SANDIA REPORT

SAND2015-8819
Unlimited Release
September, 2015

IDC Use Case Realizations
Working Draft for IDC Discussions

J. Mark Harris, Shack Burns, Ben Hamlet, Mark Montoya, Rudy Sandoval

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's
National Nuclear Security Administration under contract DE-AC04-94AL85000.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government, nor any agency thereof,
nor any of their employees, nor any of their contractors, subcontractors, or their employees,
make any warranty, express or implied, or assume any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represent that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise, does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States Government, any agency thereof, or any of
their contractors or subcontractors. The views and opinions expressed herein do not
necessarily state or reflect those of the United States Government, any agency thereof, or any
of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@osti.gov

Online ordering: http://www.osti.gov/scitech

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5301 Shawnee Rd
Alexandria, VA 22312

Telephone: (800) 553-6847

Facsimile: (703) 605-6900

E-Mail: orders@ntis.gov

Online order: http://www.ntis.gov/search

SAND2015-8819
Unlimited Release
September, 2015

IDC Use Case Realizations
Working Draft for IDC Discussions

J. Mark Harris, Shack Burns, Ben Hamlet, Mark Montoya, Rudy Sandoval
Next Generation Monitoring Systems
Sandia National Laboratories
P.O. Box 5800
Albuquerque, New Mexico 87185-MS0401

Abstract

This document contains 4 use case realizations generated from the model contained in
Rational Software Architect.

This page intentionally left blank

TABLE OF CONTENTS

Use Case HI1erarchycoooiioiiiiiiiiiiicecieee e 6
UCR-02 System Detects EVent........cc.eeviiiiiiiiiiiiiiiiiieeeieee e, 9
UCR-02.08 System Refines Event Locationccccoeevvveeeeeciieeeeenneee, 29
UCR-03.03 Refines EVentcoocueeiiiiiiieiiiieeiieee e 45
UCR-08.05 Views Event HiStOrycccceeviiiiiniiiiiiiiiieeicecieee e, 79

Use Case Hierarchy

The IDC Use Case Hierarchy is shown here. The use cases highlighted in yellow are the use case
realizations that appear in this document.

1 System Acquires Data

1.1 System Receives Station Data

1.2 System Receives Bulletin Data

13 System Automatically Distributes Data

1.4 System Acquires Meteorological Data

1.5 System Synchronizes Acquired Station Data
1.6 System Synchronizes Processing Results

2 System Detects Event

2.1 System Determines Waveform Data Quality
2.2 System Enhances Signals

2.3 System Detects Events using Waveform Correlation
2.4 System Detects Signals

2.5 System Measures Signal Features

2.6 System Builds Events using Signal Detections
2.7 System Resolves Event Conflicts

2.8 System Refines Event Location

2.9 System Refines Event Magnitude

2.10 System Evaluates Moment Tensor

2.11 System Finds Similar Events

2.12 System Predicts Signal Features

3 Analyzes Events

3.1 Selects Data for Analysis

3.2 Refines Event

3.21 Determines Waveform Data Quality

3.2.2 Enhances Signals
3.23 Detects Signals

3.24 Measures Signal Features

3.25 Refines Event Location

3.2.6 Refines Event Magnitude

3.2.7 Evaluates Moment Tensor

3.2.8 Compares Events

3.3 Scans Waveforms and Unassociated Detections
3.4 Builds Event

3.5 Marks Processing Stage Complete

4 Reports Event of Interest

5 Provides Data to Customers
5.1 Requests System Data

5.2
53

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9

7.1
7.2
7.3
7.4
7.5

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

9.1
9.2
9.3
9.4

10

10.1
10.2
103
10.4

11
11.1

Approves Events for External Release
Views System Results

Configures System
Controls Data Acquisition
Configures Station Usage

Defines Processing Sequence
Configures Data Acquisition
Configures Processing Components
Configures System Messages

Views System Configuration History
Configures Analysis Interfaces
Configures System Permissions

Monitors Performance

Analyzes Mission Performance
Monitors System Performance
Monitors Station State-of-Health
System Monitors Mission Performance
Monitors Mission Processing

Supports Operations
Accesses the System

Controls the System

Exports Data

Imports Data

Views Event History

Maintains Operations Log
Provides Analyst Feedback
Views Analyst Feedback

Views Analyst Performance Metrics
Views Security Status

Views Messages

Tests System

Performs Software Component Testing
Creates Test Data Set

Replays Test Data Set

Replays Analyst Actions
Maintains System
Performs System Backups
Performs System Restores
Installs Software Update
System Monitors Security
Performs Research
Analyzes Special Events

11.2
11.3
11.4

12

121
12.2

13

13.1
13.2

14

14.2
14.3
14.4
14.5

Develops New Algorithms and Models
Determines Optimal Processing Component Configuration
Performs Multiple Event Location

Performs Training
Configures Data for Training Subsystem
Trains Analysts

Operates Standalone Subsystem

Conducts Site Survey
Performs Standalone Analysis

IDC Unique

System Assesses Event Consistency
Assesses Event Consistency
System Screens Event

Controls Monitoring Stations

IDC Use Case Realization Report
UCR-02 System Detects Event

USE CASE DESCRIPTION

This use case describes how the System pipeline processes the raw seismic, hydroacoustic, and
infrasound waveform data from a time interval to form event hypotheses. The System first
checks the quality of arriving waveform data and creates data quality control masks for
waveform sections containing data that is unsuitable for processing (see ‘System Determines
Waveform Data Quality” UC). The System then processes waveforms to enhance signal content
while reducing noise (see ‘System Enhances Signals’ UC).

The System detects signals (see ‘System Detects Signals’ UC), measures features on the signal
detections (see ‘System Measures Signal Features’ UC), and then uses the signal detections and
feature measurements to build both single station and network event hypotheses (see ‘System
Builds Events using Signal Detections’ UC). The System uses channel based waveform
correlation techniques to form single-station or network event hypotheses (see ‘System Detects
Events using Waveform Correlation’ UC). The System measures signal features for the event
hypotheses on waveform channels across the network (see ‘System Measures Signal Features’
UC). The System predicts signal detections and their features for events (see 'System Predicts
Signal Features' UC). The System uses similarity parameters to search for historic events similar
to the new event hypothesis (see 'System Finds Similar Events' UC).

After forming event hypotheses, the System resolves conflicting event hypotheses (see ‘System
Resolves Event Conflicts’ UC) and then refines each event hypothesis’ location (see ‘System

Refines Event Location’ UC) and magnitude (see ‘System Refines Event Magnitude’ UC). The
System evaluates the moment tensor for an event (see 'System Evaluates Moment Tensor' UC).

The System pipeline follows a sequence configured by the System Maintainer when pipeline
processing raw waveform data to form event hypotheses (see ‘Configures Processing Sequence’
uQ).

ARCHITECTURE DESCRIPTION

The Processing Sequence Control mechanism is responsible for executing processing sequences
previously defined by the System Maintainer (see “Defines Processing Sequence” UCR).
Processing Sequence classes contain Processing Steps and Flows. These objects form a graph
with Data References travelling on Flows between Processing Steps. Processing Sequence
Control executes a Processing Sequence whenever a Triggering Condition initiating the
Processing Sequence is satisfied. Several types of Processing Step exist in the System. A
Processing Component Invocation Step invokes a control class to perform processing. Control
classes invoked in this manner all realize a common interface named Processing Control IF
which allows the Processing Sequence Control mechanism to invoke them. Control Flow Steps
define loops around one or more Processing Steps, branches to select which of several

9

Processing Steps to execute, and Processing Steps that Processing Sequence Control can execute
in parallel. A Processing Sequence Invocation Step invokes one Processing Sequence as part of
another Processing Sequence.

The Processing Control IF realizations may store data in the OSD, causing OSD callbacks to

Processing Sequence Control. Processing Sequence Control places data references to the
received data on Flows, making the data available to subsequence Processing Steps.

10

USE CASE DIAGRAM

System Clock
Performs St'a[naal one Analysis
«includes
< P S-g.}stem Predicts Signal Features
g sincluges
System Determines Waveform Data Quality i e TN
sincludes - . _
AT sindude» .|
S e sindudes =
’) R i TR System Finds Similar Events
System Enhances Signals et .- System Detects Event - EmgLees
eincludes . i ; ' X " =
4 Cdincludes
siicludes
System Detects Events using Waveform o cingludes T "“System Evaluates Moment Tensor
Correlation 3 sineludes . \ ; S,
3 singludes
System Detects Signals i System Refines Event Magnitude
System Builds Events using
System Measures Signal Signal Detections System Refines Event Location
Features

System Resolves Event

Conflicts
Classes - Processing Sequence Control
[sinterfaces | | - wmechanisma [| sutilitys
g Processing Control IF e IEI Processing Sequence Control | | Es_vstem Clock
| {from Process Control Control) | Mk | {from Mechanism Layer)) | ‘ ffrom Mechanism Layer] |
«mechanism= / \ =5 «enumeration=
E osD : Invocation Completion Status
ffrom Mechanism Layer) : . 2 ¥ [frorrn Pracess Cantrol Elements) |
| = Success F
| = Failuﬁre
0.1
[;Er:tiifyn;b | ‘ aEntit};» i .ka;tii;y»
Q Automatic Processing Rule g Processing Sequence E Processing Step

| [from Pracess Contraol Elements] | | [from Process Control Elements) |

| [from Process Control Elements) |

This diagram shows the Processing Sequence Control class and related classes. Processing
Sequence Control periodically evaluates Automatic Processing Rules to initiate new Processing
Sequences, executes the Processing Steps within a Processing Sequence, and monitors
processing performed by realizations of the Processing Control IF interface.

11

Classes - Processing Sequence

=entity»
Q Processing Sequence
ffrom Process Control Elements] |

*

.3
g aentitys |_incoming., | éﬂtity»
Processing Step - | Flow
outgoing.|

=| (from Process Control Elements] | =| [from Process Control Elements)
R e i VRN e e e

=

=entity=
] Data Reference
[from Process Control Elements) |

_ =entity= ‘ o «entity» i «entity»
|E| Control Flow Step IE{ Processing Component Invocation Step |E| Processing Sequence Invocation Step |
ffrom Process Control Elements) ffrom Process Control Elements) [from Process Control Elements)
«enumeration= «entitg»
[E] Control Flow Step Type E Processing Context
[Eliﬁeq[leﬁtiél' = B 3l L [frqm Proce5§ Crorntrol Elements)
= Parallel
= Conditional
= Loop

This diagram shows the structure of a Processing Sequence. A Processing Sequence consists of
a graph of Processing Steps ordered based on their incoming and outgoing Flows. The System
Maintainer configures Processing Sequences (see “Defines Processing Sequence” UCR) and the
Processing Sequence Control mechanism is responsible for executing the steps of the graph in
the proper order. Each step in the graph invokes a Processing Component, invokes another
Processing Sequence or acts as a Control Flow Step. Control Flow Steps are the only steps that
contain child steps. The child steps represent operands for the control flow. The number of
children varies according the type of control flow. For example, a "Conditional" control flow
step might always have two children: one for the "true" branch and one for the "false" branch.
On the other hand, a "Sequential" or "Parallel" control flow step could have a variable number of

children.

12

Classes - Automatic Processing Rule

«enumerations
Processing Stage Type
| (from Process Control Elements) |
| = Workflow Autamatic
= Workflow Interactive
| =1 Non-Waorkflow

wentitys
g Processing Stage

e Ml b il
=~ Ln_—astage name

®

‘ {from Process Contraol Elements)

i;-_—‘ﬁprevious processing stage [

wentitys

E Automatic Processing Rule |
| {from Process Contral Elements)

*

wentitys
L] Triggering Condition

I‘ [frrom Process Control Elgments]

aentitys
=] Analyst Action

[from Process Control Elements] |
I—Eél action name

sentitys
| pata Condition

|
E [o datatype
: ':'flEl data amount

[frrom Process Control Elgments]

[aentitys
E Processing Sequence
{from Process Contral Elements) |

xentitys
£ Time Condition

| ffraom Process Control Elements)
[ijn_—E'lfrequenqt

This class shows the structure of an Automatic Processing Rule. An Automatic Processing Rule
combines one or more Triggering Conditions with the Processing Sequence executed by the
Processing Sequence Control when the System’s state satisfies those conditions. Several types
of Triggering Conditions exist in the System, including Analyst Action conditions satisfied when
the Analyst takes some action, Data Conditions satisfied when certain types or amounts of data
are acquired or created on the System, and Time Conditions satisfied when a certain amount of
time has elapsed since the conditions was previously satisfied. The System Maintainer can
configure Automatic Processing Rules for each Processing Stage (see “Defines Processing

Sequence” UCR).

13

Classes - Processing Control IF

«mechanisms
Q Processing Sequence Control

« » : : « n
E} Proceesr;gg Context ‘ lffOEI Mecha!_ﬂlsm Faysil = Invocateiz:rg)r:'ltgla?:lion Status
{from Process Control Elements) | {from Process Control Elements)
| = success
| = Failure
«é_ISE» L
«interfaces

@ Processing Control IF
(from Process Contral Contral) |

afealizen _po—————
scontrols N Y| s Invoke () o -y T ORI «controls
g Waveform Correlation Event Detector Control A % Invoke [} ‘ Q Data Quality Control
(from Waveform Correlation Control) et R S AL (from Data Quality Control)
b v s ki s] Gl srealizes “i. | A S 1 Ui (A
gt £ wreglize
) «controls srealizes «controls
IEI Signal Enhancement Control 4 5 E Event Conflict Resolution Control
| (from Signal Enhancement Control) L srealizes | (from Event Conflict Resolution Control)
A R N WY = RAESS She e = «realizes - D L e e e R
—— i . ! «realizes i
wcontrole . w0 . . < wcontrols
EI Signal Detection Feature Measurement Control srealizen ; " g Event Location Control
(from Signal Feature Measurement Cantrol] 3 ¢ ! arealizes i . (from Event Location Contral} |
scontrols | 2 ‘ ! " wcontrols
EI Signal Detection Association Control . 5 4 5 R EI Event Magnitude Control
| [from Signal Detection Association Contral)] ' . (from Event Magnitude Control} |
wControls
] signal Detection Control
| (from Signal Detection Control] | P —
Q Event Analyzer
n {fram Process Control Contral}
=cantrols E |

] Finds Similar Events Control
{from Event Control)

This diagram shows the Processing Control IF interface, the classes realizing its interface, and its
dependencies. Each instance of the Processing Component Invocation Step class (see "Classes -
Processing Sequence Control") is configured to invoke one of the classes realizing the
Processing Control IF through its Invoke() method. The UCRs included by System Detects
Event define behaviors for these classes.

CLASS DESCRIPTIONS

<<control>> Event Analyzer

Responsible for analyzing and updating events with information indicating whether further (e.g.
iterative) automated processing should be performed. Instantiations of this class implement
processing sequence control logic that is unavailable in the other classes realizing the Processing
Control IF.

Event Analyzer implementations have the option to update the processing configuration
parameters used by subsequent Processing Steps. This is similar to how human Analysts select
processing parameters for algorithms they invoke, except that Event Analyzer does not directly
invoke additional Processing Steps. Instead, Event Analyzer stores information in the OSD and
then relies on callbacks to the Processing Sequence Control mechanism to initiate additional
processing. Event Analyzer does this by creating a copy of a data object (e.g. a new version of
an event hypothesis, etc.), updating the processing configuration parameters on that data object,
and then storing the data object and its associated processing configuration parameters in the
14

OSD. OSD callbacks may result in Automatic Processing Rules being satisfied, causing the
Processing Sequence Control mechanism to invoke additional Processing Sequences using the
updated processing configuration parameters. The data objects stored in the OSD are also Event
Analyzer’s outputs, so the Processing Sequence Control Mechanism may set data references to
these objects on the outgoing Flows for the Processing Step that invoked Event Analyzer.

<<control>> Event Location Control
Responsible for controlling the event location computation. Retrieves necessary data, invokes
the appropriate Event Locator to compute the new location, and stores the result.

<<control>> Signal Detection Association Control

Control class responsible for controlling signal detection association calculations. Retrieves
configuration from the OSD, invokes the appropriate Signal Detection Associator Plugin,
computes quality metrics, and stores the new or modified events in the OSD.

<<control>> Signal Detection Control
Responsible for controlling automatic signal detection. Retrieves necessary data, invokes
plugins to detect signals on waveform data and refine signal onset time, and stores the results.

<<control>> Waveform Correlation Event Detector Control

Responsible for controlling waveform correlation event detection computations. Retrieves
necessary data, invokes the appropriate Waveform Correlation Event Detector Plugin to detect
new events, and stores the results.

<<entity>> Analyst Action
Special type of Triggering Condition that is based on an action performed by an Analyst. The set
of available actions is predefined by the system.

<<entity>> Automatic Processing Rule
Represents a Processing Sequence and the set of Triggering Conditions for initiating it.

<<entity>> Control Flow Step

A specialized kind of Processing Step that is used to represent control flow between other
Processing Steps. The Control Flow Step is represented by the type of control flow operation
(e.g. Parallel, Conditional, etc.) and operands to which it applies (i.e. other Processing Steps).

<<entity>> Data Condition
Special type of Triggering Condition that is based on the availability of data (e.g. 100 signal
detections, 15% of all waveforms for the interval).

<<entity>> Data Reference
Represents a reference to data that passes between Processing Steps on a Flow.

<<entity>> Flow
Represents control and data flow between two Processing Steps.

15

<<entity>> Processing Component Invocation Step
A specialized kind of Processing Step that represents an invocation of a specific Processing
Component.

<<entity>> Processing Context

Represents the context in which data is being stored and/or processed. This includes the
processing session (e.g. processed by Analyst vs. processed by System). For Analyst processing,
may identify the Analyst work session. For System processing, may identify the Processing
Sequence and/or Processing Step being executed (including a way to identify a particular
Processing Sequence and Processing Step among the many possible instantiations), the visibility
for the results (private vs. global), and the lifespan of the data (transient vs. persistent). This
information is needed by the Processing Sequence Control to manage the execution of
Processing Sequences, which may execute in the context of an Analyst refining an event or in the
context of the system initiating automatic processing. It is also needed by the Object Storage and
Distribution (OSD) mechanism to determine how to store and distribute the data.

<<entity>> Processing Sequence

A user-configurable set of Processing Steps to be executed by the Processing Sequence Control
mechanism. Each Processing Step may invoke a Processing Component or another Processing
Sequence. Special steps are used to specify control flow (e.g. conditional logic, parallelism,
gte.).

<<entity>> Processing Sequence Invocation Step
A specialized kind of Processing Step that represents an invocation of a specific Processing
Sequence.

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage. The previous processing stage indicates the stage to be used as
the default starting point when creating new processing results in the stage (e.g. when refining an
event in the stage).

<<entity>> Processing Step

Represents a single step within a Processing Sequence. A Processing Step may invoke a
Processing Component or invoke a Processing Sequence, and may optionally specify parameter
overrides for the invoked component/sequence. Special kinds of Processing Steps known as
Control Flow Steps are used to specify control flow between Processing Steps.

<<entity>> Time Condition
Special type of Triggering Condition that is based on time (e.g. every 5 minutes).

<<entity>> Triggering Condition
Represents a condition which must be satisfied in order to trigger a Processing Sequence.

16

<<interface>> Processing Control IF
Defines the interface implemented by all <<control>> classes in the system that are controlled by
the Processing Sequence Control <<mechanism>>.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<mechanism>> Processing Sequence Control
Mechanism for executing and controlling processing sequences configured by the System

Maintainer.

<<utility>> System Clock
Represents the mechanism to schedule, reschedule, and cancel callbacks.

17

SEQUENCE DIAGRAMS
Flow Overview

i} Flow Overview

Expansion Flow - Processing ——={ Expansion Flow - Processing —a Expansion Flow - Processing
Sequence Control - Evaluate Sequence Control - Execute Sequence Control - Execute

Main Flow - System Detects Event |
]) Triggering Conditions | L Processing Sequence L Pracessing Step

Alternate Flow - Processing
| Sequence Control - Startup |

Alternate Flow - Processing ; ‘Ex ansion Flow - Processing Se uence‘—ﬁ‘x Expansion Flow - Processing
Sequence Control Handles OSD i Control - Process Calﬁ]ad? | Sequence Control - Terminate

Callbacks | ' ! |__Processing for Data Reference |

Main Flow - System Detects Event

=] Main Flow - System Detects Event
Q :System Clock | ‘ [;I :Processing Sequence Control |

1: Evaluate Automatic Processing Rules [

[far each AutornaticfProcessing Rule,]

B Evaluété Triggering Conditions [automatic processing rule)

Ll

1

Expansion Flow - Processing Sequence Control - Evaluate Triggering Conditions|

This flow shows how Processing Sequence Control periodically evaluates the Automatic
Processing Rules to trigger Processing Sequence execution.

Operation Descriptions

None

18

Expansion Flow - Processing Sequence Control - Evaluate Triggering
Conditions

@ Expansion Flow - Processing Sequence Control - Evaluate Triggering Conditions

[:Processing | sAutomatic : E ‘Processing E Processing ‘ E ‘Flow |
Sequence Processing Sequence Step ‘ (e —
Control

Rule ; T ¢ [Z !
!
1: Get Triggering Conditions () [
i ey

T |
| ke l

— |

[for each Tlriggering Condition,,]!

[1: Evaluate [triggerii’tg condition }
1 | '
T I i |
| |

] : | |
[if aIITrigg%erirlg Conditions satisfied] [

’ 1: Get Processing Sequence ()
e

11 {
| [
\ L.-ﬂ | Depending on the Automatic
| 2 Lookup Imtrator[lautomatbc processing rule) Processing Rule the initiator

gl

R - will either be the System or a
particular Analyst,

Uses the current initiator and the
Processing Sequence’s Processing
— Context configured by the System
Maintainer to create a Processing
" Context to use for 05D storage
during the current sequence...

; 5: Get Processing Stéps 3]

[! Finds data references for the sequence’s initial
| 6: Get Initial Processing Step () | step, potentially using the O5D. The data
| i i references depend on the rule triggering the
sequence but may be references to new data
(! acquired on the system, references to data

| maodified by an Analyst, etc.

| 7: Get Incoming th%rs () | = = l
: T T bl
| | | |
&: Lookup Data Refefences (automatic processing rule) l 5
i | , |
1t l l | [
I 9: Add Data Refbrence [data re‘fere_gg | ._'
| ""’|
IIU’. Prioritize Processing [) [[[-
; . |
\T "L'H'h"_'"‘""-“-v-----..._..‘_, The System prioritizes Processing Sequences

il working on real-time data over Processing
|11: Execute Pmcessrr‘g Sequence [} Sequences working on late arriving data.
|

-) | l I
' [l

n Flow - Processing Skquence Control - Execute Processing Sequence, s

[rer
gf__x ansi

on
= | | |
|

’ [

This flow shows Processing Sequence Control evaluating the Triggering Conditions for an
Automatic Processing Rule. If all of the Triggering Conditions are satisfied then Processing
19

Sequence Control executes the Processing Sequence associated to the Automatic Processing
Rule.

Operation Descriptions

None

Expansion Flow - Processing Sequence Control - Execute Processing
Sequence

|~_r| Expansion Flow - Processing Sequence Control - Execute Processing Sequence

E :Processing E :Processing
Sequence Control Sequence

|

[while there are remaining Processing 5teps in the Processing Sequence,.]

|

| 1: Get Processing Steps ()
P

| 2: Get Mext Processing Steps [processing sequence)

|

| |
3: Execute Processing Stép [processing step)

|

;’FT—?SF'FI].SE,‘-T',"?.‘F'?W.' Processing Sequence Control - Execute Processing Step|

This flow shows how Processing Sequence Control executes a processing sequence by iteratively
executing the Processing Steps in the sequence.

Operation Descriptions

None

20

Expansion Flow - Processing Sequence Control - Execute Processing
Step

=] ion Flow - i Control - Execute Processing Step
[_:Processing [:Processing _ :Processing __ :Processing (] :Control [Processing £ :Flow
= Sequence Control = Step & component = sequence = Flow Step Control IF
Invocation Step Invocation Step

[if executing a Processing Component Invocation Step]

1: Get Processing Component ()
= E = »

2: Select Processing Control IF Realization () ", Lookup and bind to an instance of a
: class realizing Processing Control IF,

3: Get Incoming Flows [)
2 —r

Each Invoke is paired with a Set Invocation

This step invokes classes realizing the Completion Status. Since these calls are
4: Get Data References|(flows) Processing Control IF interface. Since each asynchronous, the Set Invocation
"] UCR grouped under 'System Detects Event’ Completion Status calls may occurin a

has a class realizing Processing Control IF, different order than the paired Invoke calls.

S: Get Processing Context () those UCRs are invoked by this call.
—_—

e 0 A call to Invoke times out when its Set

6: Invoke (ing context, data re) —— = C Status message is
1 not received by Processing Sequence
" Control within a configured amount of time.
7: Set Invocation Completion Status (processing context) /" | When a timeout occurs or the Invocation
= ~ € Status indicates a failure
occured in a Processing Step, Processing
Sequence Control either retries the Invoke...
[if executing a Processing Sequence Invocation Step]
1: Get Processing Sequence () »
Z:Qecme Processing Sequence ()
-
Expansion Flow - Processing Sequence Control - Execute Processing Sequence
[if executing a Control Flow Step]
__1: Evaluate Control Flo Step ()
e
2: Get Operand Processing Steps ()
- — — >
3: Execute Processing Step (processing step) Execute the appropriate Control Flow Step (or
1= o) steps) based on the Control Flow Step's
i evaluation,

Expansion Flow - Processing Sequence Control - Execute Processing Step

Results may come from OSD callbacks

SRatogkup Processing esplis) (see "Alternate Flow - Processing

- Sequence Control Handles OSD
Callbacks') or evaluating conditional Bazed ot TN Pocetsing Conte, the
3 expressions. 3
ikieafc Data Beterences (practssug (ESURSY 0 invoked Processing Control IF realization will

<! store data in the OSD with a particular
Il lifespan and visibility, Adding Data

& References to Flows provides data to

3: Get Out Fl
{ S 20m9 o“:,” subsequent Processing Steps.
4: Add Data Reference (data reference) \

-

This flow shows how Processing Sequence Control executes a Processing Step. Processing
Sequence Control executes a Processing Component Invocation Step by binding to the
appropriate realization of the Processing Control IF interface, getting the Data References for the
Processing Step, and invoking the Processing Control IF with the Data References. Processing
Sequence Control monitors Invocation Completion Status to determine when the Processing
Control IF invocation completes. Processing Sequence Control executes a Processing Sequence
Invocation Step by initiating execution of that sequence. Processing Sequence Control executes
a Control Flow Step by evaluating the Control Flow Step’s conditions to determine which of the
operand Processing Steps need to be executed and then executing those Processing Steps.

21

Regardless of Processing Step type, after Processing Sequence Control executes the Processing
Step it sets Data References to the Processing Step’s results on the step’s outgoing Flows.
Operation Descriptions

None

Alternate Flow - Processing Sequence Control - Startup

E] Alternate Flow - Processing Sequence Control - Startup

EI :System Control Q Processing E 05D
2 Sequence Control | :

1: Start)

| | 2: Get Automatic Processing Rules (]
-
e

3: Get Processing Sequences () i
.

s - Processing Sequences do not
T change after they are loaded by

| & Iniltiralize Processing Sequences and Rules () | Processing sequence Control.
.

| | These timeframes start at the
current time and have no end
time (i.e. Processing Sequence
Control always receives

| callbacks when it is runningj.

5 Subscribe for Waveforms [Timeframe)
Ly

6: Subscribe for Detections [Timeframe,

[7: Subscribe for Events { Timeframe)

o

8: Subscribe for Event Hypotheses | Timeframe)
B

9: Subscribe for Intervals | Timeframe)

-

The flow shows how System Control starts Processing Sequence Control. Processing Sequence
Control loads each Processing Sequence and subscribes for data updates from the OSD.
Processing Sequence Control subscribes for updates to either provide data to Processing
Sequences (see 'Alternate Flow - Processing Sequence Control Handles OSD Callbacks' or to
remove data from Processing Sequences (see 'Alternate Flow - Processing Sequence Control
Terminates Processing for Data Reference').

Operation Descriptions

Operation: OSD::Subscribe for Detections()

Subscribes for updates regarding signal detection creations, modifications, and associations
occurring within the specified timeframe. This includes updates for new or modified
unassociated signal detections.

Operation: OSD::Subscribe for Waveforms()

Subscribes for updates regarding raw and derived waveforms occurring within a specified
timeframe. This includes information about what waveforms have been acquired by the System

22

as well as what derived waveforms have been formed, but does not include the actual waveform
data.

Operation: OSD::Subscribe for Events()
Subscribes for changes to Event objects within the given timeframe. Callbacks are invoked on
subscribers any time an Event within the timeframe is added or modified.

Operation: Processing Sequence Control::Initialize Processing Sequences and Rules()
Initializes the Automatic Processing Rules and the associated Processing Sequences so that
Processing Sequence Control can evaluate the rules and initiate the sequences when the System
state satisfies those rules.

Operation: OSD::Subscribe for Intervals()

Subscribes for changes to Interval objects that overlap with the given timeframe. Interval objects
track the active analysts and completion status of intervals corresponding to processing stages
and processing activities within processing stages. Callbacks are invoked on subscribers any
time the set of active analysts or completion status for an Interval changes.

23

Alternate Flow - Processing Sequence Control Handles OSD
Callbacks

|~_r| Alternate Flow - Processing Sequence Control Handles OSD Callbacks

El 05D Q :Processing Sequence Control
1 Waveform Callback { processing context)
1 -

| 2: Determine Waveform Change ()

Ecpan;io_n Flow -Frp_;g_s.'sing Sequence Control - Process Callback

3: Signal Detection Callback [processing context)

| m

Eﬂ.: Determine Signal Detection Change [}

Ref: Expansion Flow - Processing Sequence Control - Process Callback

o

57 Event Hypothesis Callback { p[ocessing context)
B

':.‘_IG: Determine Event Hypothesis Change [)

Eef: Expansion Flow - Processing Sequence Control - Process Callback

T

? Events Callback (processing context)

Lo
‘4—_|8: Determine Event Change [)

Ref: Expansion Flow - Processing 5equence Control - Process Callback

9: Interval Callback [procgssing context)
| .
P

Lg 10: Determine Interval Change {)

1=

Ref: Expansion Flow - Processing 5equence Control - Process Callback

This flow shows how Processing Sequence Control processes OSD callbacks. OSD callbacks
occur when data is stored in the OSD with any lifespan and visibility settings. In addition to
supporting pipeline processing, this allows the initiation and running of Processing Sequences as
a result of Analyst interactions with data that the Analyst has not selected to store permanently
and/or make globally visible.

24

Operation Descriptions
None
Expansion Flow - Processing Sequence Control - Process Callback

'] Expansion Flow - Processing Sequence Control - Process Callback

| & :Processing Sequen...] :Processing Context Data being reviewed by Analysts is
L = = L - | determined using the Interval and
Event Analysis Status callbacks. In

1: Get Initiator () the future, it may also be determined

by other callbacks [see open issues).

-,
‘1‘_}

[If change indicates Analyst is reviewing data]
= .
1: Record Data Review (]

Hi—' 2; Get Data Reference (reserved data)

‘..-_| 3: Terminate Pmcessing { Qata referenceJ

:F_erpansioin Flow - Processing Sequence Control - Terminate Processing for Data Reference|

[Else if change indicates Analyst is no longer reviewing data]

| 1: Unrecord Data Review [}

e.g. if the data is being reviewed
then only the Analyst performing the

[If the initiator s allowed to process the data] review is allowed to process the data,

1: Record Data Change | initiator, data change)

)
e Processing Sequence Control may determine the data
| ", | EhANge satisfies an Automatic Processing Rule and
initiate a Processing Sequence execution (see
| “Expansion Flow — Processing Sequence Contral —
Evaluate Triggering Conditions’}. Processing Sequence
Control may also determine the data change represents
results from invoking a Processing Step and use the
data change to set Data References on Flows [see
“Expansion Flow — Processing Sequence Control —
Execute Processing Step’).

This flow shows how Processing Sequence Control processes data changes from OSD callbacks.
Processing Sequence Control monitors data changes to determine which Processing Sequences
are allowed to processing which types of (e.g. Processing Sequences for System processing can
only use data that is not open for Analyst review). Processing Sequence Control records data
changes and uses those changes to initiate Processing Sequence execution (see “Expansion Flow
— Processing Sequence Control — Evaluate Triggering Conditions”) and to pass data between the

25

Processing Steps in a Processing Sequence (see “Expansion Flow — Processing Sequence Control
— Execute Processing Step™).

Operation Descriptions

None

Expansion Flow - Processing Sequence Control - Terminate

Processing for Data Reference

|—_’| Expansion Flow - Processing Sequence Control - Terminate Processing for Data Reference

:Processing E :Flow
Sequence z
Control

[for all Flows,]

1: Get Data References [}

| .

[if Flow coptains the Data Reference]

1: Remove Diata Reference from Flow [)
.

This flow shows how Processing Sequence Control terminates processing for data that has been
opened for Analyst review (e.g. the Analyst reserved an event for analysis (see “Refines Event”
UCR), the Analyst opened a time interval to scan waveforms and unassociated signal detections
(see “Scans Waveforms and Unassociated Detections” UCR) by removing all Data References to
the opened data. This flow is invoked when Processing Sequence Control receives a callback
from the OSD indicating the event or time interval is open for Analyst review (see “Alternate
Flow - Processing Sequence Control Handles OSD Callbacks”). This flow does not terminate or
interrupt any Processing Steps that are processing the data when this flow is invoked. Those
Processing Steps continue processing, and Processing Sequence Control removes the data from
further processing when the Processing Steps complete their processing. The results of running
these Processing Steps have no effect on the data opened for analysis.

26

Operation Descriptions
None

STATE MACHINE DIAGRAMS

None

NOTES

General:

1. The Event Analyzer control class appears in this UCR as a control class that can be used to
implement processing sequence control logic that is both too specific for the Processing
Sequence Control mechanism to implement and which is not available in other control classes.
Since the details of this additional logic do not appear in any UC, the analysis model will not
further describe Event Analyzer.

IDC Unique:

1. Event Screening Control also realizes Processing Control IF, but it not shown in the
Processing Control IF Class Diagram.

OPEN ISSUES

1. The current model has a dependency (and a potential race condition) between processing OSD
callbacks containing data changes and (see “Alternate Flow — Processing Sequence Control
Handles OSD Callbacks”) processing step execution within a sequence (see “Expansion Flow —
Processing Sequence Control — Execute Processing Step”). Explicitly modelling either the
processing steps, Processing Control IF’s invoke() operation, or both returning data references
(claim checks) with their results might be a more clear solution.

2

This page intentionally left blank

28

IDC Use Case Realization Report
UCR-02.08 System Refines Event Location

USE CASE DESCRIPTION

This use case describes how the System refines event hypothesis location solutions using single
event or multiple event algorithms. Event locations can be absolute or relative. The System
locates events by finding the event location minimizing the difference between signal detection
feature measurements and signal detection feature predictions (see 'System Measures Signal
Features' UC). The System references both empirical knowledge from past events and
geophysical models to form the signal detection feature predictions. The System also computes
an uncertainty bound for each event hypothesis location solution describing a region bounding
the event hypothesis' hypocenter and origin time at a particular confidence level. The System
creates a variety of location solutions for each event hypothesis. These location solutions vary
from one another in either the input parameters the System uses or in the location solution
components the System restrains to fixed values (e.g. depth) during event location calculations.
The System computes location solutions using input parameters configured by the System
Maintainer (see ‘Configures Processing Components’ UC). The Analyst has the option to
override input parameters originally configured by the System Maintainer (see 'Refines Event
Location' UC).

ARCHITECTURE DESCRIPTION

The Event Location Control class is responsible for controlling event location computations.
Event Location Control may be invoked by Processing Sequence Control as part of executing a
step in a Processing Sequence (see "System Detects Event" UCR), or manually invoked by an
Analyst as part of refining an event (see "Refines Event Location" UCR). Event Location
Control uses an Event Locator Plugin to perform the event location calculations. Various Event
Locator plugins exist in the system, each realizing a common plugin interface. The specific
Event Locator Plugin used varies dynamically at runtime based on the Event Location
Parameters. When invoked from Processing Sequence Control, Event Locator Control uses
Event Location Configuration to build up the Event Location Parameters, selects and invokes the
appropriate Event Locator Plugin based on those parameters, updates the Event Hypothesis with
the results, and stores the Event Hypothesis via the OSD mechanism. When invoked
interactively the Analyst has the option to override the Event Location Parameters. Note that the
stored Event Hypothesis is only accessible to OSD clients executing within compatible
Processing Contexts (e.g. changes made within an Analyst work session may only be accessible
within that session until the Analyst saves the event hypothesis with a global context).

29

USE CASE DIAGRAM

System Builds.Events
using Signal Detections

System Detects Ev-.r‘en;
aincludes

sincludes)

System R

CLASS DIAGRAMS

System Réﬁ_t)fves Event =

Conflicts | \
) Reﬁne?ﬁ\rent Location =
H \" | |
«inq':Iudex- o Performs Multiple Event Location
! sincludes
| sinéiudes

mes_Event Location

Classes - Event Location Control

=] Processing Sequence Control

‘ «mechanism»
ffrom Mechanism Layer)

«lses

¥
«interfaces
[Z] Processing Control IF
{from Process Control Control)

amechanism»
=] system Control
(from Mechanism Layer}

«uses
v
«interface»
[Z] Application Control IF
{from Process Control Control}

ﬁ"é Invoke (processing context, data references)

fé Invoke (processing context, data references, parameters] |

«realize»

«entity»
=] Processing Context - A——
{from Process Control Elements)

{from Event Location Control}

& start ()
Stop ()
«realizes
«control» «plugin interface»
=] Event Location Control o [Z] Event Locator Plugin IF

{from Event Location Interfaces)

«mechanism» e
=l osp

(from Mechanism Layerj |

[«configuration» il
=] Event Location Configuration

(from System Configuration Elements)

«configuration»
g Feature Measurement Defining
State Configuration
(from System Configuration Elements)

«utility»
] station Quality Metric Utility
{from Station Elements)

® Compute Event Location (event hypothesis, event
© ocation plugin parameters } : Event Location

«entitys
=] Event Location Parameters
from Event Location Elements)

«entity»
Q Event Location Plugin Parameters
(from Event Location Elements)

«entitys
=] Event Hypothesis
.| [from Event Elements)

«entity»
=] Event Location
(from Event Location Elements)

30

This diagram shows the Event Location Control class and related classes.
Classes - Event Locator Plugin IF

wentitys sentitys | wentitys |
E Event Hypothesis Q Ewvent Location Plugin Parameters Q Event Location ’
| [from Event Elements] | (fram Event Location Elements) | (from Event Location Elements) |

«plugin interfaces
E Event Locator Plugin IF

{fram Event Location Interfaces)

V%%Eompufe‘ 7Ev€r'1't¥l.04ca‘tioﬁM[evenfﬁﬁfhegis, event location plugin paraméiﬁi : Event Location 1

wrealizes

- e . | «plugin interfaces
«plugins | i g Signal Feature Predictor Plugin IF

E Event Locater Plugin = [------~-="""===-==--~ '3‘“ {from Signal Feature Prediction Interfaces)

| ,EmT Event Location Plugins] | | %'CE}.“BGEE’E

eature Prediction |f]

E] Master E\Irjelzs Il.r:;:ator Plugin
[HremEvent tocation Plading
This diagram shows the Event Locator Plugin IF interface, which defines the common interface
that all Event Locator Plugins must realize. An Event Locator Plugin may access plugins
implementing the Signal Feature Predictor Plugin IF. For example, a locator may use a Signal
Feature Predictor Plugin when calculating feature measurement residuals.

Classes - Signal Feature Predictor Plugin IF

«entity= «entitys
Q Signal Feature Predictor Plugin Parameters Q Signal Feature Prediction
| {from Signal Feature Prediction Elements) | [from Signal Feature Prediction Elements} |

«plugin interfaces
Signal Feature Predictor Plugin IF
{from Signal Feature Prediction Interfaces)

I @é ComputeEiAgArTa»I'Feature PreaiifﬁoT[ks’ignal feature predidor plugin parame-ters, source location, receiver Io?afion, phase,Afrequency, time]

srealizes
T
= : «plugin interfaces
) =plugins _ i =] Earth Model Plugin IF
£ signal Feature Predictor Plugin ~ |---==-"--= 7 (from Signal Feature Prediction Interfaces)
| (from Signal Feature Prediction Plugins) | ‘%Get Earth Model ‘v‘a_lues.i'.] |

This diagram shows the Signal Feature Predictor plugin and related elements. A Signal Feature
Predictor Plugin may access plugins implementing the Earth Model Plugin IF. Note that this
dependency is optional and may not apply for some Signal Feature Predictor Plugin
implementations.

31

Classes - Event Location Parameters

xzentity=
El Event Location Parameters
(from Event Location Elements} |

«entitys “ «entitys
E Event Location Plugin Event Location Restraint
Parameters Parameters
[from Event Location Elements) [from Event Location Elements)
1 » 1
sentitys || sentitys '
g Event Location Uncertainty g Feature Measurement Defining State
Parameters Parameters
[from Event Location Elements) | [from signal Feature Measurement Elements)

This diagram shows details of the Event Location Parameters class. The Event Location
Parameters class is used by Event Location Control to determine general behavior of location
calculations and the Event Location Plugin Parameters class is provided as input to the Event
Locator Plugin to control specific algorithm behavior. Event Location Control creates the
parameters from the Event Location Configuration preconfigured by the System Maintainer (see
“Configures Processing Components” UCR). The Analyst may override the parameters (see
“Refines Event Location” UCR).

32

Classes - Event Hypothesis

_«entitys
] Event o wentityn
(from Event Elements) &= Quality Metrics
from Event Elements)
Eg station detection probabilities
= station quality metrics
a event quality metric

«entitys
=] Event Hypothesis |~
(from Event Elements)
[Eg preferred location
[Eg geographic regions |

= g «entity» 4l «entity»
Ca 5”3:”: : 1 (] Association 1 | [signal Detection Hypothesis
B 2noNsE comimen (from Event Elements) |_ (from Signal Detection Elements)
Egis rejected *
«entity»
| Feature Measurement
(from Signal Feature Measurement Elements)
0t = feature type
__ «entity» 0 [Eg measurement value
‘ «entitys 1 \=] Event Location [Eg Measurement uncertainty
£ Event Location Parameters |_ (from Event Location Elements)
{from Event Location Elements)
= location

= uncertainty bounds
.;afeature measurement defining states

= - wentitys
=] signal Feature Prediction
(from Signal Feature Prediction Elements)
(g feature type
= prediction value
[Eg prediction uncertainty
Eg station
= phase
[:E‘frequency

This diagram shows the portions of an Event Hypothesis that are used to compute an Event
Location as well as the portions that are computed by the algorithm. The event location
algorithm analyzes Feature Measurements of Signal Detection Hypotheses associated to one or
more Event Hypotheses. The algorithm uses the station location associated with each Signal
Detection Hypothesis as well as features of the detection to compute the Event Location, which
is the primary output of the event location algorithm. Multiple different Event Locations (each
with a different set of Event Location Restraints, as stored in the Event Location Parameters
associated to that Event Location) may be computed for each Event Hypothesis. Event Location
Control marks one of these Event Locations as the preferred location for an Event Hypothesis.
The Event Location Parameters class captures the parameters that were provided as input to the
event location algorithm, enabling subsequent Analysts to recompute the location with the same
parameters.

CLASS DESCRIPTIONS

<<configuration>> Event Location Configuration

Default event location configuration as configured by the System Maintainer. Contains
configuration about which Event Locator Plugins the System should invoke, as well as the types
of location uncertainty bounds and restrained locations the System should compute. The Analyst
may override the Event Location Parameters computed from this configuration.

<<configuration>> Feature Measurement Defining State Configuration

33

Represents all signal detection feature measurement defining state configuration in the system.
This includes all configurations used to determine which signal detection feature measurements
are by default defining and non-defining for various types of system calculations.

<<control>> Event Location Control
Responsible for controlling the event location computation. Retrieves necessary data, invokes
the appropriate Event Locator Plugin to compute the new location, and stores the result.

<<entity>> Association
Represents an association between a Signal Detection Hypothesis and an Event Hypothesis.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the event,
which hypothesis is the preferred one for each processing stage, the active analysts for the event
(i.e. whether the event is under "active review"), whether the event is "complete" for each
processing stage, and other event-related information.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple hypotheses of the same Event (e.g. different
associated signal detection hypotheses, different location solutions).

<<entity>> Event Location
Represents a computed location for an event.

<<entity>> Event Location Parameters

Represents the parameters that are used by Event Location Control. This includes which Event
Locator Plugin to invoke as well as the types of restrained event locations that Event Location
Control will invoke the plugin to compute. Initially set by the System based on the Event
Location Configuration defined by the System Maintainer, but the Analyst may select to override
parameter values when refining events.

<<entity>> Event Location Plugin Parameters

Represents all parameters passed to an Event Locator Plugin. This includes parameters
describing default feature measurement defining states and the types of uncertainty bounds the
plugin should compute. May also include parameters specific to the plugin being invoked.

<<entity>> Event Location Restraint Parameters

Represents restraints on the location coordinate spaces (lat, lon, depth or time) for the event
location computation. Restraints indicate which coordinate spaces are restrained and the
associated restrained value (or value range) to be used for that coordinate.

<<entity>> Event Location Uncertainty Parameters
Represents the type of uncertainty bound (Confidence, Coverage or K-Weighted), confidence
level and scaling factor for the locator to use when computing event location uncertainty.

34

<<entity>> Feature Measurement
Represents the value and uncertainty of a measured feature of a signal detection.

<<entity>> Feature Measurement Defining State Parameters

Represents defining state parameters for feature measurements. The parameters include the
following for each feature measurement for each type of calculation (e.g. location, magnitude,
etc.)

- Whether the feature measurement is initially defining or non-defining

- Whether an algorithm is free to toggle the defining state

- Whether an Analyst is free to toggle the defining state

<<entity>> Processing Context

Represents the context in which data is being stored and/or processed. This includes the
processing session (e.g. processed by Analyst vs. processed by System). For Analyst processing,
may identify the Analyst work session. For System processing, may identify the Processing
Sequence and/or Processing Step being executed (including a way to identify a particular
Processing Sequence and Processing Step among the many possible instantiations), the visibility
for the results (private vs. global), and the lifespan of the data (transient vs. persistent). This
information is needed by the Processing Sequence Control to manage the execution of
Processing Sequences, which may execute in the context of an Analyst refining an event or in the
context of the system initiating automatic processing. It is also needed by the Object Storage and
Distribution (OSD) mechanism to determine how to store and distribute the data.

<<entity>> Quality Metrics

Represents quality metrics for a single event hypothesis. This includes the event quality metric,
station quality metrics at the time the event occurred, and station probabilities of detecting the
event.

<<entity>> Signal Detection Hypothesis

Represents geophysical information about a Signal Detection as determined by an Analyst or
through pipeline processing. There can be multiple hypotheses of the same Signal Detection
(e.g. different onset times, different phase labels).

<<entity>> Signal Feature Prediction
Represents a predicted signal feature (e.g., travel time, azimuth, slowness, amplitude, probability
of detection) and the associated uncertainties.

<<entity>> Signal Feature Predictor Plugin Parameters

Represents the parameters used by an invocation of a Signal Feature Predictor Plugin. This
includes parameters that apply to all Signal Feature Predictor Plugins and may also include
plugin specific parameters.

<<interface>> Application Control IF

35

Defines the interface implemented by all <<control>> classes in the system that are controlled by
System Control.

<<interface>> Processing Control IF
Defines the interface implemented by all <<control>> classes in the system that are invoked by
the Processing Sequence Control <<mechanism>>.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<mechanism>> Processing Sequence Control
Mechanism for executing and controlling processing sequences configured by the System
Maintainer.

<<plugin interface>> Earth Model Plugin IF
Standard interface for all Earth Model plugins. All Earth Model plugins in the system realize
this interface.

<<plugin interface>> Event Locator Plugin IF
Standard interface for all Event Locator plugins. All Event Locator plugins in the system realize
this interface.

<<plugin interface>> Signal Feature Predictor Plugin IF

Standard interface for all Signal Feature Predictor plugins. All Signal Feature Predictor plugins
in the system realize this interface. Plugins that implement Signal Feature Predictor IF may
predict different types of signal features, such as travel time, azimuth, slowness, amplitude, and
probability of detection.

<<plugin>> Event Locator Plugin

Abstract base class for Event Locator Plugins that may be plugged in to the system behind the
Event Locator Plugin IF plugin interface. Event Locator Plugins are responsible for calculating
event locations. Configuration for specific plugin implementations include the settings for
controlling their behavior (e.g. settings for max number of iterations, which Signal Feature
Predictor Plugin and Earth Model Plugin to use, etc.).

<<plugin>> Master Event Locator Plugin

Specialization of Event Locator Plugin that locates an event based on a specified "master event"
(i.e. Master Event Relocation). Configuration for this plugin includes information required to
select which master events to use (potentially based on geographic region), which signal
detections and feature measurements to use, etc. Parameters for this plugin may include a
particular master event, the location and location uncertainty of the master event, and feature
measurements and associated uncertainties pertinent to location computation for signal
detections associated to the master event that also exists on the event under refinement (i.e.
signal detections with the same channel and phase).

36

<<plugin>> Signal Feature Predictor Plugin

Abstract class that represents any/all of the Signal Feature Predictor Plugins that may be plugged
in to the system behind the Signal Feature Predictor Plugin IF plugin interface. Signal Feature
Predictor Plugins are responsible for calculating signal feature predictions.

<<utility>> Station Quality Metric Utility

Utility class that computes the station quality metric.

SEQUENCE DIAGRAMS
Flow Overview

gt Flow Overview

__:-5“1 Expansion Flow - Event

_ } S Location Control - Get Event
: == A Location Parameters
|Main Flow - System |
Refines Event o i - Expansion Flow - Event
Location e [ple '__,.»"'H Locator Plugin - Compute

Event Location

Tl Expansion Flow - Event I —— T

Location Control - Compute
_Event Locations

| Expansion Flow - Event
Location Control - Update |
Event Hypothesis

37

Main Flow - System Refines Event Location

li] Main Flow - System Refines Event Location

EI :Processing Sequence :Event Location EI :05D
= Caontral ‘ Cantral L

1: Invoke processing context, data references, parameters)

o
.d"f
-
#
-

2: Get Event Hypothesis ()
The "data references” parameter L |

specifies the event hypothesis to
pracess and “parameters”
contains parameter overrides,

3: Get Event Location Parameters { event hypothesis)

Expansion Flow - Event Location Control - Get Event Location Parameters

4: Compute Event Locations | event hypothesis, event location parameters, processing context)
e
S

Expansion Flow - Event Location Control - Compute Event Locations|

5: Set Ihvocation Completion Status (processing cdntex‘t]

This flow shows how the system refines event location. This flow is stimulated by the
Processing Sequence Control mechanism as part of executing an automatic processing sequence.
The precise triggering conditions for such sequences are configured by the System Maintainer
(see "Defines Processing Sequence" UCR). For more information about the Processing
Sequence Control mechanism see "System Detects Event" UCR.

Operation Descriptions

None

38

Expansion Flow - Event Location Control - Get Event Location
Parameters

] Expansion Flow - Event Location Control - Get Event Location Parameters
‘Event Location | | E :Event ‘] :Event [‘Event Location | | El :05D
Contral Hypothesis ‘ Location Parameters L . =
1: Get Preferred Location () ‘ ‘

" | | \

2: Get Event Location Parameters) [[

Get the same parameters that were
| | used the last time this event
e A . hypothesis was located (by the
=Lopy() | | | | system or by an Analyst, which ever
! ki | occurred last),

¥

. 4 Get Event Location Configuration ()
| el
Ll

|
|

5: Fill In Missing Event Location Parameters | event location parameters, event location configuration, event hypothesis)
]
“"m_ Fill in any missing parameter values by applying the given
""H.H Event Location Configuration in the context of the given Event
. Hypothesis. This step handles the case where the event
lacation has never been refined before, orthe location was
previously refined but the event has changed since then (e.g.
signal detection associations have been added/removed to/
from the event since the last time its location was computed).

This flow shows how the Event Location Control class builds up the Event Location Parameters.
Note that this flow may also be invoked directly from the Refines Event Location Display (see
"Refines Event Location" UCR).

Operation Descriptions

None

39

Expansion Flow - Event Location Control - Compute Event Locations

2’| Expansion Flow - Event Location Control - Compute Event Locations

El :Event Location g :Event Location Q :Event Location __ :Event Q :Event
Control Parameters Flugin Parameters I‘_fl Locator Location

Plugin IF | ‘

1: Get Event Locator [] | [

|
2: Select Event Locator Plugin [event locator type)

i

3: Get Event Location Plugin Parameters () |
| R R R RS R o A

4: Get Event Location Restraint Parameters ()
—_—

[For each set of restraints,]
Invokes the Event Locator
1: Set Event Location Restraints [event location restraint | plugin selected in previous
L steps.

2: Compute Event Location [event hypothesis, event location plugin parametgé]: Event Locatiop
S

-
|

Expansion Flow - Event Locator Plugin - Compute Event Location

3: Set Event Location Parameters [event location parameters)

¥

| 5: Mark Preferred Location ()
it Mark the preferred Event Location as such

based on Event Location Parameters,

6: Update Event Hypothesis [event locations, processing context)
-

Expansion Flow - Event Location Control - Update Event Hypothesis|

This flow shows how the Event Location Control invokes the Event Locator Plugin to compute
locations for an event hypothesis. The control class selects which Event Locator Plugin to invoke
based on the event locator type specified in the Event Location Parameters and then invokes the
Event Locator Plugin through the Event Locator Plugin IF plugin interface. The Event Locator
Plugin returns an Event Location. Event Location Control updates the Event Hypothesis with all
of the computed Event Locations. Note that this flow may also be invoked directly from the
Refines Event Location Display (see "Refines Event Location" UCR).

Operation Descriptions

Operation: Event Location Control::Select Event Locator Plugin()

40

Select and bind to the specific event locator plugin that corresponds to the given event location
algorithm.

Expansion Flow - Event Locator Plugin - Compute Event Location

@ Expansion Flow - Event Locator Plugin - Compute Event Location

:Event :Event Location :5ignal Feature :Event
Q Locator Flugin Parameters @ Predictor Plugin Location
Plugin T IF T -

[Repeat until residuals are minimized,]

[For each'feature measurement,] |

' 1: Get Signal Feature Predictor For Feature Measurement {)
B
Invokes the Signal Feature Predictor plugin
} | selected in the previous step.
2Z: Select Signal Feature Predictor Plugin | predictor)
1= . Expansion flow is located in 'System Predicts
I _J.-" Signal Features' UCR,

A

o

| 3: Compute Signal Feature Prediction (signal feature Q_Fe'dictor plugin parameters, source location, receiver location, phase, [frequency, time)

P
et

Expansion Flow - Signal Feature Predictor Plugin - Get Signal Feature Prediction|
4: Compute Residual {) i 2

™~ Capture the residual, uncertanties, weights, and whether the
feature measurement was defining. The plugin returns these
parameters as Event Location Plugin Specific Results,

1: Compute Location Coordinates [event location restraints)
S

2: Set Signal Feature Predictigns (signal feature predictions)

s 4

1: Compute Uncertainty Bounds [
-
\

2: Create [location coordinates, event location restraints, feature measurement data‘, uncertainty bounds)

ol

e
Create the object returned by this flow [see "Classes -
Event Hypothesis® for structure of Event Location dlass).

This flow notionally shows how a particular Event Locator Plugin might compute an Event

Location for an Event Hypothesis. The flow shown here may not apply to all Event Locator

Plugins. In this example, the Event Locator Plugin iteratively computes residuals between

observed vs. predicted feature measurements and updates the location coordinates until the

residuals no longer improve. To compute Signal Feature Predictions the Event Locator Plugin
41

uses a Signal Feature Predictor Plugin. The specific predictor used may vary for each prediction
based on parameters specified in the Event Location Plugin Parameters class.

As a possible variation of this flow for performing Master Event Location, the flow might look
essentially the same except that instead of using a Signal Feature Predictor to get the Signal
Feature Predictions the Event Locator might use the Feature Measurements associated with a
designated "master event".

Operation Descriptions

Operation: Event Locator Plugin::Select Signal Feature Predictor Plugin()

Select and bind to the specific Signal Feature Predictor plugin that corresponds to the given
signal feature predictor.

Operation: Event Locator Plugin::Compute Residual()
Compute the difference between the signal feature measurement and the signal feature
prediction, as well as the residual uncertainty.

Expansion Flow - Event Location Control - Update Event Hypothesis

| | Expansion Flow - Event Location Control - Update Event Hypothesis

E] :Event Location g :Event [:Station Quality g :0SD
= Control Hypothesis = Metric Utility

1: Set Event Locations (event locations)
e 5l
The station quality metrics are based on
the event location, so need to update
them when the location is updated.
Flow located in "System Builds Event

rd using Signal Detections"UCR,
2: Compute Station Quality’ Metricsj'e';ent hypothesis) -t
: X = -

Expansion Flow - Station Quality Metric Utility - Compute Station Quality Metrics

[for each event location,,]
1: Store Event Location Parameters (event location parameters, processing context)
} [

B . For the “processing context’, just pass along the
., same one that was passed in from the Processing
; " Sequence Control mechanism on the main flow
3: Store Event Hypothesis (event hypothesis, processing context)’. /_/'

e’

This flow shows how the Event Location Control class updates the Event Hypothesis passed in
from Processing Sequence Control with the Event Location objects returned by the Event
Locator Plugin. Event Location Control also stores the Event Location Parameters used for each
Event Location and recomputes the station quality metrics based on the updated event location.

42

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

STATE MACHINE DIAGRAMS

None

NOTES

1. This UCR shows the system refining the location for one event hypothesis at a time.

However, in the actual implementation it may be desirable to support relocating a batch of events
at a time, for efficiency. Batching is not shown in this UCR since it is considered a
design/implementation optimization.

2. Computation of the event quality metric after an event is relocated is configurable (see
'Defines Processing Sequence' UC). Configuration could include selection of a minimum change
in location that would result in recomputing the event quality metric or selection of when to
recompute the event quality metric based on the cause for the event relocation.

OPEN ISSUES

None

43

This page intentionally left blank

44

IDC Use Case Realization Report
UCR-03.03 Refines Event

USE CASE DESCRIPTION

This architecturally significant use case describes how the Analyst refines an event hypothesis.
The Analyst checks waveform quality (see 'Determines Waveform Data Quality' UC). For
waveforms of sufficient quality, the Analyst enhances signals and suppresses noise on
waveforms for relevant stations (see 'Enhances Signals' UC), adds and associates missing
detections, and modifies or unassociates detections already associated with the event hypothesis
(see 'Detects Signals' UC). The Analyst rejects event hypotheses that are invalid. For valid event
hypotheses, the Analyst measures signal features associated with the detections (see 'Measures
Signal Features' UC) and evaluates the moment tensor ('Evaluates Moment Tensor' UC). The
Analyst uses these signal features to refine the location (see 'Refines Event Location' UC) and
magnitude (see 'Refines Event Magnitude' UC) of the event hypothesis. The Analyst compares
events to determine how similar events were constructed (see 'Compares Events' UC). The
Analyst repeats these steps until satisfied with the results. Analysts may provide feedback for
previous Analysts during any of these steps (see 'Provides Analyst Feedback' UC).

This use case is architecturally significant because it captures the interplay between all of the
Analyst activities.

ARCHITECTURE DESCRIPTION

The Analyst refines an Event by selecting an Event on the Analyzes Events Display to open the
Refines Event Display for the Event. The Refines Event Display retrieves the latest Event
Hypothesis for the Event in the current processing stage (or the preferred Hypothesis from
previous stage if no Hypothesis exists in the current stage) to use as a starting point, creates a
local copy of it for the current processing stage, and provides the Analyst with the ability to
refine it (depicted in included use cases). As the Analyst refines the Event the Event Hypothesis
is updated and stored transiently in a private context via the OSD mechanism to make it available
to the Processing Sequence Control mechanism for further automatic processing (the Processing
Sequence Control mechanism is described in "System Detects Event" UCR). To save their
changes, the Analyst selects to save the Event Hypothesis, which the display handles by storing
the Event Hypothesis in a global context to persistent storage via the OSD.

45

USE CASE DIAGRAM

Analyzes Events

wingludes
Analyst
zincludes
- wiAcludes - Refinés Event.
i windudes
’ * Compares Events
sintludes:
Determines Waveform Data Quality -
e : «ificludes
r«'iﬁ(lUdE» wingludes v
singludes
Evaluates Moment Tensor
Enhances Signals
Refines Event Magnitude
Detects Signals

Refines Event Location
Measures Signal Features

CLASS DIAGRAMS
Classes - Refines Event Display

46

=display= ‘
£ Analyzes Events Display |
{from Event Wiews) |

| sboundary= [¥
] Analyst
‘ 0.1,
cdisplay=
] Refines Event Display
(from Event Views)
wentitys
‘ Event
| [from Event Elements] |
= L aentitys @ S
|E| Processing Context ; 1 : 2 - ‘
[from Process Control Elements] | ; «entitys
e e s Q Interval

| (from Process Caontrol Elements) |

| wutilitys -
£ Assodiation Conflict Checker ! r =
f Event Element =entity=
ranbvent Plement) | I ' £ signal Detection Template
[from Event Elements]

zmechanism=

= osp

This diagram shows the Refines Event Display and related classes pertaining to this realization.
The Analyst opens the Refines Event Display from the Analyzes Events Display. This display
subscribes for the Event being refined in order to warn the Analyst if the Event is under active
review by another Analyst in the same interval. The display subscribes for Intervals in order to
warn the Analyst if the interval containing the Event is under active review by another Analyst
(see "Scans Waveforms and Unassociated Detections" UCR). The Refines Event Display uses
the Association Conflict Checker class to check for association conflicts with other Events
whenever the current Event is modified or another Event in the interval is saved. The display
also provides the Analyst with the ability to create Signal Detection Templates, which it stores in
the OSD. Refines Event Display stores the refined Event in the OSD.

47

Classes - Refines Event Display - Sub-displays

. «display»
0.1 | Lé Provides Analyst Feedback Display
- sdispiays * from Event Vi
| Determines Waveform Quality Display - fromEv ews)
{from Event Views)
«display»
0.1 o E} Compares Events Display
o «display» * il Event Vi
[EJ Enhances Signals Display Rrom Svens Yiews)
(from Event Views) /
gil «display» . «display»
- LEJ Refines Event Display <« ——| Lé Refines Event Magnitude Display
P ki ;idgligllag;atures Dispiay] {from Event Views) 0.1 {from Event Views)
(from Event Views)
= «display»
- 1 | & Refines Event Location Display
[51 Wavefoi?;szrzg'sis Display £ au (from Event Location Views)
(from Event Views)
- «display»
0.1 =[] Event History Display
1 {from Event Views)

= Ev::itsfilsatysisplay

(from Event Views)
This class shows sub-displays of the Refines Event Display. The Refines Event Display creates
and manages these sub-displays based on Analyst actions. Analyst interactions with these sub-
displays are described in the corresponding UCRs; however, in general, the OSD mechanism is
used to synchronize information between the displays. When the Analyst first opens the Event,
the Refines Event Display creates a new Event Hypothesis and stores it in the OSD (in a private
context, not visible to other Analysts). The Refines Event Display then subscribes for changes to
this Event Hypothesis via the OSD. As the Analyst interacts with the various sub-displays, those
Analyst actions may trigger processing on the privately stored Event Hypothesis; however, the
sub-displays do not have knowledge of which processing steps will be performed since the
processing sequences to be executed in response to Analyst actions are configurable (see
"Defines Processing Sequence" UCR) and known only by the Processing Sequence Control
mechanism. The Refines Event Display is informed of any processing performed on the Event
Hypothesis via OSD callbacks.

Classes - Event History Display

i wentitys
| Q Event
| : [from Event Elements)
— wdisplays T —_ =1
=boundary» [~ = E] Event History Display [~
= Anal?rst | ffrom Event Views)

S wentity=
"=] Event Hypothesis
| [from Event Elements] |

This diagram shows the Event History Display and related classes.

48

Classes - Event

«entity=
- - £ Event Hypothesis
«entitys ffrom Event Elements) | sentitys
=] Event e s _] Processing Stage
ifrom Event Elements) | Ggpreteredlocation |___________—} srom process Control Elements] |
| [Eg preferred hypothesis per stage | . ‘gg::é:ph'”egmm [1 1
| g adtive analysts =
— [Eg analyst comment
Eg is rejected
[Eg is reported |
per stage
1
®
«enumeration= ' &
[Event Completion Status mben ow
{from Event Elements]
= In Progress Event and Event Hypothesis have
= Rewviewed relationships to other classes, This
=1 Complete diagram only shows the ones that are

| = Complete For Stage relevant fo this UER
This diagram shows details of the Event and Event Hypothesis classes relevant to this UCR.
Refinement of an Event results in a new Event Hypothesis. The Analyst potentially creates
multiple Event Hypotheses for a given Event during a single processing stage, and designates
one of them as the "preferred" Event Hypothesis for the Event for that stage (each stage can have
a different preferred Hypothesis for the Event). Each Event also has an Event Completion
Status, which reflects the Analyst's determination of the level of completeness of the Event
within the stage. The Analyst specifies an Event Completion Status of "In Progress",
"Reviewed" or "Complete" when saving the Event. The transition to "Complete For Stage" is
covered in a separate UCR (see "Marks Processing Stage Complete" UCR).

Classes - Processing Stages

wenumerations:

aentitys [E:| Processing Stage Type
£ Processing Stage ‘ [fram Process Control Elements)
| _ffram Pracess Control Elements) |<>—— "= Workflow Automatic |
‘ [Cg stage name ’ 1| = workflow Interactive
| Frenens grotessing Sage. | = Mon-Workflow

wentity=
Q Non-Workflow Processing Stage
[from Process Control Elements)
C&‘*E creator rr_x:‘%EF:IIE'fvail.chrirﬁﬁa‘l duration
=] creation time “rﬁéis final stage
" E@ is active

«wentity=
E Workflow Processing Stage
ffrom Process Contral Elements)

This diagram shows the Processing Stage class hierarchy and how Non-Workflow Processing
Stages fit into it. Processing results (e.g. Event and Signal Detection Hypotheses) are linked to
the Processing Stage in which they were created, which may be any of the three types of
Processing Stage (Interactive, Automatic or Non-Workflow). Workflow Processing Stages are

49

defined by the System Maintainer as part of the overall Processing Configuration (see "Defines
Processing Sequence" UCR), whereas Non-Workflow Processing Stages are defined by
individual Analysts (see "Alternate Flow - Analyst Defines Non-Workflow Processing Stage" in
this UCR).

Classes - Association Conflict Checker

sentitys ‘ ‘ wentitys
E Event | =3 —J‘ g Event Hypothesis
= [from Event Elements) * | [from Event Elements} |
= preferred hypothesis per stage T 1
| = acti
| [y ScEve analysts
* W
wutilitys ‘ wentitys 1
E Association Conflict Checker | g Assodiation
{fram Event Elements) | {from Event Elements) |
= M=
1 l ’ —
wentitys

e] signal Detection Hypothesis
— | {from Signal Detection Elements)

xentitys — i
EI Signal Detection = onset time
| {from Signal Detection Elements) g « | Egonsettime uncertainty

=) phase

= phase confidence
=) detector algorithm
g reected

This diagram shows details of the Association Conflict Checker class. The class retrieves
Events, Associations, and Signal Detections from the OSD and checks for the case where more
than one Event has a preferred Event Hypothesis for the stage that has a related Association to a
Signal Detection Hypothesis for the same Signal Detection.

Classes - Signal Detection Template

=entity=
Q Signal Detection Template - — =
[from Event Elements =entitys
= l + et : , Sretiesl ey =~ [=] Event Hypothesis
5 TR s 1 ffrom Event Elements) \
g summary of event — TE—
Cg cre ator .
EEI creation time ol
' sentitys
] Assodiation
(from Event Elements] |

s, *

=entity=
| signal Detection Hypothesis
, (fram Signal Detection Elements)

This diagram shows details for the Signal Detection Template class. The Analyst may create a
Signal Detection Template via the Refines Event Display based on the Signal Detection
Hypotheses associated to the current Event Hypothesis.

50

CLASS DESCRIPTIONS

<<boundary>> Analyst
Represents the Analyst actor.

<<display>> Analyzes Events Display
Display that provides the Analyst with the ability to analyze data within a specified time interval
in order to find or refine Events.

<<display>> Compares Events Display
Display that provides the Analyst with the ability to compare Events.

<<display>> Refines Event Display
Display that provides the Analyst with the ability to refine an Event. Each saved refinement of
the Event results in a new Event Hypothesis.

<<display>> Refines Event Location Display
Provides the Analyst with the ability to enter Event location parameters and initiate computation
of a location for an Event Hypothesis.

<<display>> Waveform Analysis Display
Displays a set of waveforms and provides the Analyst with the ability to interact with them (e.g.
create/modify/reject Signal Detections, associate/unassociate detections and Events).

<<entity>> Association
Represents an association between a Signal Detection Hypothesis and an Event Hypothesis.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the Event,
which Event Hypothesis is the preferred one for each processing stage, the active analysts for the
Event (i.e. whether the Event is under "active review"), whether the Event is "complete" for each
processing stage, and other Event-related information.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple Event Hypotheses for the same Event (e.g. different
associated Signal Detection Hypotheses, different location solutions).

<<entity>> Interval

Class for tracking the status of interactive or automatic processing on a specific timeframe of
data. Specialized intervals exist for Processing Stage, Processing Activity, and Processing
Sequence.

<<entity>> Non-Workflow Processing Stage

51

Represents a Processing Stage that is not part of the System Maintainer-defined Analyst
workflow. Analysts may define such stages at any time to store their Processing Results, but the
stored results in such stages are not used by Analysts or the system during workflow processing.

<<entity>> Processing Context

Represents the context in which data is being stored and/or processed. This includes the
processing session (e.g. processed by Analyst vs. processed by System). For Analyst processing,
may identify the Analyst work session. For System processing, may identify the Processing
Sequence and/or Processing Step being executed (including a way to identify a particular
Processing Sequence and Processing Step among the many possible instantiations), the visibility
for the results (private vs. global), and the lifespan of the data (transient vs. persistent). This
information is needed by the Processing Sequence Control to manage the execution of
Processing Sequences, which may execute in the context of an Analyst refining an Event or in
the context of the system initiating automatic processing. It is also needed by the Object Storage
and Distribution (OSD) mechanism to determine how to store and distribute the data.

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage. The previous processing stage indicates the stage to be used as
the default starting point when creating new processing results in the stage (e.g. when refining an
event in the stage).

<<entity>> Signal Detection

Represents information about a Signal Detection and keeps track of all the Signal Detection
Hypotheses for the Signal Detection. Represents information about a Signal Detection and keeps
track of all the Signal Detection Hypotheses for the Signal Detection. For an unassociated Signal
Detection the preferred Signal Detection Hypothesis is the most recently created Signal
Detection Hypothesis. For an associated Signal Detection the preferred Signal Detection
Hypothesis is the one associated to a preferred Event Hypothesis.

<<entity>> Signal Detection Hypothesis

Represents geophysical information about a Signal Detection as determined by an Analyst or
through pipeline processing. There can be multiple Signal Detection Hypotheses for the same
Signal Detection (e.g. different onset times, different phase labels).

<<entity>> Signal Detection Template

A template that represents the pattern of Signal Detections for an Event (i.e. channels detected,
relative positions for each detection, phases, etc.). An Analyst may apply the template to quickly
build new Events that match the pattern of detections. Signal Detection Associator Plugins (see
“System Builds Events using Signal Detections” UCR) may also use Signal Detection Templates
to build new Event Hypotheses and associate additional detections to Event Hypotheses
matching the template. Also includes summary information about the original Event from which
the template was created (e.g. Event location, magnitude, etc.), as an aid to the Analyst in finding
and applying a relevant template.

52

<<entity>> Workflow Processing Stage
Represents a Processing Stage that is part of the System Maintainer-defined Analyst workflow.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

<<utility>> Association Conflict Checker

Utility class for checking that preferred Event Hypotheses within a processing stage do not share
any Signal Detections.

53

SEQUENCE DIAGRAMS
Flow Overview

EiE Flow Overview

ref

Expansion Flow - Event - Get
Event Hypothesis To Start

Refinement

Expansion Flow -
Refines Event Display -
e Open Event

Expansion Flow - Analyst
Selects Different Event

Hypothesis

T
el

Main Flow - Expansion Flow -
Refines Event Display -

Close Event

\l/

Expansian Flow - Analyst
Rejects Event

Expansion Flow - Analyst
Saves Event Hypothesis

Refines Event \

ﬁpansion Flow -
Analyst Waorks Event

Expansion Flow - Analyst
Saves Waveforms

ref
Expansion Flow - Analyst

Updates Comment for Event
Hypothesis

AN
\ ref
Expansion Flow - Analyst
Marks Event as Reference
Event

Exp'ansion Flow - Analyst Sets
Preferred Hypothesis for
Event

ref
Expansion Flow - Analyst

Creates Signal Detection
Template

ref
Expansion Flow - Analyst
Copies Event

ref
P L Expansion Flow - Analyst
d = Expansion Flow - Association Refreshes Displayed Data
Alternate Flow - Display Conflict Checker - Check For
Handles O5D Callbacks Conflicts

54

Main Flow - Refines Event

=" Main Flow - Refines Event

’] :analyst ‘ g :Analyzes g :Refines ‘] :Event '

Events Display Event Display

[Selectirlg to refine an event ftypical case]]
|

| i
| |
! 1: Select Event () _| | |
’ _| 2: Open (event] | I

| il Cll
L 7 |(
|=1

3l Get Event Hypothesis Ta Start Refinement [event, processing stage)

Lﬁgr_{sion Flow - Event - Get Event Hypothesis To Start Refinement

o I

Expansion Flow - Refines EvIEnt Display - Open Event
T |

|

|

| :

| 4: Open Event | event, event hypothesils, processing stage)
|

|

|

|

|

[Selectiqg to refine a specific event hypothesis]

l x O’FFI [event, event hypothesis)

3: Open Event (jevent, event hypo]h;esis, processing stage)

|
|
1 Sgll[ect Event Hypotnesis [y | |
|

ref |
Expansion Flow - Refines Event Display - Open Event
1] I

Expansion Flow - Analyst Works Event

| 1: Close Event)

| 2: Close Event ()
Ltl’

Expansion Flow - Refines Event Display - Close Event
e
.

This flow shows the main flow for refining an Event. The Refines Event Display is typically
opened with an Event, in which case the display automatically determines which Event
Hypothesis to use as a starting point (the Analyst can select a different Hypothesis as a starting
point - see "Expansion Flow - Analyst Selects Different Event Hypothesis"). The Analyst may

55

also open the Refines Event Display with a specific Event Hypothesis to refine. In this case the
display uses that Hypothesis as the starting point.

Operation Descriptions

Operation: Refines Event Display::Open Event()

Open the given Event for refinement in the current processing stage, using the given Event
Hypothesis as a starting point.

Operation: Event::Get Event Hypothesis To Start Refinement()

Return an Event Hypothesis to use as a starting point for refining the Event in the given
processing stage. If the processing stage is an Interactive Processing Stage, look in the previous
stage for a preferred Hypothesis in that stage. If none exists, continue the search in next previous
stage, etc. until a preferred Hypothesis is found. Note that the stage order is defined in the
Processing Configuration class, which is defined by the System Maintainer.

Operation: Refines Event Display::Open Event()

Open the given Event for refinement in the current processing stage, using the given Event
Hypothesis as a starting point.

56

Expansion Flow - Event - Get Event Hypothesis To Start Refinement

|i] Expansion Flow - Event - Get Event Hypothesis To Start Refinement

g :Event :Processing
L - EI stage
Get latest hypothesis
| | =™ for the current
1: Get Latest Event H‘ypotr:llg_s.i_;_t.ppsm‘s’l'ﬁ"j'ﬁége] processing stage

|

[If no hypothesis for event exists in current prbcessing stage]

: 1: Get Previous Processing Stage ()

2: Get Preferred Event Hypothesis | processing stage)

P

This flow shows how the Event class finds an Event Hypothesis to use as a starting point for
refinement in the current stage, which may be a workflow or non-workflow stage. Note that, in
the case of a workflow stage the "previous processing stage" is configured by the System
Maintainer (see "Defines Processing Sequence" UCR) whereas in the case of a non-workflow

stage the "previous processing stage" is set by the Analyst when they define the stage (see
"Selects Data for Analysis" UCR).

Operation Descriptions
None

57

Expansion Flow - Refines Event Display - Open Event

E] Expansion Flow - Refines Event Display - Open Event

‘ ‘Refines Event | | B:05p '] :Event ; g local copy:Event
Display L T J [| Hypothesis ‘
1: Sbbscribe for Events [Timeframe) . Subscribe for all events in the current interval (including

the current one). The display needs this to monitor
‘ association conflicts with other events,
[2 Add Active Analyst { user)

l |
3: Store Event (event, processing cointext
| "y o

T

|
| 4: Create Copy [event hypothesis 1 |

1

|

Persistent with global visibility.

Lets other Analysts know about
T ‘ current Analyst,

; -l
| | ! L
5: Store E'_vent Hypothesis [event hypothesis, processing cqntext } .
| i = !
! L ‘ |
6: Subscribe for Event Hypothesis () , ;
| L ;
| |
\ 7: Get Preferred Location|[) i
i : ; ol

| |

l ‘ 1 r

8: Suq:cribe for Detections [Tlmefr:ame] \

L
| e !
9: Subscribe for Waveforms | Timeframe) H“'-H ,
f T, £
| | | . e Timeframes here are based on the
; 1 T -...; time in the event location, As
10: Subscribe for Associations [Timeframe) ‘__,,,,..---""',’3’ possible optimization, could use
o TR f“' l earth model to predict travel times in
[I o order to minimize these timeframes.
| [- o
\ & \
| | o
11: Subscribe for Intervals | Timeframe],,fr;
| - ol |
“i' [
| 12 Get Comment History ()

—y

| &
13: Update Display [)
1
L]

This flow shows how the Refines Event Display opens an Event for refinement. The Event
Hypothesis to use as a starting point is an input to this flow. The system keeps track of all the
analysts that are working an Event ("active analysts") and warns if the Event is under active
review by another analyst or overlaps an interval that is under active review by another analyst

58

(see "Alternate Flow - Display Handles OSD Callbacks"). The display creates a new Event
Hypothesis instance based on the passed-in Event Hypothesis. The display subscribes for
detections and waveforms around the Event in order to display them. The comment history is
also displayed.

Operation Descriptions

Operation: OSD::Subscribe for Events()

Subscribe for changes to Event objects within the given timeframe. Callbacks are invoked on
subscribers any time an Event within the timeframe is added or modified.

Operation: OSD::Subscribe for Detections()

Subscribe for updates regarding Signal Detection creations, modifications, and associations
occurring within the specified timeframe. This includes updates for new or modified
unassociated Signal Detections.

Operation: OSD::Subscribe for Waveforms()

Subscribe for updates regarding raw and derived waveforms occurring within a specified
timeframe. This includes information about what waveforms have been acquired by the System
as well as what derived waveforms have been formed, but does not include the actual waveform
data.

Operation: Event::Add Active Analyst()
Add the given Analyst to the set of active Analysts for the Event. If the Event has active analysts
it is said to be under "active review".

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event Hypothesis::Create Copy()
Create a copy of the given Event Hypothesis. The copy has all of the same information as the
original (e.g. same detections, location, etc.), with the following exceptions:

- The copy points to the original as its parent
- The copy starts out with an empty Analyst comment

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: Refines Event Display::Update Display()

Update the display of the Event Hypothesis being refined to reflect any changes that occurred.
Indicate items that are out-of-date or inconsistent (e.g. beam may be out-of-date after refining
Event location).

59

Operation: Event::Get Comment History()
Return all Analyst-entered comments associated with the Event.

Operation: OSD::Subscribe for Intervals()

Subscribe for changes to Interval objects that overlap with the given timeframe. Interval objects
track the active analysts and completion status of intervals corresponding to processing stages
and processing activities within processing stages. Callbacks are invoked on subscribers any
time the set of active analysts or completion status for an Interval changes.

60

Expansion Flow - Analyst Works Event

ElExpansion Flow - Analyst Works Event

E Analyst :Refines Event
Display

E local copy:Event
Hypothesis

aivn Flow - Determines Waveform Data Quality

rer I

ﬁn Flow - Enhances Signals

IY:T|

aiAn Fli:w- Detects Signals

M_aivn Flow - Refines Event Location

Main Flow - Refines Event Magnitude

ref

IMain Flow - Compares Events

_ai'n Fl?w- Pravides Analyst Feedback

ﬁansilon Flow - Analyst Saves Waveforms

ref

%ansion Flows - Analyst Saves Event Hypothesis
|

Analyst performs any of these flows
in any order,

These flows depictthe Analyst
waorking on the current local copy of
the Event Hypothesis, The Analyst
may select to work on a different
hypothesis (shown in "Expansion
Flow - Analyst Selects Different Event
Hypothesis'], in which case a new
local copy will be loaded, The flows
on this diagram apply to whatever
event hypaothesis is currently loaded.

xpansion Flow - Analyst Sets Preferred Hypothesis for Event

X Aansion Flow - Analyst Marks Event as Reference Event
T

|vr|

xpansion Flow - Analyst Rejects Event
|

I ~r|

mplate

xpansion Flow - Analyst Creates Signal Detection Te
i

|e|‘,|

¥pansion Flow - Analyst Copies Event
[

rer‘J

ﬁansion Flow - &nalyst Refreshes Displayed Data

61

This flow shows the actions an Analyst can perform as part of refining an Event.
Operation Descriptions
None

Expansion Flow - Analyst Selects Different Event Hypothesis
E| Expansion Flow - Analyst Selects Different Event Hypothesis

[E Analyst | :Refines Event ; Q :Event History Q :Event ‘
L :] Display ‘ Display > |

1: Select to View All Event Hypotheses For Event ()

2 Open (]

x Gef LLst of All Event Hypotheses ()
|

4: Sl’;u?.u Event Hypotheses History [)

' g1
|]

L1

5: Select Event Hypothesis ()

6: Return Selected Event Hypothésis ()

M=

7: Close)
Il
|B: Close Event ()

Expansion Flow - Refines Event Display - Close Event| For the event

hypothesis
.= @rgument, pass
T in the one the
9: Open Event [event, event hypothesis,protgising stage) Analyst just
| Log e selected,

;"?XP.E.‘..”FJ on Flow - Refines Event Display - Open Event|

This flow shows the Analyst selecting to refine a different Event Hypothesis for the Event (other
than the current one).

Operation Descriptions

Operation: Refines Event Display::Open Event()

62

Open the given Event for refinement in the current processing stage, using the given Event
Hypothesis as a starting point.

Operation: Event::Get List of All Event Hypotheses()
Return a list of all the Event Hypotheses for the given Event, including summary information
such as the processing stage and which Event Hypotheses have been designated as preferred.

Expansion Flow - Analyst Saves Event Hypothesis

/] Expansion Flow - Analyst Saves Event Hypothesis

] :Analyst g :Refines] :Event g :Event] :Association __ :Signal ‘ B:0sp
. = Event Display = Hypothesis = Detection
Hypothesis
1: Select to Save (event c ion status, mark hypoth as preferred)
R

Analyst not allowed to
e, SPECITY status of "Complete”
2: Add Event Hypothesis (event hypothesis) if association conflicts exist
. § for this event.

3: Set Completion Status (processing stage, status)
>

[If Analyst indicated the hypothesis should be marked as preferred]

1: Set Preferred Hypothesis For Stage (event hypothesis, processing stage)
- -

4: Store Event Hypothesis (event hypothesis, processing context }

//
Persistent, with |
lobal visibili ~
5: Store Event (event, processing context) | 90°2 VisiPility e
-
6: Get Associations ()
foreach Aggeation.] 1: Store Association (association, processing context) \
| >
2: Get Signal Detection Hypothesis () ‘:._\
_ -

T \
3: Store Signal Detection Hypothesis (signal detection hypothesis, processing context) i
+ + » i

\

. . ™, \ Persistent, with
4: Get Signal Detection () A . global visibility.
/
5: Store Signal Detection (signal detection, processing context) v I
£ 1 \ w7 i
/
—
[if signal detection is on an unsaved waveform] l,
1: Store (, Pr ing context) i

This flow shows how the Analyst saves the Event Hypothesis they are refining to persistent
storage and makes it visible to other Analysts. Once the Event Hypothesis is saved to persistent

63

storage it can never be modified again (but the Analyst can create a new Event Hypothesis to
further refine the Event). When saving the Event, the Analyst specifies the completion status for
the Event (see Event Completion Status class on diagram "Classes - Event") and whether to mark
the Hypothesis as the preferred one for the Event.

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: OSD::Store Event()
Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.

global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Set Completion Status()
Set the Event Completion Status of an Event in the given processing stage to the given value.

Operation: OSD::Store Waveform()

Store the given Waveform with the given lifespan (persistent vs. transient) and visibility (private
vs. global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: OSD::Store Signal Detection()

Store the given Signal Detection with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

64

Expansion Flow - Analyst Saves Waveforms

[Z”] Expansion Flow - Analyst Saves Waveforms

E Analyst [:Refines Event E 2050
T Display : :

[1: Select to Save Derived Waveforms | deri:yed waveforms)

[[far each derived waveform,,]
|

1: Store Waveform [waveform, processing context
[.

e,
e
s,

| g "l Persistent, global visibility.

This flow shows Refines Event Display saving derived waveforms on Analyst request. The
Analyst may select to save derived waveforms even when there are no signals detected on the
waveforms.

Operation Descriptions

Operation: OSD::Store Waveform()

Store the given Waveform with the given lifespan (persistent vs. transient) and visibility (private

vs. global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

65

Expansion Flow - Analyst Updates Comment for Event Hypothesis

I—_ﬂ Expansion Flow - Analyst Updates Comment for Event Hypothesis

E :Analyst E’ :Refines Event Q :Event E 05D |
3 | Display Hypothesis g 3 J

The Analyst can modify the comment for the current hypothesis
at any time. But once they save the event (i.e. promote to have
global visibility], a new event hypothesis is started jwith a new
blank comment}.

T

1: Enter Comment Text [] :

|2: Update Current Cofament ()
P

Transient, with
private visibility

-
et

3:§St'ore Event Hypothesis [event hypothesis, pﬂ[_rp.cessTﬁ'ﬁer:onté}ct]
1 — -
L &

This flow shows how the Analyst updates comments on the Event Hypothesis.

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility

(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

66

Expansion Flow - Analyst Sets Preferred Hypothesis for Event

Bl Expansion Flow - Analyst Sets Preferred Hypothesis for Event

E :Analyst E :Refines Event g :Event History E :Event | Q 105D
3 = Display Display L -

1: Select to View All Event Hypotheses For Event [)
2: Open ()
3: Get List of All Event Hyp:&lleses () Just get/show the event

................ hypotheses for the
- current stage.

...»‘."-‘I-

!

5: Select Event Hypothesis [)

6: Return Selected Event Hypothesis |)
- T: Close ()
]

g

8: Set Pé_eferred Hypothesis For Stage [event hypothesis, processing stage)
L@l

i Persistent, with
e global visibility

i

]

This flow shows the Analyst designating an Event Hypothesis as preferred for a specified
processing stage. Marking an Event Hypothesis as preferred causes the Event to be immediately
stored in a global context (visible to other analysts), but does not change its Event Completion
Status.

Operation Descriptions

Operation: OSD::Store Event()

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Get List of All Event Hypotheses()

Return a list of all the Event Hypotheses for the given Event, including summary information
such as the processing stage and which Event Hypotheses have been designated as preferred.

67

Expansion Flow - Analyst Marks Event as Reference Event

7] Expansion Flow - Analyst Marks Event as Reference Event

E :Analyst Q :F!.efl:i:‘rjesl Event ‘ E :Event E’ 105D
i Isplay ; | :

1: Select to Mark Event as Refereng:é Event [}

2: Mark as Reference Event {] Persistent, with
1 e global visibility
o

P
|

| o
3: Store Event | event, processing contp;cf]

o
-

This flow shows the Analyst marking an Event as a reference Event. Although not shown, they
may also unmark a previously marked Event in a similar manner. Note that it is the Event that is
marked (not the Event Hypothesis), since the mark logically applies to the Event rather than any
specific Hypothesis.

Operation Descriptions

Operation: OSD::Store Event()

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

68

Expansion Flow - Analyst Rejects Event

| Expansion Flow - Analyst Rejects Event

£ :Analyst g :Refines Event] :Event m| :Event [:Association :Signal £]:0sDp
= Display — Hypothesis — Detection
Hypothesis

1: Select to Reject Event ()

2: Mark As Rejected ()

3: Get Associations ()

[for each Assoc:anon,,]
1: Remove Association (association)

2: Get Signal Detection Hypothesis ()

3: Remove Association (association)

4: Mark as Unassociated (analyst, unassociation time)

5: Store Signal Detection Hypothesis (signal detection hypothesis, processing context)

6: Store Association (iation, pr ing context) AN

.., Persistent, with global
3 visibility

g
/
/
4: Store Event Hypothesis { event hypothesis, processing context) ,»-"‘
[I 1 | -
.-//
5: Set Preferred Hypothesis For Stage (event hypothesis, processing stage) Make the current event
4 Lo hypothesis the preferred one for
AU SS—————— A 0P
6: Set Completjon Status (processing stage, status)
7 i e Setto “Complete®
7: Store Event { event, processing context) Persistent, with global
[- visibility

8: Close Event ()
||

Expansion Flow - Refines Event Display - Close Event

This flow shows how the Refines Event Display handles rejecting an Event. Rejecting an Event
is accomplished by unassociating all Signal Detection Hypotheses from the current Event
Hypothesis, making the current Event Hypothesis the preferred Hypothesis for the current stage,
saving the Event, Event Hypothesis, Signal Detection Hypothesis, and Association objects, and
closing the Refines Event Display.

Operation Descriptions

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: OSD::Store Event()

69

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Set Completion Status()
Set the Event Completion Status of an Event in the given processing stage to the given value.

Expansion Flow - Analyst Creates Signal Detection Template

Illi Expansion Flow - Analyst Creates Signal Detection Template

Q Analyst g ‘Refines Event E :Signal Detection Q 105D
Display Template

1: Select To Create Signal Detection Template (]

If there are unsaved changes the display requires the
Analyst to save the event [see "Expansion Flow - Analyst
Saves Event Hypothesis”), This ensures the system has a
record of the event hypothesis upon which the template
was based.

o
-
s

2: Create [event h_ypstﬁ’égis L
} B

3: Store Signal Detection Template (]

Yy

The flow shows the Analyst creating a new Signal Detection Template from the current Event
Hypothesis. Stored templates may be applied by the Analyst when building a new Event or
associating additional detections to an existing Event Hypothesis (see "Builds Event" UCR).
Operation Descriptions

None

70

Expansion Flow - Analyst Copies Event

|Z| Expansion Flow - Analyst Copies Event

£ :analyst ‘Refines Event | | [new copy:Event | | =] new:Event £ :0sp
: | Display Hypothesis = : e 3 5

| |

If there are unsaved changes the display requires the
1: Select to Create Copy of Event () Analyst to save the event (see "Alternate Flow - Analyst
———— =3 Saves Event Hypothesis™) This ensures the system has a
record of the original event hypothesis from which the
new one was copied.

Pass the current event hypothesis that is being
refined, Setthe “parent hypothesis™ on the new
hypothesis to point back to the ariginal

| hypothesis.
2: Create Copy [event hypothesis | o5
P
1
3: Create ()
Lt
Pass the new event
hypaothesis created above
4: Add Event Hypothesis | event hypothesis] | .- [i.e. the copyj

Setto “In Progress”

5 Set Completion Status | processing stage, statué] e
Bl
-

B: Store Event Hypothesis [event hypothesis, processing context)
| T Persistent with
global visibility

7: Store Event [event, processing context) Al W

ot

L&

This flow shows the Analyst creating a copy of the Event they are currently refining. Initially,
the copy will have related Association objects linking it to all of the Signal Detection Hypotheses
as the original Event Hypothesis (resulting in conflicts which will be detected by the Association
Conflict Checker - see "Alternate Flow - Display Handles OSD Callbacks"). The Analyst will
need to refine each Event individually to manually remove the conflicts.

Operation Descriptions

Operation: Event Hypothesis::Create Copy()

Create a copy of the given Event Hypothesis. The copy has all of the same information as the
original (e.g. same detections, location, etc.), with the following exceptions:

- The copy points to the original as its parent
- The copy starts out with an empty Analyst comment

71

Operation: OSD::Store Event Hypothesis()

Store the given Event Hypothesis with the given lifespan (persistent vs. transient) and visibility
(private vs. global) as specified by the given Processing Context and notify relevant subscribers
via callbacks.

Operation: OSD::Store Event()

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

Operation: Event::Set Completion Status()
Set the Event Completion Status of an Event in the given processing stage to the given value.

Expansion Flow - Analyst Refreshes Displayed Data
|~_‘] Expansion Flow - Analyst Refreshes Displayed Data

EI JAnalyst] :Refines Event
l 3 Display

1t Selects to Refresh Displayed Datq [0

| 2: Refresh Displayed Data ()

iﬁ_lll-_h""m

.,
o
o
e
.
e

Also updates
subdisplays, as needed,

This flow shows how the Analyst refreshes his/her display to show the latest waveforms, Signal
Detections and Signal Detection associations. The Analyst needs this capability since late-
arriving waveforms, Signal Detections and Signal Detection associations made by other Analysts
are not automatically displayed to the Analyst. The Analyst is notified when there is new data
that is not shown on the display (see "Alternate Flow - Display Handles OSD Callbacks"). The
Analyst may refresh the display to show that data at any time via this flow. Note that the display
does not need to retrieve the new data from the OSD since it already has it due to subscriptions
with the OSD (see "Expansion Flow - Refines Event Display - Open Event").

Operation Descriptions

Operation: Refines Event Display::Refresh Displayed Data()

Update displayed waveforms and Signal Detections to reflect the current state within the
processing stage.

72

Alternate Flow - Display Handles OSD Callbacks

I:_’I Alternate Flow - Display Handles 05D Callbacks

Q 05D Q :Refines Event Display g Association
Conflict Checker

Invoked when a change is made to the current [as yet
] unsaved) event hypothesis,

Automatically update the display to reflect the new

. Update Displa values, since the new values are always the result of
Play () actions performed within the current Processing

Context (i.e. the current Analyst's work session].

Invaked when any Event object in current interval is
.. stared (including the current Event]

3: Event Callback) """

4 'Warn About Other Analyst A:itivity Far This Event)

g 1

5 Association Callback [)
i

6: Check far Conflicts [event hypothesis, proEssing stage)
-

Expansion Flow - Assodiation Canflict Checker - Check For Conflicts

7. Display Assaciation Conflicts [)

Invoked when late data is received, or existing
.. data is updated [e.g. origin beams recomputed)

B: Waveform Callback [) e

fe-

9: Update Display Or Inform User Of Stale Data [)

-l——L__._,_“_" If the Analyst has configured the
session to auto-update, then
automatically display the new/

| updated data. Otherwise, inform
| | e et the user that the data they are
10: Signal Detection CallbacIL[] " looking atis stale or incomplete.
-

!

11: Update Dijp.lar(]'ﬁ?‘lfcrm User Of Stale Data [)

12: Interval Callback [) =
o

13: Warn About Analyst Scan Overlapping This Event ()

-

This flow shows how the Refines Event Display handles various callbacks from the OSD. The
Refines Event Display subscribes for the current Event Hypothesis in order to monitor updates to
it as a result of executed Processing Sequences. The display subscribes for all Events in the

73

interval in order to monitor other Analyst activity on the current Event and to check for
association conflicts with other Events. The display subscribes for Signal Detections and
Waveforms in order to display updates to that information made by other analysts. The display
subscribes for Intervals to determine if an interval that overlaps the current Event is under active
review by another analyst.

Operation Descriptions

Operation: Refines Event Display::Event Callback()

Callback invoked any time there is a change in the subscribed Event (e.g. a new Event
Hypothesis for the Event is saved, or the preferred Hypothesis for a processing stage changes).

Operation: Refines Event Display::Warn About Other Analyst Activity For This Event()
Warn the current Analyst about another Analyst working on the current Event.

Operation: Refines Event Display::Signal Detection Callback()
Invoked any time the set of Signal Detections that fall within the current time interval changes.
The callback indicates what changed.

Operation: Refines Event Display:: Waveform Callback()
Invoked any time new raw or derived waveforms overlapping the time of the Event are received
(e.g. late data, beams).

Operation: Refines Event Display::Event Hypothesis Callback()

Callback invoked whenever portions of the Event Hypothesis are changed by the system. This
callback can only occur as part of automatic processing sequences executed by the Processing
Sequence Control mechanism, since changes made by other Analysts are stored in separate Event
Hypotheses.

Operation: Refines Event Display::Update Display()

Update the display of the Event Hypothesis being refined to reflect any changes that may have
occurred. Indicate items that are out-of-date or inconsistent (e.g. beam may be out-of-date after
refining Event location).

Operation: Association Conflict Checker::Check for Conflicts()

Check the given Event Hypothesis against the other Events in the processing stage for
association conflicts. Only check for conflicts between Event Hypotheses marked as preferred.
A conflict exists if a Signal Detection is associated to more than one preferred Hypothesis in the
processing stage.

Operation: Refines Event Display::Warn About Analyst Scan Overlapping This Event()

Warn the Analyst if the interval that overlaps the current Event being refined is under active
review by another Analyst.

74

Expansion Flow - Association Conflict Checker - Check For Conflicts

|| Expansion Flow - Association Conflict Checker - Check For Conflicts

__ iAssociation local __ :Signal);I :Association] :Signal
é Conflict 5 copy:Event lg Detection Detection
Checker Hypothesis Hypothesis

1: Get Associated Signi Detection Hypotheses ()

[For each associated signal detection hypothesis,,]

1: Get Signal Detection ()

2: Get All Signal Detection Hypotheses ()

[for each sigrial detection hypothesis,,]

1: Get Associations ()

y

[for each As5ociation,]

1: Get Event Hypothesis ()

2:Is Hypothesis Preferred ()

3: Get Processing Stage ()

l;‘ :Event

Hypothesis

[If event hypothesis is marked as preferred, is in the same prcessing stage as the event
hypothesis being refined, and is not the event hypothesis that is being refined]

1: Note Conflict (event hypothesis 1, signal detection hypothesis 1, event hypothesis 2, signal detection hypothesis 2)
-t

y

This flow shows how the Association Conflict Checker checks for association conflicts between
the local (unsaved) Event Hypothesis and other Event Hypotheses. The local Event Hypothesis
is input to this flow. The flow returns a list of association conflicts. Note that, by definition, a
conflict can only exist with an Event Hypothesis that is marked as preferred. Note also that each
Event can have at most one Event Hypothesis marked as preferred for each processing stage.

Operation Descriptions
None

75

Expansion Flow - Refines Event Display - Close Event

E Expansion Flow - Refines Event Display - Close Event

:Refines Event E :050 E :Event
Display

|
1: V‘Jam About Unsaved Changes () |
|

Transient, with
Bl private visibility

[If has unsaLed changes] L]

1: D!!-tete Event Hypothesis { pmggs&iﬁ@ntrﬂ}

| !

|2 Unsubscribe for Event Hypothesis () |

T

3: Unsubscribe for Detections () .ﬁ

4: Unsubscribe for Waveforms [) ﬁ

5: Unsubscribe for Associations () .t

|

|

|

|

|

|

|

|

|

|

|

.‘ |

6: Unsubscribe for Intervals () .-L |
|
]

l
|
| i
i
i

7: Remove Active Analyst (LlSEF}

Persistent with
— global visibility

8 Store Event [event, pmces_s_glz}_q;,mnterrlr"”’""

o
'@

9 Unsubscribe for Events ()

76

This flow shows what the Refines Event Display does upon closing the current Event.
Operation Descriptions

Operation: OSD::Store Event()

Store the given Event with the given lifespan (persistent vs. transient) and visibility (private vs.
global) as specified by the given Processing Context and notify relevant subscribers via
callbacks.

STATE MACHINE DIAGRAMS

None

NOTES

1. In this UCR and all of its child UCRs (e.g. "Refines Event Location", "Refines Event
Magnitude", etc.), the display classes store computed results to transient storage via the OSD
mechanism as the Event is refined in order to trigger execution of configured processing
sequences. These processing sequences are configured by the System Maintainer (see "Defines
Processing Sequence" UCR), and are automatically executed by the Processing Sequence
Control mechanism in response to OSD callbacks (the Processing Sequence Control mechanism
is shown in "System Detects Events" UCR). These changes to the Event Hypothesis are stored
with private visibility such that the changes are accessible only to the Analyst work session
where the changes are being made; other Analysts cannot see the updates until the Analyst
chooses to save the Event Hypothesis, at which time the Event Hypothesis is stored to persistent
storage via the OSD mechanism. The storage of an Event Hypothesis to persistent storage may
trigger additional processing sequences, as defined by the System Maintainer.

2. The Analyst may undo/redo editing operations while refining the Event, but only back to the
last save.

3. See "Marks Processing Stage Complete" UCR for a state machine diagram for Event
Completion Status.

4. This UCR covers creation of Signal Detection templates. The Analyst applies such templates
when building new Events (see "Builds Event" and "Scans Waveforms and Unassociated

Detections" UCRs).

OPEN ISSUES

None

77

This page intentionally left blank

78

IDC Use Case Realization Report
UCR-08.05 Views Event History

USE CASE DESCRIPTION

This architecturally significant use case describes how the System User observes the change
history of a given event. The change history is a series of one or more saved event hypotheses.
System Users view all the event hypotheses and the set of location solutions for each hypothesis.
The System User views the relationship between event hypotheses including the preferred
hypothesis for each processing stage. The event change history persists across work sessions for
subsequent review.

This use case is architecturally significant because it involves storing multiple event hypotheses
for each event containing provenance information including waveforms, defining signal
detections, feature measurements and parameter settings.

ARCHITECTURE DESCRIPTION

The System User opens the Views Event History Display to select and view an Event and the
related Event Hypotheses. The System User selects an Event using the Event Search Display.
The System User selects an event and opens the Event History Display. The Event History
Display shows all the Event Hypotheses for an Event and the relationships between hypotheses
stored by the OSD. The System User can select to view the information for an individual Event
Hypothesis using the View Event Display or compare multiple hypotheses using the Event
Hypothesis Comparison Display.

79

USE CASE DIAGRAM

Supports wperations

Views Event History
System User

CLASS DIAGRAMS
Classes - Displays

«display»
=] views Event History Display

«display» «display» «display» [«display»

(=] similar Events Search Display |-------> [] Event History Display =] view Event Display [[] EventHypothesis
(from Event Hypothesis Views) (from Event Hypothesis Views) | {from Event Hypothesis Views) = Comparison Display

(from Event Hypothesis Views)

This diagram shows the display classes for selecting and viewing Events and Event Hypotheses.
The System User uses the Event Search Display to select an Event. The Event History Display
shows the relationships between Event Hypotheses for an Event. The View Event Display
shows detailed information about an Event Hypothesis. The System User uses the Event
Hypothesis Comparison Display to compare multiple hypotheses.

80

Classes - Event

«entity» 7 «entity» - «entity»
£l Event = Event Hypothesis £ Processing Stage
(from Event Elements) “| (from Event Elements) 1 (from Process Control Elements)
&g preferred hypothesis per stage | ERisrejeced *
R

1

parent hypothesis

This diagram shows the relationships between Events and Event Hypotheses and the
relationships between hypotheses. Each hypothesis is related to its parent hypothesis that was
the basis for the child hypothesis. The parent hypothesis can be for the same event or a different
event.

Classes - Event History Display

E Event

xentitys i
(from Event Elements)

h W]] ‘ adis_play'x-) '
‘ Q System User |~~~ A Q Event History D.lspl.ay
: -~ 1 (from Event Hypothesis Views) |

azentity=
g Event Hypothesis
{from Event Elements)

This diagram shows the Event History Display and related classes.
Classes - Event Hypotheses Comparison Display

«boundary» «display= | «Mmechanisms
E System User |--—---—-----= = | Q Event Hypothesis Comparison Display |- ------—---———--——- = E 05D
| {from Boundary} | [fram Event Hypaothesis Views) | I {from Mechanism Layer) |
= . L . X B |
«entity= «entity= «entity» «entity»
=] Event Hypothesis £ signal Detection E] waveform £ waveform QC Mask
| {from Event Elements] | ({from Signal Detection Elements} | | (from Signal Enhancement Elements) |l {from Data Quality Elements) |

This diagram shows the Event Hypothesis Comparison Display and related classes.

81

Classes - Event Search Display

«boundarys == =display» ‘ i ! agntitys
EI System Usar [~~~ " 700 - g Similar Events Search Display [-------"-: | Q Event
¥ (from Event Hypothesis Views) | | [from Event Elements)

zmechanismsa
— osp

This diagram shows the Event Search Display. The System User uses the Event Search Display
to select Events and retrieve the Events from the OSD.

Classes - View Event Display

_sboundary» | . «display=

] system User [-----------o-oo = > | =] View Event Display
S {from Event Hypothesis Views)

«entitys i [«entitys =entitys | » sentity=
[EI Event g Event Hypothesis EI Signal Detection Q Wawveform
| ffrom Event Elements} | [from Event Elements] | {from Signal Detection Elements) (from Signal Enhancement Elements) |

This diagram shows the View Event Display and related classes that provide information about
Events and Event Hypotheses.

CLASS DESCRIPTIONS

<<boundary>> System User
Represents the System User actor.

<<entity>> Event

Represents information about an Event. Keeps track of all the Event Hypotheses for the event,
which hypothesis is the preferred one for each processing stage, the active analysts for the event
(i.e. whether the event is under "active review"), whether the event is "complete" for each
processing stage, and other event-related information.

<<entity>> Event Hypothesis

Represents geophysical information about an Event as determined by an Analyst or through
pipeline processing. There can be multiple hypotheses of the same Event (e.g. different
associated signal detection hypotheses, different location solutions).

<<entity>> Processing Stage

Represents a named stage of data processing, which may be part of the System Maintainer-
defined workflow or an Analyst-defined stage outside the workflow. All Processing Results are
associated to a Processing Stage. The previous processing stage indicates the stage to be used as

82

the default starting point when creating new processing results in the stage (e.g. when refining an
event in the stage).

<<entity>> Signal Detection

Represents information about a Signal Detection and keeps track of all the Signal Detection
Hypotheses for the Signal Detection. Represents information about a Signal Detection and keeps
track of all the Signal Detection Hypotheses for the Signal Detection. For an unassociated Signal
Detection the preferred hypothesis is the most recently created hypothesis. For an associated
Signal Detection the preferred hypothesis is the one associated to a preferred Event Hypothesis.

<<mechanism>> OSD
Represents the Object Storage and Distribution mechanism for storing and distributing data
objects internally within the system.

SEQUENCE DIAGRAMS
Flow Overview

gl Flow Overview

| Main Flow - Views '—f’f’fExpansinn Flow - Wiew Event Display - Open
Event History '

83

Main Flow - Views Event History

[7] Main Flow - Views Event History

£l :system User | | :Views Event

History Display

[:Similar Events

E :Event History
= Search Display =

Display

£ :0sp] :Event g :View Event

| Display

1: Open ()
2: Open (event)
B: Display Search Parameters ()

P

4: Enter Search Parameters ()

> 5: Find Events Matching Selection Criteria (event search parameters)

6: Display Search Res‘ults 0
L |
!
7: Select Events () 8: Open ()
9: Close Display ()
|

-

10: Get List of All Event Hypotheses ()

11: Show Event Hypotheses History ()

FJ :Event Hypothesis
=~ Comparison Display

Expansion Flow - View Event Display -‘Open‘

g
12: Select Event Hypothesis to View ()
13: Open (event hypothesis)
Event hypotheses
| from the same event
14: Select Multiple Event Hypotheses to Compare ()
15 Open‘}g_vent hypothesis list)

16: Close () o

L - | -

The Event Hypothesis Comparison
Display is described in ‘Compares

Event ' UCR.

This flow shows how the System User selects an Event and views the event history. Optionally,
the System User may view a read-only copy of a selected Event Hypothesis or compare multiple

Event Hypotheses.
Operation Descriptions
Operation: Event::Get List of All Event Hypotheses()

Return a list of all the Event Hypothesis for the given event, including summary information
such as the processing stage and which hypotheses have been designated as preferred.

84

Expansion Flow - View Event Display - Open

|~_r| Expansion Flow - View Event Display - Open

El Niew Event Display Q ;05D |;| :Event E Event
3 : = Hypothesis

1: Get Event [}

- For each signal detection get the associated
i derived waveforms, For stations with no

il T | detections get the origin beam. Timeframes
4: Get Waveform QC Masks (timeframe) G I here are based on the time in the event

t = " location. As possible optimization, could use
earth model to predict travel times in order to

5: Get Comment History () | minimize these timeframes,

6: Get Preferred Location (]

il

T: Update Display ()
-

This flow shows how the View Event Display is created and the classes contributing information
for the display.

Operation Descriptions

Operation: Event::Get Comment History()

Return all Analyst-entered comments associated with the Event.

STATE MACHINE DIAGRAMS

None

SSD MAPPINGS

NOTES

1. View Event Display is a read-only display of an Event Hypothesis and related information.
The event hypothesis information is generated in 'System Detects Event' and 'Refines Event' UCs
and includes station quality metrics, event hypothesis quality metrics, map displays including
geographic regions and geospatial data, and both unassociated and associated signal detections.
Displays will be similar to Analyst displays for 'Refines Event' UC.

85

2. Event Hypothesis Comparison Display shows QC Masks for associated waveforms per S-
1292.

OPEN ISSUES

None

86

DISTRIBUTION

1 MS0401 Rudy Sandoval 5563 (electronic copy)

1 MS0899 Technical Library 9536 (electronic copy)

87

@ Sandia National Laboratories

88

