abort If Field Not Defined On Copy Transfer Send Or Receive Object
All Fields
Copy UOptionl Option2 From From_region_mame To To_region_name
Distance Function Is Closest Receive Node To Send Centroid
Exclude Ghosted
From Optionl To Optionl
Gauss Point Integration Order {=|arel|is} Order

Interpolate Optionl Option2 From From_region_name To
To_region_name

Interpolation Function User_Subroutine
Nodes Outside Region {=|are|is} Option

Search Coordinate Field Source_field_name State Optionl To
Destination_field_name State Option2

Search Geometric Tolerance {=|are|is} Geometric_tolerance

Search Surface Gap Tolerance {=|arel|is} Surface_gap_tolerance [Or
Less]

Search Type {=l|arel|is} [Optionl Option2 Option3]
Select One Receiver For Each Send Object

Select One Unique Receiver For Each Send Object
Send Predefined-transfer Fields

Send Block From_blocks... To To_blocks...

Send Field Source_field_name State Optionl To
Destination_field_name State Option2 [Lower Bound Lower_bound
Upper Bound Upper_bound]

Begin Receive Blocks

End

Begin Send Blocks
End

End

99

Summary transfer region/mesh information. the mechanics/variables information will get sorted
out by the calling procedure.

5.2.1. Abort If Field Not Defined On Copy Transfer Send Or

Receive Object
Scope: Transfer

Summary For testing purposes only. Normally mesh objects in the send or receive mesh which do
not have the specified field defined on them are just ignored. This line command allows
the construction of tests in which it is known that every mesh object should have the

specified field defined on it and to abort if that field is not found.

5.2.2. All Fields

Scope: Transfer

Summary Select all fields for transfer that have same name and state for source and destination
regions.

5.2.3. Copy

Scope: Transfer

Copy Optionl Option2 From From_regtion_mame To To_region_name

Parameter Value Default
Optionr {surface | volume} undefined
Optionz {constraints | elements | nodes} undefined
From_region_name string undefined
10_region_name string undefined

Summary Copy transfer elements, nodes or constraints from one region to another. The copy
transfer is very specific in that the sending and receiving mesh parts must have identical
global ids for every element to be copied. The copy transfer works by iterating over all the
mesh objects in the receiving mesh and using the global id of the receiving mesh object to
find a mesh object in the sending mesh with the same global id. The field to transfer is
then copied from the sending to receiving objects. There is no interpolation and the
actual coordinates of the sending and receiving objects are not used and could be very
different. The copy transfer is used in very special cases where the same mesh was read
into both the sending and receiving meshes, there was no element death and there was no
adaptivity. In this special case, a copy transfer can be much faster than an interpolation
transfer.

100

5.2.4. Distance Function Is Closest Receive Node To Send
Centroid

Scope: Transfer

Summary To be used in conjunction with "SELECT ONE UNIQUE RECEIVER FOR EACH
SEND OBJECT". This helped in the case where the sending and receiving element
blocks did not overlap and an element transfer was using element centroids for the
distance computation. The elements were very distorted so that a centroid of a surface
element could be far from the surface. It was wanted that the receiving element be the
one close to the surface of the block and close to the sending element in the adjacent
block. Using the corner nodes was enough since it was a tet mesh with plane faces. In this
particular and unusual case this alternative method of matching sending and receiving
elements was useful, but it is not expected to be used often or maybe never again.

5.2.5. Exclude Ghosted
Scope: Transfer

Summary exclude ghosted nodes from a copy transfer

5.2.6. From

Scope: Transfer

From Optionl To Uptionl

Parameter Value Default

Optionr {constraints | elements | nodes} undefined

Optionz {constraints | elements | gauss_points | undefined
nodes}

Summary Allows the send/receive mesh objects to be different.

5.2.7. Gauss Point Integration Order

Scope: Transfer

Gauss Point Integration Order {=|arel|is} Order

Parameter Value Default
Order integer undefined

Summary Integration order to use when transferring to Gauss points.

I0I

5.2.8. Interpolate

Scope: Transfer

Interpolate Optionl UOption2 From From_region_name To To_region_name

Parameter Value Default
Optionr {surface | volume} undefined
Optionz {constraints | elements | nodes} undefined
From_region_name string undefined
1o_region_name string undefined

Summary Interpolate will transfer elements, nodes or constraints from one mesh to another. The
interpolation transfer is very general in that the field values to transfer will be
interpolated from the sending to receiving mesh based on the coordinates of the sending
and receiving mesh objects.

Many line commands can be used to modify the behavior of the interpolation transfer
but the basic algorithm is straightforward. Every mesh object in the receiving mesh is
converted into a point. For elements this is the average of the nodal coordinates. An
element in the sending mesh containing this point is found. If the field to transfer is
nodal, the element shape functions are used to interpolate the nodal field to the receiving
point. If the field to transfer is elemental, a bi-linear least squares fit based upon
neighboring elements is first performed and then used to define the interpolation of the
element field at the receiving point.

5.2.9. Interpolation Function

Scope: Transfer

Interpolation Function User_Subroutine

Parameter Value Default
User_Subroutine string undefined

Summary Allows an application defined subroutine to be used for the interpolation. Normally the
interpolation transfer will determine the best type of interpolation to use: Basis
functions for nodal fields and a neighborhood least squares fit for element fields. This
line command can be used to override this if needed. It also allows an application to
register it’s own special interpolation functions that can then be used if the special name
it was registered with is known.

102

5.2.10. Nodes Outside Region

Scope: Transfer

Nodes Outside Region {=|are|is} Option

Parameter Value Default
Option {extrapolate | ignore | project | undefined
truncate}

Summary This line command defines what to do when a receiving point is outside the scope of the
sending mesh.

IGNORE - The receiving mesh object can be ignored and will receive no value. This is
almost never a good idea as it can cause mesh objects just outside to have a zero value
when the nodes just inside the mesh might have very large values. This can resultin a
discontinuous receiving field.

EXTR APOLATE - This is the default behavior. The sending field is extrapolated
beyond the bounds of the sending mesh. This can lead to extrapolation error, such as
when a large gradient at the surface causes a negative values when only positive values are

acceptable. If this happens to the upper and lower bounds that can be placed on the
fields to be transferred with the SEND FIELD command.

TRUNCATE - The receiving coordinate is projected back to the surface of the sending
mesh to determine a value. This ensures that the receiving value is outside of the field
values in the sending mesh.

PROJECT - This option is similar to TRUNCATE in which the receiving coordinate is
projected back to the surface of the sending mesh to determine a value. In this case more
effort is made to make sure that the projection is normal to the surface in the sending
mesh. Sometimes gives a better result than Truncate but is a little more expensive to
compute.

If the PROJECT option is used in transferring of surface values, the sending mesh
should envelope the receiving mesh. Failure to satisfy this condition will generally result
in failure of the transfer.

5.2.11. Search Coordinate Field
Scope: Transfer

Search Coordinate Field Source_field_name State Optionl To
Destination_field_name State UOptionl

103

Parameter Value Default

Source_field_name string undefined
Optiont {new | nm1 | nm2 | nm3 | nm4 | none | 01d} undefined
Destination_field_name string undefined
Optionz {new | nm1 | nm2 | nm3 | nm4 | none | 01d} undefined

Summary Normally the interpolation transfers use the default coordinate field to determine
geometry information. This line command can be used to specify an alternate field.

5.2.12. Search Geometric Tolerance

Scope: Transfer

Search Geometric Tolerance {=|arel|is} Geometric_tolerance

Parameter Value Default
Geometric_tolerance real undefined

5.2.13. Search Surface Gap Tolerance

Scope: Transfer

Search Surface Gap Tolerance {=|are|is} Surface_gap_tolerance [Or Less]

Parameter Value Default
Surface_gap_rolerance real undefined

Summary Thisis a tricky parameter best ignored, let it default to some small number. During the
interpolation transfer there is a geometric search based on the coordinates of the send
and receive objects. As part of this search, an axis aligned bounding box is contracted for
each sending object and SEARCH GAP TOLER ANCE is used to make this box bigger
than just a tight bounding box. Lists of receiving points are then quickly found within
these axis aligned boxes.

If all points in the receiving mesh are within at least one box, no additional searching
needs to be done and the search algorithm is fast. If there are still points in the receiving
mesh that were outside of EVERY box, then a warning message will be issued about an
"expensive search for extrapolation” for these points. This expensive search” can be very
costly if a large number of receiving objects fall into this category and this line command
is provided for those special cases.

The OR LESS optional parameter is used when the tolerance must be set to large value
for one part of the mesh but much of the mesh needs a much smaller value. In some cases
it is neccessary for the tolerance to be set to the actual largest surface gap tolerance which
may be far too large a gap for the rest of the mesh. Setting OR LESS allows the search
tolerance to be reduced in areas of the mesh thus resulting in a faster search.

104

5.2.14. Search Type
Scope: Transfer

5.2.15. Select One Receiver For Each Send Object

Scope: Transfer

Summary

This option will cause each sending object to be used once and only once. This will have
the side effect of some receiving objects not getting any value at all. If you use this option,
you will also want to set NODES OUTSIDE REGION IGNORE The example which
necessitated this option was a case in which there was a delta function defined on an
element in the sending mesh. It was desirable that the delta functions be summed into
the receiving mesh such that the total value of the sending was conserved. It was better to
have only a single element on the receiving side have a non-zero value that was the sum of
sending values and not worry about how close the receiving element was to the sending
element. A check that this option is working is to use Encore to computer the sum of the
values of the sending and receiving fields to make sure the total sum is the same.

5.2.16. Select One Unique Receiver For Each Send Object
Scope: Transfer

Summary

An unusual flag to get around an odd problem. Normally each receive object transfers
from the nearest sending object so it is almost always the case that a send object will be
used multiple times to define a receiving value. This option will cause each sending
object to be used only once. This will have the side effect of some receiving objects not
getting any value at all. If you use this option, you will also want to set NODES
OUTSIDE REGION IGNORE or else the uniqueness will be lost for nodes outside the
sending region. The example which necessitated this option was a case in which there
was a delta function defined on an element in the sending mesh. It was desirable that the
delta function be defined on the receiving mesh for only a single element in the
neighborhood of the sending element. The analysis was more sensitive to the number of
delta functions on the receiving side than the location. So it was better to have only a
single element on the receiving side have a non-zero value and not worry about how close
the receiving element was to the sending element.

5.2.17. Send
Scope: Transfer

Send Predefined-transfer Fields

105

Parameter

Value Default

Predefined-transfer {> undefined

Summary

Use predefine transfer semantics provided by the specified name.

5.2.18. Send Block
Scope: Transfer

Send Block From_blocks... To To_blocks...
Parameter Value Default
From_blocks string. .. undefined
10_blocks SETIE. . undefined
Summary Add element blocks to a particular same mesh element copy transfer operator.

The copy transfer can have multiple of these lines to define many blocks, but each line
sends a single block to a single block: SEND BLOCK block_1 TO block_1 SEND
BLOCK block_r1o1 TO block_ror

The interpolation transfer can have only a single SEND BLOCK line, but can define
many from/to blocks: SEND BLOCK block_3 block_s block_6 TO block_3 block_s

5.2.19. Send Field
Scope: Transfer

Send Field

Source_field_name State UOptionl To Destination_field_name State

Option2 [Lower Bound Lower_bound Upper Bound Upper_bound]

Parameter Value Default
Source_field_name string undefined
Optionr {new | nm1 | nm2 | nm3 | nm4 | none | 01d} undefined
Destination_field_name string undefined
Optionz {new | nm1 | nm2 | nm3 | nm4 | none | 01d} undefined
Summary Specifies the mapping between source and destination field names. Vector and tensor

fields can be subscripted using parenthesis and 1’s based or brackets and o based. Notes
on subscripting: (o) Does not work for COPY transfers, only INTERPOLATION type
transfers. (1) If the field name itself actually contains either parenthesis or brackets then
we are in trouble and an error is going to be thrown due to a syntax error in index
specification. (2) Only a single subscript is allowed so vectors of vectors or higher order
tensors can not use double subscripts. But it should be possible to determine the correct
offset within the field and pick out the correct value with a little effort. (3) Once
subscripted, only a single value will be transferred. It is not possible to transfer multiple
values starting at a certain index, instead multiple line commands must be used, as shown
above. (4) The indexes can be o based with brackets or 1 based when using parenthesis.

106

Although this could be very confusing if mixed within a single line command. (5) Both
the from and to fields can be subscripted independently on the same line.

example SEND FIELD velocity TO velocity SEND FIELD temp TO temperature lower
bound o SEND FIELD x TO y lower bound 10 upper bound 100 SEND FIELD A(2)

TO B(3) lower bound 10 upper bound 100 SEND FIELD A[1] TO B[2] lower bound 10
upper bound 100

107

6. INPUT OUTPUT REGION
REFERENCE

6.1. INPUT_OUTPUT REGION OVERVIEW

For some coupled simulations one can approximate part of the problem physics independent of the
entire problem physics. In order to facilitate this type of loose application coupling the Sierra
Framework provides the ability to input datasets that include the output of other simulations. An
application can then make requests of information from these datasets. In fullfilling these requests, data
can be extracted from these datasets and be copied or interpolated to another problem domain.
Moreover these requests can be satisfied by data interpolated through time. The mechanism provided to
achieve this end goal is known as the Input_Output Region and its usage is described in what follows.

The input_output region works in tandem with transfer 5.1 and solution control 4. Here transfer carries
out the communication of data and solution control provides synchronization of the data transfer.
Note that just like other Sierra Regions the input_output region must have its own Finite Element
model command block defined.

As an example, let us assume that an input mesh for an Input_Output Region contains a nodal variable
ConvCoeff that we wish to use in another Region. In this case an outline for one-way transfer of
ConvCoeft to to a Region, second_region, in a steady-state problem would be:

Begin Sierra
éegin Finite Element Model input_transfer
Eﬁd
éegin Transfer my_first_transfer
éransfer commands for input_output_region to second_region
éEND field hNd state none TO ConvCoeff state none
Ené

Begin Procedure My_Aria_Procedure

108

Begin Solution Control Description
Use System Main
Begin System Main
Begin Sequential MySolveBlock
Advance io_region
transfer my_first_transfer
Advance second_Region
End
End
End

Begin Input_Output io_region
USE FINITE ELEMENT MODEL my_input_transfer
End
Begin Aria Region second_region
use Finite Element Model input_transfer
USER FIELD REAL NODE SCALAR ConvCoeff on surface_1
End

End

End Sierra

6.2. INPUT_OUTPUT REGION

Scope: Procedure

Begin Input_Output Region Parameter_block_name

Create Element Field Field_name 0f Type Option And Dimension
Dimension [Value {=|arel|is} Number...]

Create Nodal Field Field_name 0f Type Option And Dimension
Dimension [Value {=|arel|is} Number...]

Fixed Time [{=|arel|is} Fized_time]

Offset Time {=|are|is} Period_offset_time
Periodicity Time {=|arel|is} Periodicity_time
Start Time {=|are|is} Start_time

109

Use Finite Element Model ModelName [Model Coordinates Are
Nodal_variable_name]

Begin Heartbeat Label

End

Begin History Output Label

End

Begin Restart Data Label

End

Begin Results Output Label

End

End

Summary BEGIN INPUT TR ANSFER model _name USE FINITE ELEMENT MODEL fred
START TIME is o OFFSET TIME is 1 PERIODICITY TIME is 10 END INPUT
TR ANSFER model _name

6.2.1. Create Element Field
Scope: Input_Output Region

Create Element Field Field_name 0f Type Option And Dimension Dimension [
Value {=|arel|is} Number...]

Parameter Value Default
Field _name string undefined
Option {asym_tensor_03 | complex | undefined

full_tensor_22| full_tensor_36 | integer
| long_integer | matrix_22 |matrix_33

| real | sym_tensor_21 | sym_tensor_31

| sym_tensor_33 |unsigned_integer

| unsigned_integer_64 | vector_2d |

vector_3d}
Dimension integer undefined

Summary Creates a Element Field name field_name on the region.

110

6.2.2. Create Nodal Field
Scope: Input_Output Region

Create Nodal Field Field_name Of Type Option And Dimension Dimension [
Value {=|arelis} Number...]

Parameter Value Default
Field_name string undefined
Option {asym_tensor_03 | complex | undefined

full_tensor_22| full_tensor_36 | integer
| long_integer | matrix_22 | matrix_33

| real | sym_tensor_21 | sym_tensor_31

| sym_tensor_33 |unsigned_integer

| unsigned_integer_64 | vector_2d |

vector_3d}
Dimension integer undefined

Summary Creates a Nodal Field name field_name on the region.

6.2.3. Fixed Time
Scope: Input_Output Region

Summary The line specifies that the database will be read for a single, fixed time. Specifying the
actual time is optional. If the time is not specified, the final time plane in the database

will be read.

NOTE: This option take precedence over the periodic specifications given by START
TIME, PERIODICITY TIME, and OFFSET TIME.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME
is 1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME =
last time in database else if PERIODICITY TIME greater than o then if
APPLICATION TIME less than or equal to START TIME then DATABASE TIME =
APPLICATION TIME else DATABASE TIME = START TIME + (APPLICATION
TIME - START TIME) modulo PERIODICITY TIME else DATABASE TIME =
APPLICATION TIME now add OFFSET TIME to the computed DATABASE TIME

6.2.4. Offset Time
Scope: Input_Output Region

Offset Time {=|are|is} Pertod_offset_time

Parameter Value Default
Period_offset_time real undefined

111

Summary This value is added to the application time to determine what database time slice to
input. If OFFSET TIME were 15 than at application time o database time slice 15 would
be read from the file and used for the initial values. At application time 1, database time
slice 16 would be read. NOTE: The OFFSET TIME is added in after the START TIME
and PERIODICITY TIME are used. The FIXED TIME option take precedence over

this option.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME
is 1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME =
last time in database else if PERIODICITY TIME greater than o then if
APPLICATION TIME less than or equal to START TIME then DATABASE TIME =
APPLICATION TIME else DATABASE TIME = START TIME + (APPLICATION
TIME - START TIME) modulo PERIODICITY TIME else DATABASE TIME =
APPLICATION TIME now add OFFSET TIME to the computed DATABASE TIME

6.2.5. Periodicity Time

Scope: Input_Output Region

Periodicity Time {=|are|is} Periodicity_time

Parameter Value Default
Periodicity_time real undefined

Summary START TIME and PERIODICITY TIME taken together give the time frame from the
input database to use to initialize the application values. If START TIME is 25 and
PERIODICITY TIME is 10, then time slices from 25 to 35 will be used over and over
again as the application time runs from o to whatever. In general DATABASE TIME is
(APPLICATION TIME - START TIME) modulo PERIODICITY TIME after the
application time reaches the START TIME.

NOTE: The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used. The FIXED TIME option take precedence over this option.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME
is 1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME =
last time in database else if PERIODICITY TIME greater than o then if
APPLICATION TIME less than or equal to START TIME then DATABASE TIME =
APPLICATION TIME else DATABASE TIME = START TIME + (APPLICATION
TIME - START TIME) modulo PERIODICITY TIME else DATABASE TIME =
APPLICATION TIME now add OFFSET TIME to the computed DATABASE TIME

112

6.2.6. Start Time
Scope: Input_Output Region

Start Time {=|are|is} Start_time

Parameter Value Default
Start_time real undefined

Summary The time in which to start applying PERIODICITY TIME. If PERIODICITY TIME is
not specified then START TIME is ignored.

NOTES: The OFFSET TIME is added in after the START TIME and PERIODICITY
TIME are used. The FIXED TIME option take precedence over this option.

if FIXED TIME is specified then if FIXED TIME value is given then (eg., FIXED TIME
is 1.) DATABASE TIME = FIXED TIME else (eg., FIXED TIME) DATABASE TIME =
last time in database else if PERIODICITY TIME greater than o then if
APPLICATION TIME less than or equal to START TIME then DATABASE TIME =
APPLICATION TIME else DATABASE TIME = START TIME + (APPLICATION
TIME - START TIME) modulo PERIODICITY TIME else DATABASE TIME =
APPLICATION TIME now add OFFSET TIME to the computed DATABASE TIME

6.2.7. Use Finite Element Model
Scope: Input_Output Region

Use Finite Element Model ModellName [Model Coordinates Are
Nodal_wvariable_name]

Parameter Value Default
ModelName string undefined

Summary Associates a predefined finite element model with this region.

13

7. EXAMPLES

Sierra application code couplings with Arpeggio can be carried out in a variety of ways. In this chapter a
few simple problems are used to demonstrate some of the coupling approaches.

Here we note that success in performing the coupling hinges upon defining a proper setup for each of
the application codes participating in the coupling. Understandably the coupling becomes more
straightforward if one begins by first setting up each of the independent application code problems (i.e.
an application Region) and later unites the Regions under Arpeggio.

The purpose of the examples is simply to demonstrate the basics of how the problem setup will differ
for various use cases. The examples given here illustrate the use cases most likely to occur:

* One-way coupling of TF with Adagio from file on same mesh 7.1,

* One-way coupling of TF with Adagio from file on different mesh 7.2,

* One-way coupling of TF with Adagio on same mesh using transfer 7.3,
* Two-way coupling of TF with Adagio on same mesh 7.4,

* One way coupling of TF with another TF, same mesh 7.6,

* One way coupling of TF with Presto on same mesh with subcycling 7.5,

7.1. ONE-WAY COUPLING FROM FILE

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be
accomplished simply by supplying a secondary physics solution to the primary physics simulation. In
the context of problem solutions one would first solve the secondary physics problem and then
communicate the solution to a primary physics simulation. Perhaps the easiest way to carry out such a
simulation is to supply the secondary physics solution to the primary physics via file. The following
example describes the process as it might be carried out in Arpeggio.

14

7.1.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Although the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in
the body. For each time step, a heat conduction problem was solved for the temperature distribution
using the Aria code and the results were written to file. The Aria output file is then used as the input file
for Adagio where the temperatures are read into Adagio. Adagio subsequently solves for mechanical
equilibrium which includes calculation of thermal strains due to changing temperatures.

Here we note that the thermal solution file time planes need not correspond to the Adagio time planes
as the thermal solution will be interpolated in time to match the Adagio solution time. Furthermore, in
this problem, an Aria results file is the Adagio input discretization so the problems correspond to the
same mesh. Here it is important that the input Aria discretization contain the nodesets and sidesets
needed to carry out the Adagio simulation. Problems in which one might wish to solve the Adagio
problem on a different discretization can also be dealt with but in a slightly different manner.

7.1.2. Input File

begin sierra barOneWayCouple

begin function analytic_sigma_zz

type is analytic

evaluate expression = "lambda=5.769231e5; mu = 3.84615e5; Delta = 25; alpha = le-4; -((3*lan
end

begin function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values
200.0 0.0
400.0 0.02
end values
end function THERMAL_STRAIN

define direction x with vector 1.0 O.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

oS O O
= O O
oS O O

begin material linear_elastic
density = 0.1
thermal strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6

115

poissons ratio = 0.3
end parameters for model elastic

begin parameters for model elastic_plastic
youngs modulus = 1.e6
poissons ratio = 0.3
yield stress = 1.0e6
hardening modulus = 10.0
beta is 0.999999
end parameters for model elastic_plastic

end material linear_elastic

begin finite element model mesh_arpeggio
Database Name = 3dbar_temp.g
Database Type = exodusII
begin parameters for block block_1
material linear_elastic
model = elastic_plastic
end parameters for block block_1
end finite element model mesh_arpeggio

begin procedure Arpeggio_Procedure

$

$ Add in solver control parameters

$

begin solution control description
use system main
begin system main

begin transient mytransient
advance adagio
end transient mytransient

end system main

begin parameters for transient mytransient
start time = 0.0
termination time = 2.0
Number of Steps 2
begin parameters for adagio region adagio
time increment = 1.0
end

116

end

end solution control description

$___
$ End ofsolver control parameters

$ ___________

coupling is one_way using temperature distribution from file

$ ___________
$ Define the Adagio region
$___ ________ -

begin adagio region adagio
use finite element model mesh_arpeggio

begin user output
include all blocks
compute global analytic_sigma_zz as function analytic_sigma_zz
compute global sigma_zz as max of element stress(zz)
compute at every step
end

begin solution verification
skip times = 0.0 to 1.0
completion file = VerifSigmaZZ
verify global sigma_zz = function analytic_sigma_zz
tolerance = 1
end

begin prescribed temperature
include all blocks
read variable = temperature
end

definition of BCs
begin fixed displacement
surface = surface_10

components = z
end fixed displacement

begin fixed displacement

surface = surface_20
components = z

1y

end fixed displacement

HHE —m—mm s
HHY commm e

begin solver
Begin cg
Target relative
Maximum Iterati
Minimum Iterati
begin full tang
automatic smo
end
end
end

output descript

Residual = 1.0e-11
ons = 30

ons =1

ent preconditioner
othing factor = 0.1

ion ###

begin Results Output output_adagio

Database Name = b
Database Type = e

arOneWayCoupleFromFile_mech.e
xodusII

At Step 0, Increment = 1

nodal Variables =
nodal Variables
nodal Variables
element Variables
global Variables
global variables
global variables
global variables
global variables
end results output

temperature as temperature
velocity as vel

displacement as displ

= stress as stress

= timestep as TIMESTEP

= external_energy as ExternalEnergy
internal_energy as InternalEnergy
= kinetic_energy as KineticEnergy

= momentum as Momentum
output_adagio

end adagio region adagio

end procedure Arpeggio_

end sierra barOneWayCoupl

7.2. ONE-WAY

Procedure

e

COUPLING USING TRANSFER FROM

DIFFERENT MESH

In some coupled physics one of the physics (primary) is dependent upon the other physics (secondary)
but not vice-versa. In this case the coupling is considered to be one-way and can be accomplished simply
by supplying a secondary physics solution to the primary physics simulation. In the context of problem

118

solutions one would first solve the secondary physics problem and then communicate the solution to a
primary physics simulation. As previously demonstrated one way to carry out such a simulation is to
supply the secondary physics solution to the primary physics via file 7.1. However, in some cases the
secondary physics solution is available on a vastly different geometry. In this case the secondary physics
solution must be interpolated onto the primary physics as needed. In Sierra Mechanics the
communication step of such an analysis is carried out using Solution Control and Transfer operations.
Here Transfer describes the information and Solution Control ensures sequencing of information to
the primary physics. The following example describes the solution process to perform a coupled analysis
using a precomputed thermal solution and Adagio.

7.2.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in
the body. For this situation a reasonable approach may be to precompute the heat transfer solution and
then supply it to the mechanical simulation. Here a transient heat conduction problem on a full
geometry was solved for the temperature distribution using the Aria code and the results were saved to
file. Later on the previously computed temperature distribution was supplied to Adagio for solution of
mechanical equilibrium which includes calculation of thermal strains due to changing temperatures. In
this particular case the Adagio problem could be solved by invoking symmetry conditions so the model
geometry is a subset of the thermal model geometry.

In this particular case the Adagio problem could be solved by invoking symmetry conditions so the
model geometry is a subset of the thermal model geometry. During the simulation the transient thermal
solution is read from file these results are then communicated to Adagio using a transfer operation.
Once the Aria values are received by Adagio the structural problem is then solved. Since the thermal and
structural model geometries are different, it is necessary to use the transfer INTERPOLATE operation.
Note that the problem advances with the two applications lock stepped in time with the thermal
solution is being interpolated in both space and time.

7.2.2. Input File

7.3. ONE-WAY COUPLING USING TRANSFER

In many problems of coupled physics one of the physics (primary) is dependent upon the other physics
(secondary) but not vice-versa. In this case the coupling is considered to be one-way and can be
accomplished simply by supplying a secondary physics solution to the primary physics simulation. In
the context of problem solutions one would first solve the secondary physics problem and then
communicate the solution to a primary physics simulation. One way to carry out such a simulation is to
supply the secondary physics solution to the primary physics via file 7.1. However, in many instances it is
more convenient to carry out both simulations simultaneously and directly communicate the secondary
physics solution to the primary physics as needed. In Sierra Mechanics the communication step of such

119

an analysis is carried out using Solution Control and Transfer operations. Here Transfer describes the
information and Solution Control ensures sequencing of information to the primary physics. The
following example describes the solution process to perform a coupled analysis using Aria and

Adagio.

7.3.1. Problem Statement

Consider a one-way coupled thermal structural analysis problem in which a body is free to expand as a
response to gradual temperature change in time. Althought the problem geometry is changing due to
the structural deformation, the geometry change is assumed to have minimal effect upon heat transfer in
the body. For each time step, a heat conduction problem was solved for the temperature distribution
using the Aria code. Once the thermal solution has been obtained the temperature solution is
communicated to Adagio via Transfer and Adagio then solves for mechanical equilibrium which
includes calculation of thermal strains due to changing temperatures.

Note that the problem advances with the two applications lock stepped in time. In this problem the
Aria input discretization is identical to that of Adagio. During the simulation an Aria solution is
performed and Aria results are then communicated to Adagio using a transfer COPY operation. Once
the Aria values are received by Adagio the structural problem is then solved. Problems in which one
might wish to solve the Aria and Adagio problems on different discretizations can dealt with by making
simple modifications to the input replacing the transfer COPY operation with a INTERPOLATE
operation.

7.3.2. Input File

begin sierra bar(OneWayCouple

begin function analytic_sigma_zz
type is analytic

evaluate expression = "lambda=5.769231e5; mu = 3.84615e5; Delta = 25; alpha = le-4;

end

begin function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values
200.0 0.0
400.0 0.02
end values
end function THERMAL_STRAIN

define direction x with vector 1.0 O.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

o O O
= O O
o O O

120

- ((3*lan

begin material linear_elastic
density =0.1
thermal strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e6
poissons ratio = 0.3

end parameters for model elastic

begin parameters for model elastic_plastic
youngs modulus = 1.e6
poissons ratio = 0.3
yield stress = 1.0e6
hardening modulus = 10.0
beta is 0.999999
end parameters for model elastic_plastic

end material linear_elastic

BEGIN AZTEC EQUATION SOLVER solve_temperature

solution method = cg
preconditioning method = jacobi
maximum iterations = 1000
residual norm scaling = r0
residual norm tolerance = 1.0e-6

debug output level =0
END AZTEC EQUATION SOLVER solve_temperature

begin ARIA MATERIAL linear_elastic
thermal conductivity = constant k=401.0

specific heat = constant cp=385
density = constant rho=0.1
heat conduction = Fouriers_law

end ARIA MATERIAL linear_elastic
begin finite element model mesh_arpeggio
Database Name = 3dbar.g
Database Type = exodusII
begin parameters for block block_1
material linear_elastic
model = elastic_plastic
end parameters for block block_1
end finite element model mesh_arpeggio

begin procedure Arpeggio_Procedure

I21

$ ___________

$ Add in solver control parameters

$___
begin solution control description

begin initialize mytransient_init
advance AriaRegion
transfer TariatoTadagio_init
advance adagio

end initialize mytransient_init

use system main

begin system main
use initialize mytransient_init
begin transient mytransient
advance AriaRegion
transfer TariatoTadagio
advance adagio
end transient mytransient

end system main

begin parameters for transient mytransient

start time = 0.0

termination time = 2.0

Number of Steps 2

BEGIN PARAMETERS FOR ARIA REGION AriaRegion
Initial Time Step Size = 1.0
Time Step Variation = Fixed

END

begin parameters for adagio region adagio
time increment = 1.0
end
end

end solution control description

$___ _______

$ End ofsolver control parameters

$
#coupling type 1is one_way

begin transfer TariatoTadagio_init

122

copy volume nodes from AriaRegion to adagio

send field solution->TEMPERATURE state new to temperature state old

send field solution->TEMPERATURE state new to temperature state new
end transfer TariatoTadagio_init

begin transfer TariatoTadagio

copy volume nodes from AriaRegion to adagio

send field solution->TEMPERATURE state new to temperature state new
end transfer TariatoTadagio

Define the Aria region

©@ A B

BEGIN ARIA REGION AriaRegion

use linear solver solve_temperature

nonlinear solution strategy newton
maximum nonlinear iterations = 10
nonlinear residual tolerance = 1.0e-6

nonlinear relaxation factor 1.0

use finite element model mesh_arpeggio

IC const at block_1 Temperature = 273.0
BC const dirichlet at nodelist_20 Temperature = 273.0
BC const dirichlet at nodelist_10 Temperature = 373.0

EQ ENERGY for TEMPERATURE on block_1 using Q1 with DIFF
output description

BEGIN RESULTS OUTPUT LABEL diffusion output

database Name = barOneWayCoupleTransfer_therm.e

at step 0, increment = 1

title Aria cube test

nodal variables = solution->TEMPERATURE as Temperature
END RESULTS OUTPUT LABEL diffusion output

END ARIA REGION AriaRegion

$
$ Define the Adagio region
$ _______

begin adagio region adagio

123

use finite element model mesh_arpeggio

begin user output
include all blocks
compute global analytic_sigma_zz as function analytic_sigma_zz
compute global sigma_zz as max of element stress(zz)
compute at every step
end

begin solution verification
skip times = 0.0 to 1.0
completion file = VerifSigmaZZ
verify global sigma_zz = function analytic_sigma_zz
tolerance =1
end

definition of BCs
begin fixed displacement
surface = surface_10

components = z
end fixed displacement

begin fixed displacement
surface = surface_20
components = z

end fixed displacement

—— - it
Solver definition
##ft e - H#Hit#

begin solver
Begin cg
Target relative Residual = 1.0e-11
Maximum Iterations = 30
Minimum Iteratiomns = 1
begin full tangent preconditioner
automatic smoothing factor = 0.1
end
end
end

output description

begin Results Output output_adagio
Database Name = barOneWayCoupleTransfer_mech.e
Database Type = exodusII

124

At Step 0, Increment = 1
nodal Variables = temperature as temperature
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as TIMESTEP
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum
end results output output_adagio

end adagio region adagio
end procedure Arpeggio_Procedure

end sierra barOneWayCouple

7.4. TWO-WAY COUPLING WITH TRANSFER

7.4.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.4.2. Input File

Converted: gapClosure.i using c2a 0.12
begin sierra gapClosure

begin definition for function THERMAL_STRAIN
type is piecewise linear
ordinate = strain
abscissa = temperature
begin values
373.0 0.0
1373.0 12e-3
end values
end definition for function THERMAL_STRAIN

125

begin definition for function templLeft
type is piecewise linear
begin values
0.0 373
0.5 373
1.0 773
7.0 773
7.5 373
10.0 373
end
end

begin definition for function tempRight
type is piecewise linear
begin values
0.0 373
373
623
873
1123
873
623
.0 373
10.0 373
end
end

~NOo Ok WwN e
O O O O O O O o

o

define direction x with vector 1.0 O.
define direction y with vector 0.0 1.
define direction z with vector 0.0 O.

S O
= O O
o O O

begin Aria material linear_elastic
specific heat = constant c¢cp = 1.0
density = constant rho = 0.1
heat conduction = basic
thermal conductivity = constant k
end

250

begin property specification for material linear_elastic
density = 0.1
thermal strain function = THERMAL_STRAIN

begin parameters for model elastic
youngs modulus = 1.e7
poissons ratio = 0.0

end parameters for model elastic

126

end property specification for material linear_elastic

begin finite element model mesh_calagio
Database Name = gapClosure.g

begin parameters for block block_1
material linear_elastic
model = elastic

end parameters for block block_1

begin parameters for block block_2
material linear_elastic
model = elastic

end parameters for block block_2

end finite element model mesh_calagio
begin aztec equation solver solve_temperature_aztec

solution method = gmres
preconditioning method = jacobi
maximum iterations = 1000

residual norm tolerance = 0.0000001
residual norm scaling = NONE

end aztec equation solver solve_temperature_aztec
begin procedure Acca_Procedure

begin solution control description
Begin Initialize sys_init
advance aria
transfer aria_to_adagio_init
advance adagio
End initialize sys_init
Use System Main
Begin System Main
use Initialize sys_init
Simulation Start Time =
Simulation Termination Time
Begin Transient pl
Begin Nonlinear converge_step_pl
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_pl

Il
@ O
o O

7

End Transient pl
Begin Transient p2
Begin Nonlinear converge_step_p2
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p2
End Transient p2
Begin Transient p3
Begin Nonlinear converge_step_p3
advance_aria_and_adagio
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p3
End Transient p3
Begin Transient p4
Begin Nonlinear converge_step_p4
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p4
End Transient p4
Begin Transient pb
Begin Nonlinear converge_step_p5
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p5
End Transient pb
Begin Transient p6
Begin Nonlinear converge_step_p6
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p6
End Transient p6
Begin Transient p7
Begin Nonlinear converge_step_p7
advance aria
transfer aria_to_adagio
advance adagio

128

transfer adagio_to_aria
End Nonlinear converge_step_p7
End Transient p7
Begin Transient p8
Begin Nonlinear converge_step_p8
advance aria
transfer aria_to_adagio
advance adagio
transfer adagio_to_aria
End Nonlinear converge_step_p8
End Transient p8
End System Main

Begin parameters for nonlinear converge_step_pl

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_pl

Begin parameters for nonlinear converge_step_p2

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_p2

Begin parameters for nonlinear converge_step_p3

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_p3

Begin parameters for nonlinear converge_step_p4

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_p4

Begin parameters for nonlinear converge_step_pb

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_pb

Begin parameters for nonlinear converge_step_p6

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_p6

Begin parameters for nonlinear converge_step_p7

converged when "(aria.MaxResidualNorm(0.0) < 1.

many other choices in documentation
End parameters for nonlinear converge_step_p7

129

e-6

e-6

e-6

e-6

e-6

e-6

e-6

&&

&&

&&

&&

&&

&&

&&

adagio

adagio

adagio

adagio

adagio

adagio

adagio

.norm(0.

.norm(0.

.norm (0.

.norm (0.

.norm(0.

.norm(O0.

.norm (0.

0)

0)

0)

0)

0)

0)

0)

.e-6)

.e-6)

.e-6)

.e-6)

.e-6)

.e-6)

.e-6)

CURRE

CURRE

CURRE

CURRE

CURRE

CURRE

CURRE

Begin parameters for nonlinear converge_step_p8
converged when "(aria.MaxResidualNorm(0.0) < 1.e-6 && adagio.norm(0.0) < 1.e-6) || CURRE
many other choices in documentation

End parameters for nonlinear converge_step_p8

begin parameters for transient pl
start time = 0.0
termination time = 1.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0
end parameters for adagio region adagio

end

begin parameters for transient p2
start time = 1.0
termination time = 2.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 10.0

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 10.0
end parameters for adagio region adagio
end
begin parameters for transient p3
start time = 2.0

termination time = 3.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

130

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0
end parameters for adagio region adagio

end

begin parameters for transient p4
start time = 3.0
termination time = 4.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 0.5
end parameters for adagio region adagio

end

begin parameters for transient pb
start time = 4.0
termination time = 5.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0
end parameters for adagio region adagio
end
begin parameters for transient p6

start time = 5.0
termination time = 6.0

131

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0
end parameters for adagio region adagio

end

begin parameters for transient p7

start time = 6.0
termination time = 7.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 1.0

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 1.0
end parameters for adagio region adagio

end

begin parameters for transient p8

start time = 7.0
termination time = 8.0

BEGIN PARAMETERS FOR Aria REGION Aria
initial time step size = 0.5

time step variation = fixed
time integration method = first_order
END PARAMETERS FOR Aria REGION Aria

begin parameters for adagio region adagio
time increment = 0.5
end parameters for adagio region adagio

end

132

end solution control description

default to: standard_aria_to_adagio_init
begin transfer aria_to_adagio_init
copy volume nodes from aria to adagio
send field solution->temperature state old to temperature state old
send field solution->temperature state new to temperature state new
end

default to: standard_aria_to_adagio_advance
begin transfer aria_to_adagio

copy volume nodes from aria to adagio

send field solution->temperature state new to temperature state new
end

begin transfer adagio_to_aria

copy volume nodes from adagio to aria

send field displacement state new to solution->mesh_displacements state new
end

begin aria region Aria

EQ energy for temperature on all_blocks using Q1 with diff mass # src
EQ mesh for mesh_displacements on all_blocks using Q1 with xfer

Begin Initial Condition myICBlock
temperature = 373.0
add volume block_1
add volume block_2
$can have many of the above and below extent specifiers
$nodeset = nodelist_1
$surface = surface_1
End Initial Condition myICBlock

begin temperature boundary condition surface_14
add surface surface_14
temperature time function = templeft

end

begin temperature boundary condition surface_22
add surface surface_22
temperature time function = tempRight

end

begin contact definition mary

contact surface surf_12 contains surface_12
contact surface surf_24 contains surface_24

133

begin interaction harry
surfaces are surf_24 surf_12
normal tolerance = 10e-5
end
begin enforcement larry
conductance coefficient =2000
enforcement for energy = gap_conductance
end
update search every 1 steps
end

use finite element model mesh_calagio model coordinates are model_coordinates
nonlinear solution strategy = newton

use dof averaged nonlinear residual

accept solution after maximum nonlinear iterations = true

use linear solver solve_temperature_aztec

end Aria region Aria

begin adagio region adagio
use finite element model mesh_calagio model coordinates are model_coordinates

output description
begin Results Output output_adagio
Database Name = gapClosure.e
At Step 0, Increment =1
nodal Variables = temperature as temp
nodal Variables = velocity as vel
nodal Variables = displacement as displ
element Variables = stress as stress
global Variables = timestep as timestep
global variables = external_energy as ExternalEnergy
global variables = internal_energy as InternalEnergy
global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum
end results output output_adagio

definition of BCs

begin fixed displacement
surface = surface_14 surface_22
components = x

end fixed displacement

begin fixed displacement
surface = surface_11 surface_21
components = y

end fixed displacement

134

Contact

begin contact definition
search = dash
contact surface surf_12 contains surface_12
contact surface surf_24 contains surface_24
begin interaction
master = surf_24
slave = surf_12
normal tolerance = 2.5e-4
tangential tolerance = le-2
capture tolerance = 0.25e-4

end
enforcement = al
end
H#H - i
Solver definition
HHH ——m e H#iH#

begin solver

begin Loadstep predictor
type = secant
slip scale factor = 0.0
end

begin control contact
target relative residual = 1.0e-7
target residual = 1.0e-12
maximum iterations = 10
minimum iterations = 0

end

Begin cg
target relative residual = 1.0e-10
target residual = 1.0e-15
Maximum Iterations = 500

0

Minimum Iterations
end

end
end adagio region adagio

end procedure Acca_Procedure

135

end sierra gapClosure

7.5. ESTACK REGRESSION TEST

7.5.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.5.2. Input File

#
Begin Sierra Aria_Presto_example

Define Direction Y_Axis With Vector 0.0 1.0 0.0

Begin Definition For Function Delta
Type is Piecewise Linear
Ordinate is Displacement
Abscissa is Time
Begin Values

0.000E+00 0.00000E+00
1.400E-04 1.40098E-03
2.800E-04 2.80392E-03
4.200E-04 4.20883E-03
5.600E-04 5.61571E-03
7.000E-04 7.02456E-03
8.400E-04 8.43538E-03
9.800E-04 9.84818E-03
1.120E-03 1.12630E-02
1.260E-03 1.26797E-02
1.400E-03 1.40985E-02
1.540E-03 1.55192E-02
1.680E-03 1.69419E-02
1.820E-03 1.83666E-02
1.960E-03 1.97933E-02
2.100E-03 2.12221E-02
2.240E-03 2.26528E-02
2.380E-03 2.40855E-02

00 0 00 00 W 00 00 N N NN N NN NOOOHO”OO OO Lo ool O O DD DWW WwWwwwwNhNDNN

.520E-03
.660E-03
.800E-03
.940E-03
.080E-03
.220E-03
.360E-03
.500E-03
.640E-03
.780E-03
.920E-03
.060E-03
.200E-03
.340E-03
.480E-03
.620E-03
.7T60E-03
.900E-03
.040E-03
.180E-03
.320E-03
.460E-03
.600E-03
.740E-03
.880E-03
.020E-03
.160E-03
.300E-03
.440E-03
.580E-03
.720E-03
.860E-03
.000E-03
.140E-03
.280E-03
.420E-03
.560E-03
.700E-03
.840E-03
.980E-03
.120E-03
.260E-03
.400E-03
.540E-03
.680E-03
.820E-03
.960E-03

© © © 00 W 0 00 W 0 0N NNNNNOH”O”OOOOO O O1Loror oo O DD DD WWWwWwwwwNnNDNN

.55202E-02
.69569E-02
.83957E-02
.98364E-02
.12792E-02
.27240E-02
.41709E-02
.56197E-02
.70706E-02
.85235E-02
.99785E-02
.14354E-02
.28945E-02
.43556E-02
.58187E-02
.72838E-02
.87511E-02
.02204E-02
.16917E-02
.31651E-02
.46406E-02
.61181E-02
.75977E-02
.90794E-02
.05631E-02
.20489E-02
.35368E-02
.50268E-02
.65189E-02
.80131E-02
.95094E-02
.10077E-02
.25082E-02
.40107E-02
.55154E-02
.70222E-02
.86311E-02
.00421E-02
.15552E-02
.30704E-02
.45878E-02
.61073E-02
.76289E-02
.91526E-02
.06785E-02
.22065E-02
.37367E-02

37

L e e O i i o o e e e i e T e i e R R T T e i o (o I (o I (o B (o I (o I (e I Vo]

.100E-03
.240E-03
.380E-03
.520E-03
.660E-03
.800E-03
.940E-03
.008E-02
.022E-02
.036E-02
.050E-02
.064E-02
.078E-02
.092E-02
.106E-02
.120E-02
.134E-02
.148E-02
.162E-02
.176E-02
.190E-02
.204E-02
.218E-02
.232E-02
.246E-02
.260E-02
.274E-02
.288E-02
.302E-02
.316E-02
.330E-02
.344E-02
.358E-02
.372E-02
.386E-02
.400E-02
.414E-02
.428E-02
.442E-02
.456E-02
.470E-02
.484E-02
.498E-02
.512E-02
.526E-02
.540E-02
.554E-02

e e T e T T S e e e e S O N e e T e e e e S e T e T e T e T = T T T N S S S SN S (o J (o M (o B Vo)

.52690E-02
.68035E-02
.83401E-02
.98788E-02
.01420E-01
.02963E-01
.04508E-01
.06055E-01
.07605E-01
.09157E-01
.10711E-01
.12267E-01
.13825E-01
.15385E-01
.16948E-01
.18513E-01
.20080E-01
.21649E-01
.23220E-01
.24794E-01
.26370E-01
.27948E-01
.29528E-01
.31111E-01
.32695E-01
.34282E-01
.35871E-01
.37463E-01
.39056E-01
.40652E-01
.42250E-01
.43850E-01
.45453E-01
.47058E-01
.48665E-01
.50274E-01
.51885E-01
.53499E-01
.556115E-01
.56733E-01
.58354E-01
.59977E-01
.61602E-01
.63229E-01
.64859E-01
.66491E-01
.68125E-01

NN NN DNDNNDMDNDMNDDNMNDMNMNDMNMNMNMNNARER,PRPRRRPRARRPRPRRPRPRRPRRPR PR PBRRPRBRRBRPRRBRRRBRBRRBRBRBRBRBRERBRBB

.568E-02
.582E-02
.596E-02
.610E-02
.624E-02
.638E-02
.652E-02
.666E-02
.680E-02
.694E-02
.7T08E-02
.T22E-02
.736E-02
.750E-02
.764E-02
.7T78E-02
.792E-02
.806E-02
.820E-02
.834E-02
.848E-02
.862E-02
.876E-02
.890E-02
.904E-02
.918E-02
.932E-02
.946E-02
.960E-02
.974E-02
.988E-02
.002E-02
.016E-02
.030E-02
.044E-02
.058E-02
.072E-02
.086E-02
.100E-02
.114E-02
.128E-02
.142E-02
.156E-02
.170E-02
.184E-02
.198E-02
.212E-02

NNDNDNDNDDNDNDNDNDNNDNDNDDNDNNNDNDNNDNNMNDNDNDNDMNNMDNNMNDNDNDNDMDNMNNMNMNMNNNRER,PRAR,APPRP,PPRP,PRPRAPRARrPRPR,rPPRP,rPPRP,rPPRP,rRP,rRPR,rPRPR,rRPR,PPRP,PRPRERPR R

.69762E-01
.71400E-01
.73042E-01
.74685E-01
.76331E-01
.T7979E-01
.79629E-01
.81282E-01
.82937E-01
.84594E-01
.86253E-01
.87915E-01
.89580E-01
.91246E-01
.92915E-01
.94586E-01
.96260E-01
.97936E-01
.99614E-01
.01295E-01
.02978E-01
.04663E-01
.06351E-01
.08041E-01
.09733E-01
.11428E-01
.13125E-01
.14825E-01
.16527E-01
.18231E-01
.19938E-01
.21647E-01
.23359E-01
.25072E-01
.26789E-01
.28507E-01
.30229E-01
.31952E-01
.33678E-01
.35406E-01
.37137E-01
.38870E-01
.40606E-01
.42344E-01
.44085E-01
.45828E-01
.47573E-01

139

NNNNNDNDDNDDNDNDNDDNDNDNDNRNODNNNNNNNNDNNDNDDNDDNDDNDDNDNDNODRNODNNNNNNNNDNDDNDDNDDNDDNDDNDNDNDRNODNDNNDNDNDDNDNDN

.226E-02
.240E-02
.264E-02
.268E-02
.282E-02
.296E-02
.310E-02
.324E-02
.338E-02
.352E-02
.366E-02
.380E-02
.394E-02
.408E-02
.422E-02
.436E-02
.450E-02
.464E-02
.478E-02
.492E-02
.506E-02
.520E-02
.534E-02
.548E-02
.562E-02
.576E-02
.590E-02
.604E-02
.618E-02
.632E-02
.646E-02
.660E-02
.674E-02
.688E-02
.702E-02
.716E-02
.730E-02
.744E-02
.758E-02
.T72E-02
.7T86E-02
.800E-02
.814E-02
.828E-02
.842E-02
.866E-02
.870E-02

W W W WwwWwwwwwwwwwwwwWwWWNNDNNDNDNDPNNDNNDDNDNDDNDNDNDNDNDNDNDNNDNDNNMDNDNDMNDNODNDNODDNDDNDNDNDND

.49321E-01
.51071E-01
.52824E-01
.54579E-01
.56337E-01
.58097E-01
.59859E-01
.61624E-01
.63392E-01
.65162E-01
.66934E-01
.68709E-01
.70487E-01
.72267E-01
. 74049E-01
.75834E-01
.77621E-01
.79411E-01
.81204E-01
.82999E-01
.84796E-01
.86596E-01
.88399E-01
.90204E-01
.92011E-01
.93821E-01
.95634E-01
.97449E-01
.99267E-01
.01087E-01
.02910E-01
.04735E-01
.06563E-01
.08393E-01
.10226E-01
.12062E-01
.13900E-01
.15741E-01
.17584E-01
.19430E-01
.21279E-01
.23130E-01
.24983E-01
.26840E-01
.28699E-01
.30560E-01
.32424E-01

140

W W WwWwwwwwowwwbhddNDdDNDDNDNDNDDNDNDDND

.884E-02
.898E-02
.912E-02
.926E-02
.940E-02
.954E-02
.968E-02
.982E-02
.996E-02
.010E-02
.024E-02
.038E-02
.052E-02
.066E-02
.080E-02
.094E-02
.108E-02
.122E-02
.136E-02
.150E-02
.164E-02
.178E-02
.192E-02
.206E-02
.220E-02
.234E-02
.248E-02
.262E-02
.276E-02
.290E-02
.304E-02
.318E-02
.332E-02
.346E-02
.360E-02
.374E-02
.388E-02
.402E-02
.416E-02
.430E-02
.444E-02
.458E-02
.472E-02
.486E-02
.500E-02
.514E-02
.528E-02

DR R DD DR DD PR W WWWWWWWWWWWWWWWWWWWWWWWWWWWWWwwWwwWwwow

.34291E-01
.36160E-01
.38032E-01
.39907E-01
.41784E-01
.43664E-01
.45546E-01
.47431E-01
.49319E-01
.51209E-01
.53102E-01
.54998E-01
.56896E-01
.58797E-01
.60701E-01
.62607E-01
.64516E-01
.66428E-01
.68342E-01
.7T0259E-01
.72179E-01
.74101E-01
.76027E-01
.7T7954E-01
.79885E-01
.81818E-01
.83754E-01
.85692E-01
.87634E-01
.89578E-01
.91525E-01
.93474E-01
.95426E-01
.97381E-01
.99339E-01
.01299E-01
.03263E-01
.056229E-01
.07197E-01
.09169E-01
.11143E-01
.13120E-01
.15100E-01
.17082E-01
.19068E-01
.21056E-01
.23047E-01

141

DD DR DR DR DD WDWWWWWWWWWWWWWWWWWWWWWWWWWWWWWwwWwwow

.542E-02
.566E-02
.570E-02
.584E-02
.598E-02
.612E-02
.626E-02
.640E-02
.654E-02
.668E-02
.682E-02
.696E-02
.710E-02
.724E-02
.738E-02
.752E-02
.T66E-02
.780E-02
.794E-02
.808E-02
.822E-02
.836E-02
.850E-02
.864E-02
.878E-02
.892E-02
.906E-02
.920E-02
.934E-02
.948E-02
.962E-02
.976E-02
.990E-02
.004E-02
.018E-02
.032E-02
.046E-02
.060E-02
.074E-02
.088E-02
.102E-02
.116E-02
.130E-02
.144E-02
.158E-02
.172E-02
.186E-02

(S B e e < e I BN < s B £ N ; Y ~QR QU GO " N S N NN NG G G QU QU QR QR SO S G O N N SO O NS O N O NS QY SO SO SO SO

.25040E-01
.27037E-01
.29036E-01
.31038E-01
.33043E-01
.35050E-01
.37061E-01
.39074E-01
.41090E-01
.43109E-01
.45131E-01
.47156E-01
.49183E-01
.51213E-01
.53246E-01
.55282E-01
.57321E-01
.59363E-01
.61407E-01
.63455E-01
.65505E-01
.67558E-01
.69614E-01
.71673E-01
.73735E-01
.75800E-01
.T7867E-01
.79938E-01
.82011E-01
.84087E-01
.86167E-01
.88249E-01
.90334E-01
.92422E-01
.94512E-01
.96606E-01
.98703E-01
.00803E-01
.02905E-01
.05011E-01
.07119E-01
.09231E-01
.11345E-01
.13462E-01
.15583E-01
.17706E-01
.19832E-01

142

S S N N Y N N N Y Y N S Y N N N N Y S N N Y N Y Y N Y S Y QY Y O O NG N Y SO SO N O N

.200E-02
.214E-02
.228E-02
.242E-02
.266E-02
.270E-02
.284E-02
.298E-02
.312E-02
.326E-02
.340E-02
.354E-02
.368E-02
.382E-02
.396E-02
.410E-02
.424E-02
.438E-02
.452E-02
.466E-02
.480E-02
.494E-02
.508E-02
.522E-02
.536E-02
.550E-02
.564E-02
.578E-02
.592E-02
.606E-02
.620E-02
.634E-02
.648E-02
.662E-02
.676E-02
.690E-02
.7T04E-02
.718E-02
.732E-02
.746E-02
.7T60E-02
.T74E-02
.788E-02
.802E-02
.816E-02
.830E-02
.844E-02

D OO OO O O O O O OO O 01 01 o o1 O 01 O 01 O 01 O On O1 O O1 O O1 O O1 O1 O1 O1 01 O1 01 O1 01 O1 O O1 O O1 O O1 O

.21962E-01
.24094E-01
.26229E-01
.28367E-01
.30508E-01
.32653E-01
.34800E-01
.36950E-01
.39103E-01
.41260E-01
.43419E-01
.45581E-01
.47746E-01
.49915E-01
.52086E-01
.54261E-01
.56438E-01
.58619E-01
.60802E-01
.62989E-01
.65179E-01
.67371E-01
.69567E-01
.71766E-01
.73968E-01
.76173E-01
.78382E-01
.80593E-01
.82807E-01
.85025E-01
.87245E-01
.89469E-01
.91696E-01
.93926E-01
.96159E-01
.98395E-01
.00634E-01
.02877E-01
.05122E-01
.07371E-01
.09623E-01
.11878E-01
.14136E-01
.16398E-01
.18662E-01
.20930E-01
.23201E-01

143

(S 1 G 2 B @2 B & 2 B & 2 B & 2 B & 2 BN 2 @ 2 I 2 N@ 2 NG 2 H@ 2 HN@ 2 @ 2 @ 2 & 2 & 2 & 2 I & 2 B & 2 B 2 B 2 R 2 BN@ 2 HN@ 2 NN@ 2 B @ 2 & 2 I & 2 I & 2 I & 2 I & 2 I & 2 N 2 @ 2 B S Y S S S St o S S S S S

.858E-02
.872E-02
.886E-02
.900E-02
.914E-02
.928E-02
.942E-02
.956E-02
.970E-02
.984E-02
.998E-02
.012E-02
.026E-02
.040E-02
.054E-02
.068E-02
.082E-02
.096E-02
.110E-02
.124E-02
.138E-02
.152E-02
.166E-02
.180E-02
.194E-02
.208E-02
.222E-02
.236E-02
.250E-02
.264E-02
.278E-02
.292E-02
.306E-02
.320E-02
.334E-02
.348E-02
.362E-02
.376E-02
.390E-02
.404E-02
.418E-02
.432E-02
.446E-02
.460E-02
.474E-02
.488E-02
.502E-02

NN ANANANAANANAAANTNATANANNTNNTNOODODOD OO OO OO OO OO Oy O O O O O O O O O O O O O O O O OO O OO O

.25475E-01
.27752E-01
.30033E-01
.32316E-01
.34603E-01
.36893E-01
.39186E-01
.41483E-01
.43783E-01
.46085E-01
.48392E-01
.50701E-01
.53014E-01
.55329E-01
.57648E-01
.59971E-01
.62296E-01
.64625E-01
.66957E-01
.69293E-01
.71631E-01
.73973E-01
.76318E-01
.78667E-01
.81019E-01
.83374E-01
.85732E-01
.88094E-01
.90459E-01
.92827E-01
.95199E-01
.97574E-01
.99952E-01
.02334E-01
.04719E-01
.07107E-01
.09498E-01
.11893E-01
.14292E-01
.16693E-01
.19098E-01
.21507E-01
.23919E-01
.26334E-01
.28752E-01
.31174E-01
.33600E-01

144

[e)INe>IiNe) Ie) o> o) o) N o> RN e) B> N > NN @ NG 2 NG 2 BN@ 2 BN @ 2 B & 2 B & 2 B &2 I & 2 B & 2 & 2 (@ 2 RNG 2 HN@ 2 HN@ 2 NN@ 2 N@ 2 N & 2 I & 2 I & 2 I & 2 I & 2 I & 2 & 2 B 2 B@ 2 B@ 2 B@ 2 @ 2 B@ 2 I G 2 BN @ 2 BN @ 2 B & 2 B &2 B &

.516E-02
.530E-02
.544E-02
.568E-02
.572E-02
.586E-02
.600E-02
.614E-02
.628E-02
.642E-02
.656E-02
.670E-02
.684E-02
.698E-02
.T12E-02
.726E-02
.T40E-02
.754E-02
.7T68E-02
.782E-02
.7T96E-02
.810E-02
.824E-02
.838E-02
.852E-02
.866E-02
.880E-02
.894E-02
.908E-02
.922E-02
.936E-02
.950E-02
.964E-02
.978E-02
.992E-02
.006E-02
.020E-02
.034E-02
.048E-02
.062E-02
.076E-02
.090E-02
.104E-02
.118E-02
.132E-02
.146E-02
.160E-02

0 00 00 00 0 0 00 00 00 0 0 0 0 0 0 0 0 00 0 M ~N ~N ~N ~N ~N~N~N~~N~N~N~N~N~N~NNNNNNNNNNANAN

.36028E-01
.38461E-01
.40896E-01
.43335E-01
.45777E-01
.48223E-01
.50673E-01
.53125E-01
.55581E-01
.58041E-01
.60504E-01
.62970E-01
.65440E-01
.67913E-01
.7T0390E-01
.72871E-01
.75354E-01
.77842E-01
.80332E-01
.82826E-01
.85324E-01
.87825E-01
.90330E-01
.92838E-01
.95350E-01
.97865E-01
.00384E-01
.02906E-01
.056432E-01
.07962E-01
.10494E-01
.13031E-01
.15571E-01
.18115E-01
.20662E-01
.23212E-01
.25767E-01
.28325E-01
.30886E-01
.33451E-01
.36020E-01
.38592E-01
.41168E-01
.43747E-01
.46330E-01
.48917E-01
.51507E-01

145

()l e>INe) o) o) B o) B o) B o) i o) i o) o) BN o) Iie) Mo I e) B e) I @) B) i o) i @) Bl o) i e) i e) I o) B o) B o) I o) I @) B o) B 0) B) i @) i @) B @) B @) B 0) B @) B0 i) i @) i) i > Bl @) i @) Bl 0) B @) B @)

.174E-02
.188E-02
.202E-02
.216E-02
.230E-02
.244E-02
.268E-02
.272E-02
.286E-02
.300E-02
.314E-02
.328E-02
.342E-02
.356E-02
.370E-02
.384E-02
.398E-02
.412E-02
.426E-02
.440E-02
.454E-02
.468E-02
.482E-02
.496E-02
.510E-02
.524E-02
.538E-02
.562E-02
.566E-02
.580E-02
.594E-02
.608E-02
.622E-02
.636E-02
.650E-02
.664E-02
.678E-02
.692E-02
.7T06E-02
.720E-02
.7T34E-02
.748E-02
.7T62E-02
.T7T6E-02
.790E-02
.804E-02
.818E-02

© © © © © © © © © © O OV OV OV OV O© O© OV O OV O O © O © O© © © © 0 0 0 O 0 O 0 O 0 O 0 0 0 0 0 0 0

.54101E-01
.56699E-01
.59300E-01
.61905E-01
.64513E-01
.67125E-01
.69741E-01
.72361E-01
. 74984E-01
.77611E-01
.80241E-01
.82875E-01
.85513E-01
.88155E-01
.90800E-01
.93449E-01
.96102E-01
.98758E-01
.01418E-01
.04082E-01
.06750E-01
.09421E-01
.12096E-01
.14775E-01
.17457E-01
.20144E-01
.22834E-01
.25528E-01
.28225E-01
.30927E-01
.33632E-01
.36341E-01
.39054E-01
.41770E-01
.44491E-01
.47215E-01
.49943E-01
.52675E-01
.55410E-01
.58150E-01
.60893E-01
.63640E-01
.66391E-01
.69146E-01
.71905E-01
.74667E-01
.77434E-01

6.832E-02 9.80204E-01
6.846E-02 9.82978E-01
6.860E-02 9.85757E-01
6.874E-02 9.88539E-01
6.888E-02 9.91325E-01
6.902E-02 9.94114E-01
6.916E-02 9.96908E-01
6.930E-02 9.99706E-01
6.944E-02 1.00251E+00
6.958E-02 1.00531E+00
6.972E-02 1.00812E+00
6.986E-02 1.01094E+00
7.000E-02 1.01375E+00
End Values

End Definition For Function Delta

begin definition for function TEMPERATURE
type is piecewise linear
ordinate is temperature
abscissa is time
begin values
0.00 1255.4
1.00 1255.4
end values
end definition for function TEMPERATURE

begin definition for function THERMAL_STRAIN
type is piecewise linear
ordinate is strain
abscissa is temperature
begin values
200.0 0.0
3000.0 0.0
end values
end definition for function THERMAL_STRAIN

Begin Property Specification For Material Resistor
density = 8.0E-4
thermal strain function = THERMAL_STRAIN
begin parameters for model elastic
youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305
End
End

Begin Aria Material Resistor
Electric Displacement = Basic

147

Electrical Permittivity = Constant Kappa=3e-10 # N/V~2
Electrical Resistivity Constant Rho=2e2 # Ohm-mm
End

Begin Property Specification For Material Metal
density = 8.0E-4
thermal strain function = THERMAL_STRAIN
begin parameters for model elastic
youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305
End
End

Begin Aria Material Metal
Electric Displacement = Basic
Electrical Permittivity = Constant Kappa=le-9 # N/V~2
Electrical Resistivity Constant Rho=2e-5 # (Ohm-mm
End

begin property specification for material dielectric
density = 8.0E-4
thermal strain function = THERMAL_STRAIN
begin parameters for model elastic
youngs modulus = 200.0E3 $ MPa
poissons ratio = 0.305
end
end

Begin Aria Material Dielectric
Electric Displacement = Basic
Electrical Permittivity = Constant Kappa=3e-11 # N/V~2
Electrical Resistivity = Constant Rho=1el13 # Ohm-mm
End

begin finite element model meshl
Database Name = estack.g
Database Type = exodusII

begin parameters for block block_1
material resistor
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_1

1]

begin parameters for block block_2
material metal
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_2

begin parameters for block block_3
material dielectric
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_3

begin parameters for block block_4
material metal
model = elastic
hourglass stiffness = 0.05
hourglass viscosity = 0.03

end parameters for block block_4

end finite element model meshl

Trilinos direct equation solver for Aria

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-superlu

End

Begin Procedure The_Procedure

Begin Solution Control Description
Define solution control for advancing and transferring forces and
displacements between Aria and Adagio
Begin System Main
Begin Transient MyTransient
Transfer Presto_to_Aria
Advance AriaRegion
Begin Subcycle PrestoSubcycle
Advance PrestoRegion
End
End
End

Time-stepping parameters

Begin Parameters for Transient MyTransient
Start Time = 0.0

149

time step style noclip
Termination Time = 0.07
Parameters for Aria region: fluid mechanics region
Begin Parameters for Aria Region AriaRegion
Initial Time Step Size = le-3
Time Step Variation = Fixed
End
Parameters for Adagio region: solid mechanics region
Begin Parameters for Presto Region PrestoRegion
initial time step = 1.0e-6
time step scale factor = 1.0
time step increase factor = 10.
step interval = 500
End
End

End Solution Control Description

Begin Transfer Presto_to_Aria

Copy Volume Nodes from PrestoRegion to AriaRegion

Send Field displacement State New to Solution->Mesh_Displacements State New
End

Begin Presto Region PrestoRegion

use finite element model meshil

Begin Prescribed Temperature
function = TEMPERATURE
scale factor = 1.0
include all blocks

End

output description
begin Results Output output_presto
Database Name = estack_presto.e
Database Type = exodusII
At Time 0.0, Increment = 1.0E-3
nodal Variables = force_external as f_ext
nodal Variables force_internal as f_int
nodal Variables = velocity as vel
nodal Variables = acceleration as accl
nodal Variables = displacement as displ
nodal Variables = temperature as temp
element Variables = stress as stress
global Variables = timestep as timestep
global variables = external_energy as ExternalEnergy
global variables internal _energy as InternalEnergy

1]

150

global variables = kinetic_energy as KineticEnergy
global variables = momentum as Momentum
End

definition of boundary conditions

begin fixed displacement
node set = nodelist_1
components = X

End

begin fixed displacement
node set = nodelist_2
components = z

End

begin fixed displacement
node set = nodelist_3
components =y

End

Begin Prescribed Displacement

Node set = nodelist_4
direction = y_axis
function = delta

scale factor 1.0

End
End Presto Region PrestoRegion
Begin Aria Region AriaRegion

Use Finite Element Model meshl
Use Linear Solver Direct_Solver

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = le-6

EQ Voltage for Voltage on all_blocks using Q1 with DIFF

IC const at block_1 Voltage = 5

BC const dirichlet at nodelist_3 Voltage = 0 # ground

BC const dirichlet at nodelist_4 Voltage 10 # prescribed

EQ Mesh for Mesh_Displacements on all_blocks using Q1 with XFER
Begin Results Output The_QOutput

Database Name = estack_aria.e
At step O, increment = 1

151

Title Aria-Presto electro-mechanical coupling

Nodal Variables = solution->Voltage as V

Nodal Variables solution->Mesh_Displacements as Disp
End

End Aria Region AriaRegion
End Procedure The_Procedure

End Sierra Aria_Presto_example

7.6. TV REGRESSION TEST

7.6.1. Problem Statement

This is a test of solving a simple one-dimensional thermal diffusion problem with Dirichlet BCs. The
test problem is shown schematically in Figure. Although the problem is one-dimensional we solve the
problem in a three-dimensional setting. Once the diffusion problem has been solved numerically the
temperature result is postprocessed to obtain a comparison with the analytical result and the
distribution of diffusive heat flux. This test input also demonstrates the use tabular function and
Encore function material property specification in Aria.

7.6.2. Input File

#
#
Begin Sierra Slump_Test

Begin Aria Material Bar
Thermal Conductivity
Electrical Conductivity

Constant k = 1.0
Constant sigma = 1.0
heat conduction = fouriers_law

current density = ohms_law
End

Begin Trilinos Equation Solver Direct_Solver
Solution Method = amesos-umfpack
End

Begin Finite Element Model The_Model
Database Name = mesh3d.g
Begin Parameters For Block block_1
Material Bar

152

End
End

Begin Procedure The_Procedure

begin solution control description
use system main

begin system main
begin sequential mysolveblk
advance Voltage_Region
transfer VtoT
advance Temperature_Region
end
end system main
end solution control description
begin transfer VtoT
copy volume nodes from Voltage_Region to Temperature_Region
send field solution->VOLTAGE state old to solution->VOLTAGE state new
end transfer VtoT
Begin Aria Region Voltage_Region

Use Finite Element Model The_Model

Use Linear Solver Direct_Solver

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-6
Nonlinear Relaxation Factor = 1.0

Sideset 1 : x = x_min

Sideset 2 : x = x_max

Sideset 3 : y = y_min

Sideset 4 : y = y_max

Sideset 5 : z = z_min

Sideset 6 : z = z_max

Sideset 10: y and z surfaces

EQ Current For Voltage On Block_1 Using Q1 With Diff
IC Const on block_1 Voltage = 0.0
BC Const Dirichlet at surface_1 Voltage = 10 # fat/low

153

BC Const Dirichlet at surface_2 Voltage = O # Thin/High End
Begin Results Output Label V_Qutput
Database Name = v.e
At Step 0, Increment is 1
Title TV Test - V Region
Nodal Variables = solution->VOLTAGE as V
End
End
Begin Aria Region Temperature_Region

Use Finite Element Model The_Model

Use Linear Solver Direct_Solver

Nonlinear Solution Strategy = Newton
Maximum Nonlinear Iterations = 10
Nonlinear Residual Tolerance = 1.0e-6
Nonlinear Relaxation Factor = 1.0

Sideset 1 : x = x_min
Sideset 2 : x = x_max
Sideset 3 : y = y_min
Sideset 4 : y = y_max
Sideset 5 : z = z_min
Sideset 6 : z = z_max
Sideset 10: y and z surfaces

EQ Current For Voltage On Block_1 Using Q1 With xfer

EQ Energy For Temperature On Block_1 Using Q1 With Diff Src
IC Const on block_1 Temperature = 298

BC Flux for Energy on surface_3 = Nat_Conv H
BC Flux for Energy on surface_4 = Nat_Conv H
Source for Energy on Block_1 = Joule_Heating

20 T_ref = 298
0.2 T_ref = 298

Begin Results Output Label T_QOutput
Database Name = tv.e
At Step 0, Increment is 1
Title TV Test - T Region
Nodal Variables = solution->VOLTAGE as V
Nodal Variables = solution->TEMPERATURE as T
End

End

154

End

End

155

BIBLIOGRAPHY

[1] Gerald W. Wellman. Mapvar: a computer program to transfer solution data between finite element
meshes. SAND 1999-0466, Sandia National Laboratories, Albuquerque, NM, USA, March 1999. 1.1

[2] The SNTools Project. SN'Tools SourceForge Project. Online. 2.3

157

INDEX

A E
Abort If Field Not Defined On Copy Transfer Send Or estack
Receive Object, 99, 100 Input, 136
Abscissa, 39, 40 Statement, 136
Abscissa Offset, 39, 41 Evaluate Expression, 39, 43
Abscissa Scale, 39, 41 Evaluate From, 39, 45
Adapt, 61, 62, 65, 66, 70, 74, 78, 79 Event, 61, 62, 65, 67, 70, 71, 74, 75, 78, 80, 82, 87
Adaptivity, 61, 66, 78 Exclude Ghosted, 99, 101
Advance, 65, 67, 70, 71, 74, 75, 78, 79, 82, 87 Execute Postprocessor Group, 61, 63, 66, 68, 70, 72, 74, 76,
Alias, 28, 29 78, 80
All Fields, 99, 100 Expression Variable:, 39, 45, 46
At Discontinuity Evaluate To, 39, 41 Expressions, 40
B F

barOneWayCoupleDifferentMesh
Statement, 119
barOneWayCoupleFromDifferentMesh

Finite Element Model, 2.8
Fixed Time, 109, 111
From, 99, 101

Input, 9
barOneWayCoupleFromFile G
Tnpus, 5 gapClosure
Statement, 115 I
nput, 125

barOneWayCoupléIransfer
Input, 120
Statement, 120

Statement, 125
Gauss Point Integration Order, 99, 101
Global Constants, 36
C Global Id Mapping Backward Compatibility, 29, 32

Ciobamn Tiles 75 4i Gravity Vector, 36, 37

Component Separator Character, 28, 30

Compute Indicator On, 61, 62, 65, 67, 70, 71, 74, 75, 78, 79 H
Converged When, 83, 84, 87 H.eartbeat, 1o
Coordinate System, 28, 30 History Output, 1o
Copy, 99, 100
Create, 28, 30 I
Create Element Field, 109, 110 Ideal Gas Constant, 36, 37
Create Nodal Field, 109, m Include All Blocks, 33, 34
Incremental Number Of Steps, 83, 84
D Indicatemarkadapt, 61, 63, 66, 68, 70, 72, 74, 76, 78, 80
Data File, 39, 42 Initial Deltat, 83, 84, 87
Database Name, 2.8, 31 Initialize, 6o, 82
Database Type, 29, 31 Input_Output Region, 109
Debug, 39, 42 Interpolate, 99, 102
Decomposition Method, 29, 31 Interpolation Function, 99, 102
Definition For Function, 39 Inversion Aversion Exponent, 33, 34
Differentiate Expression, 39, 42 Inversion Aversion Stiffness, 34, 35
Distance Function Is Closest Receive Node To Send Inversion Aversion Transition Jacobian, 34, 35
Centroid, 99, 101 Involve, 66, 68, 70, 72, 74, 76, 78, 80, 82, 83, 88

159

K
K-E Turbulence Model Parameter, 36, 37
K-W Turbulence Model Parameter, 36, 38

L
Les Turbulence Model Parameter, 36, 38
Light Speed, 36, 38
Local Coordinate System, 34, 35

M
Mark, 61, 63, 66, 69, 70, 73, 74, 77, 78, 81
Markadapt, 61, 64, 66, 69, 70, 73, 74, 77, 78, 81
Material, 34, 35
Material =, 34, 36

N
Nodes Outside Region, 99, 103
Nonlinear, 66, 70, 78
Number Of Adaptivity Steps, 83, 85, 88
Number Of Steps, 83, 85, 88

(@)
Offset Time, 109, 111
Omit Block, 29, 32
Omit Volume, 29, 32
Ordinate, 40, 46
Ordinate Offset, 40, 46
Ordinate Scale, 40, 47
Output, 61, 64, 66, 69, 70, 73, 74, 77, 78, 81, 88

P
Parameters For, 6o, 83
Parameters For Aria Region, 83
Parameters For Block, 29, 33
Parameters For Phase, 29
Parameters For Surface, 29
Periodicity Time, 109, 112
Phase, 34, 36
Planck Constant, 37, 38

R
Receive Blocks, 99
Reinitialize Transient, 83, 85, 88
Remove Block, 34, 36
Restart Data, 1o
Restart Time, 49
Results Output, 1o

Scale By, 40, 47

Search Coordinate Field, 99, 103
Search Geometric Tolerance, 99, 104
Search Surface Gap Tolerance, 99, 104
Search Type, 99, 105

Select One Receiver For Each Send Object, 99, 105

Select One Unique Receiver For Each Send Object, 99, 105
Send, 99, 105

Send Block, 99, 106

Send Blocks, 99

Send Field, 99, 106

Sequential, 61, 78

Simulation Max Global Iterations, 61, 64, 89
Simulation Start Time, 61, 64, 89
Simulation Termination Time, 61, 65, 89
Solution Control Description, 60

Start Time, 83, 85, 89, 109, 113

Stefan Boltzmann Constant, 37, 39
Subcydle, 66, 70, 74

System, 6o, 61

T
Termination Time, 83, 85, 90
Time Scale Factor, 29, 33
Time Step Quantum, 83, 86, 90
Time Step Style, 83, 86, 90
Total Change In Time, 83, 86, o1
Transfer, 61, 65, 66, 69, 70, 73, 74, 77, 78, 81-83, 91, 98, 99
Transient, 61, 65
Turbulence Model, 37, 39

v
Input, 152
Statement, 152
Type, 40, 47

U
Use Finite Element Model, 110, 113
Use Generic Names, 29, 33
Use Initialize, 61, 65, 91
Use Material, 29, 33
Use System, 60, 91

Vv
Values, 40, 48

X
X Offset, 40, 47
X Scale, 40, 48

Y
Y Offset, 40, 48

Y Scale, 40, 48

160

DISTRIBUTION
Email—Internal _

Technical Library 01177 libref@sandia.gov

161

Sandia
National
Laboratories

Sandia National Laboratories

is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc., for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.

