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Abstract

We're trying to understand the math behind the Karhunen-Loéve expansion, and these are the
notes we're taking along the way.
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1. Statement of the
Karhunen-Loéve expansion

Let {X(¢)}iero, 1,1, e @ real-valued stochastic process. That is, for each 7 € [to, tf], X(7) is a
real-valued random variable.

Also, let us denote the expected value of X (1), E[X(7)], by ux(7), for each € [to, t/].

Then, the Karhunen-Loéve theorem [1-5] states that X (¢) can be written as:

X(t) = px(t)+ Y Zrex(t), Yt € [to, tf]. (1.1)
k=1

The {Z;}s above are “zero mean, pairwise uncorrelated” real-valued random variables. That is,
we have:

E[Zy]) =0, Vk € Zy, and (1.2)
E[Zy, Zk,] = 0 whenever ky # ko, Y ki, ks € Z, (1.3)

where Z, denotes the set of positive integers.

Also, the {e}s in Eq. (1.1) are “orthonormal”. That is,

Ly
/ e () €y (7) A7 = Sy ¥ b ks € (1.4)

=to

where dy, ;,, denotes the Kronecker delta:

1, if k1 = ko, and
Okihy =4 ' Vi, ko €Z4. 1.5
Fika {0, otherwise, b= (19



2. Proof of the
Karhunen-Loéve expansion

2.1 Proof strategy

Proving the Karhunen-Loéve expansion requires several pre-requisites. These include, (1) an un-
derstanding of the fundamentals of continuous stochastic processes, including the autocorrelation
function and its properties such as symmetry and positive-semidefiniteness, the Hilbert-Schmidt
integral operator and its properties such as linearity and self-adjointness, eigen-analysis of the
Hilbert-Schmidt integral operator and some properties of the associated eigenvalues and eigen-
vectors, efc., (2) the spectral theorem and various observations that can be made by applying it to
the Hilbert-Schmidt integral operator, and (3) Mercer’s theorem.

We haven’t understood all these pre-requisites yet. For example, while we have learned about
continuous stochastic processes and their properties, we still don’'t know how to prove the spectral
theorem or Mercer’s theorem. These are topics that require advanced courses in real analysis and
abstract algebra.

So, while we have a good grasp of some pre-requisites, we're forced to take others on faith.
So, in subsequent sections, we're going to prove some lemmas and theorems leading up to the
Karhunen-Loéve expansion, but we're going to leave others without proof. Over time, as we learn
more, we’ll try and fill in the blanks. But until then, the proof below will necessarily be incomplete.

2.2 Some facts about continuous
stochastic processes

2.2.1 The autocorrelation function Ry

We define the autocorrelation function Rx (¢, t2) of the stochastic process X (t) as follows:

(X (t:
= E[X(t1) X (t2) — X(t1)px (t2) — px (t1) X (t2) + px (t1)px (t2)]
= E[X (1) X (t2)] — E[X (t1)px (t2)] — Elpx (t1) X (t2)] + Elux (t1)px (t2)]
= E[X (t1) X (t2)] — px (t2)E[X (t1)] — px (t1)E[X (t2)] + px (t1)px (t2)



[X(t1) X (t2)] — px (t2)pux (t1) — px (t1)px (t2) + px (t1)px (t2)

E
E[X(t1)X (t2)] — px(t1)px(t2), ¥ t1, ta € [to, ty]. (2.1)

Theorem 2.2.1. The autocorrelation function Rx is symmetric. Thatis, for anyti, ts € [to, ty], we
have:

Rx(t1, t2) = Rx(ta, t1). (2.2)

Proof. Follows from the definition above. O

Theorem 2.2.2. The autocorrelation function Rx is positive-semidefinite [6, 7]. That is, for any
real-valued function f : [to, t;] = R, we have:

tf tf
/ / f(m1) Rx(m1, 72) f(72) dri d72 > 0. (2.3)
T1=to J T2=to

Proof. We have:

- ,
0<E ( e (X(T)—ux(T))dT> ]

=to

o < ty ) (X() — px (7)) dr> (/Tt:fto f(r) (X(7) = px (7)) d7> ]

T=to

[ ([ st - pxtyan) ([ ) (X - px(ryan) |
— /ﬁtf ., /T2 » X(m1) — px(m)) (X(72) — px(72)) dr dre ]

E

ty
/ / | ELI) £(m) (X() = () (X(m) = pex ()| s d
/ft / f(m) f(m) E[ (X (11) — px (1)) (X(12) — px(12)) ] dri dr

= / 7'2 Rx(Tl, 7'2) d7'1 dTg
T1=to J T2=t0

/ / 7'1 RX 7’1, 7'2) f(TQ) d7'1 dTg.
T1=to

2.2.2 The Hilbert-Schmidt integral operator H x

Based on the autocorrelation function Ry, we define an operator H x, called the Hilbert-Schmidt
integral operator [8].
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This operator acts on a real-valued function f : [ty, ty] — R, and as a result produces another
real-valued function g : [to, t¢] — R.

The relationship between the functions f and g is given by:

o) = Hx(N, 2 [ Rx(t.7) f(r) dr (2.4)

T=to

Theorem 2.2.3. H x is additive. That is, for any two functions fi and f, where fi, fa: [to, t;] = R,
we have:

Hx (f1+ f2) = Hx(f1) + Hx(f2). (2.9)

Proof. Follows from the definition in Eq. (2.4). O

Theorem 2.2.4. Hx is homogeneous. That is, for every function f : [to, t;] — R, and for every
scalar o € R, we have:

Hx(af) =aHx(f). (2.6)

Proof. Follows from the definition in Eq. (2.4). O

Remark 2.2.1. Because H x is both additive and homogeneous, it is said to be “linear”.

2.2.3 Eigenvalues and eigenfunctions of H x

We define X to be an “eigenvalue” of # x if there exists a function ey : [to, t;] — R (called the
“eigenfunction” associated with \), such that:

Hx(ex) = Aey. (2.7)
That is, we have:

T R (tr) ex(r) dr = A ex(t), Yt € [to, 1], (2.8)

T=to
The pair (A, e)) above is called an “eigenpair” of Hx.
Theorem 2.2.5. All eigenvalues of H x are non-negative.
Proof. Let (), ey) be an eigenpair of H x. Then, we have:

12



t
/ " Rx(t,7) ex(r) dr = A ex(t), V1 € [to, t7], by Eq. (2.8),

=to

ty

— Rx(t,Tg) 6)\(7'2) dTQZ)\e)\(t), Vite [t(), tf],
To=t,
b

— Rx(11,72) ex(m2) dra = Xex(m1), ¥V 11 € [to, tf],
To=to

Ly ly y
= 6)\(7'1)/ Rx(71,72) ex(m2) drp dp = / ex(m) Aex(m) dr,

T1 to 2=to 1 =to

ty
/ ex(11) Rx(m1,m2) ex(m2) dri dmp = A / ex(m)? dm,
1= to T2=t0

T1=1o

= A ex(m1)? dr > 0, by the positive-semidefiniteness of Ry (Theorem 2.2.2)

T1=to

>0
— \>0.

O

Theorem 2.2.6. Eigenfunctions of H x that correspond to distinct eigenvalues are orthogonal. That
is, if (A\1,ex,) and (Aq, ey,) are eigenpairs of Hx, and \; # A2, then we have:

ty
/ ex, (1) ex, (1) dr = 0. (2.9)

=tg
Proof. We have:

(M = A) [ / Y e () en(7) dT]

=to

— / Y e (1) () dT] - [Ag / Y (1) en(r) df}

=to =to

_ "/th A ex, (7) ex, (7) dr} _ [/:f ex, (T) A2 ex, (7) dT:|

=to =to

ty ty
= / )\1 €N (t) €Ny (t) dt — / Y (t) )\2 €y (t) dt
t=ty ~S——~— t=tg "
Apply Eq. (2.8) Apply Eq. (2.8)

_ /t s t()RX (t,7) ex, (1) dr exy (t) dt] — [/ttf ex, (1) /tf Rx(t,7) ex,(T) det]

to

= / RX(t T) e (T) ex, () dt dT:| [/ / ex, (t) Rx(t, ) ex,(7) dt dT:|
L Jt=tg J 7= to t= T=to
= / Tl, e)\l (T) e)\z(ﬁ) dTl dT:| |:/ / 6)\1 T2 Rx(Tg, ) 6)\2(7') dT2 dT:|
L JTi=tg JT= to To=to J T=to
= / / x(71,72) ex, (T2) ex,(T1) dr1 dro } — [/ / ex, (12) Rx (12, 71) ex,(11) dro dmy }
T1 T2=to T: T1=to

13



tr tr
= [/ / ex, (1) Rx (11, 72) ex, (72) dmy dT2:| — [/ / ex, (1) Rx (12, 71) ey, (12) d11 do
T T To=to

1=to v/ T2=1o

ty ty
= / / e)\z(ﬁ) [Rx(Tl,TQ)—Rx(TQ,Tl)] 6)\1(7'2) dTl dT2

1=to J T2=to

= 0, by the symmetry of Rx (Theorem 2.2.1)
= 0.

— Either (M —=X)=0 , or [/
~——— -

Not possible because A1 #\2

Ly

ex, (1) ex, (1) dT:| =0.

=to

Only possibility

tr
= / ex, (1) ex, (1) dr = 0.
T=to

2.2.4 Self-adjointness of Hx

For any two functions f and g, where f, g : [to, t¢] — R, we define the “inner product” of f and g,
denoted by (f, g), to be:

Gae [ e g an (2.10)

T=to

Theorem 2.2.7. H x is a self-adjoint operator. That is, for any two functions f and g where f, g :
[to, tf] = R, we have:

(f, Hx(9)) = (Hx(f), 9) (2.11)

Proof. We have:

(f, Hx(9))

Il
~
—~

\]
S~—

Hx (g)(7) dr, from Eq. (2.10)

ly Ly

I
kﬂ
/-\
\_/

Rx(7, t) g(t) dt dr, from Eq. (2.4)

t=to

tf tr
/ 7) Rx (7, t) g(t) dt dr,
T=to

- /t: 9(t) /r Rx (7, t) f(7) dr dt,

= Rx(t, 7), by symmetry of Rx (Theorem 2.2.1)
ty ty

- / o) [ Rx(t, 7) f(r) dr dt,

=to T=tg

= Hx (f)(t), by Eq. (2.4)

— 7 ) o) at,

t=to

14



= (Hx(f), 9), by Eq. (2.10).

2.3 The spectral theorem

From Theorem 2.2.7, we know that H x is a self-adjoint operator. More specifically, H x is a com-
pact self-adjoint operator on a Hilbert space [9,10]. We don’t know exactly what the word “com-
pact” means, and we also don’t know what a Hilbert space is. Understanding the proper meanings
of these terms requires taking graduate-level courses in real analysis and abstract algebra, which
we don’t have time for at the moment. So, we're just taking these facts on faith for the time-being.

Theorem 2.3.1 (Spectral theorem). Given a compact self-adjoint operator Hx on a Hilbert space,
there exists an orthonormal basis of eigenvectors of Hx that span the space.

Proof. We think the proof is well beyond our scope at this time. To learn the proof, some useful
resources to consult include [11-16]. O

The spectral theorem tells us the following:
Observation 2.3.1. We can find a countable set of eigenpairs { (i, ey, ) }rez, Of Hx.
Observation 2.3.2. By Theorem 2.2.5, all the \.s above will be non-negative.

Observation 2.3.3. Without loss of generality, we can assume that the \;.s above are in descend-
ing order.

Observation 2.3.4. We have:
lim A\, = 0. (2.12)

k—o00

Observation 2.3.5. By the orthonormality of the e, s, we have:

ty
<€)\k y € > = €, (t) € (t) dt = 5k1k27 Vkl, kQ S Z+. (213)
1 2 ' 1 2

=to

Observation 2.3.6. Because each e, above is an eigenvector of Hx, with eigenvalue )\, we
have the following from Egs. 2.7 and 2.8:

Hx (en,) = Arey,, VEkeZy, and (2.14)
ty
Hax(en) ()= [ Raltr) ea,(r) dr
T=to
= Apex (1), V€t ty], VkEZy. (2.15)

15



Observation 2.3.7. Because the e, s span the space of functions, we can write any function
f: [to, ty] — R as a linear combination of the ey, s. That is, given any such function f, we can
find coefficients {cy}recz, such that:

f= ickwk,or (2.16)
k=1

Ft) = cren, (t), Vit € Jto, t]. (2.17)
k=1

Observation 2.3.8. Based on the linear combination above, the result of applying the Hx opera-
tion on any function f : [to, t;] — R can be written as:

Hx(f) =Hx (Z i e,\k> , from Eq. (2.16)
k=1

= aHx (ey,), from the linearity of #x (Theorems 2.2.3, 2.2.4)
k=1

= o Meen,, from Eq. (2.14), or (2.18)
k=1

Hx(F)E) =D e deen,(t), VE€ [to, ty]. (2.19)
k=1

2.4 Mercer’s theorem

Theorem 2.4.1 (Mercer’s theorem). The autocorrelation function Rx can be written as:

Rx(t1,t2) = ZM» ex,(t1) ex, (t2), ¥V t1, t2 € [to, tf]. (2.20)
k=1

Proof. We don’t know the proof of this theorem yet, because it involves learning about various
convergence criteria such as absolute convergence, uniform convergence, etc. But we're working
on it. Once we understand the proof, we’'ll put it in here. Some useful resources to consult
include [10,17,18]. O

2.5 Finally, the Karhunen-Loéve expansion

From the stochastic process {X (t)}:c(s,, ,], We define the random variables {Zj } ¢z, as follows:

t
7 - /t "X — px(0) exg() dt, Yk € Ty (2.21)

=to

16



The ey, s above are, of course, the eigenvectors of H x discussed in §2.3.

Theorem 2.5.1. The Z,.s above are all zero-mean random variables.

Proof. We have:

E[Z] = E Mtf (X(t) — px (1)) ex, (1) dt| , from Eq. (2.21)

=to

-/ T RIX () - px ()] ex,(8)

=to

:/tf (E[X(t)]_#x(t)) 6)%(75) dt,

=to

- / " (ux () — ix(®) ex(t) dt,

=to

=0,Vk€eZy. (2.22)

Theorem 2.5.2. The Z;.s above are all pairwise-uncorrelated.

Proof. We have:

E [Zs, Z¢,] = E (1) ex, (¢ > </ttf () — ix (1)) exe, () dt>] . from Eq. (2.21)

to =to

(/.
=K ( - to — px(t1)) exg, ( dt1> < L to — px(t2)) ex,, (t2) dt2>]
/.

E / LX) = ) e, (1) (X(e2) - MX(Q))EA@(tz)dtldt%

t

[y

[ RIOK) —px(0) (602 () e, () e, 1) s

f

/.
/ / tl,tQ S (tl) Sy (tg) dt1 dto, from Eq (2 1)
t to=to

I
-

t
1=to
133

_ e, (1) [Ak2 e, (tl)] dt;, from Eq. (2.14)

t1=to

ty
ko /t ex, (t1) e, (t1) dty

1=to

= Ak, Ok, k, (from Observation 2.3.5), V k1, ko € Z... (2.23)

\

ex (11) [ / Ri(t1,12) ex,, (t2) dt2] dt,
=to tao=to

' e, (t1) [Hx(eAkQ)(tl)} dty, from Eq. (2.4)

>

17



Theorem 2.5.3 (The Karhunen-Loéve theorem). The stochastic process {X (t)}:c(s,, 1,) can be
written in terms of the random variables {Z}.} .cz., , as follows:

) + Z Zgez, (t), YVt € [to, ty]. (2.24)

This is true in the following sense:
2
]\;E}nOOE |: (X ( —|— ZZke)\k >> ] =0,Vte [to, tf]. (2.25)

Proof. We have:

el ool

+22
k
- N 9

N
k=1
k

i N 2 N
= lim B | (X(t) - Pt (D Zien, ) 2 (X(t) — pux(t)) (ZZkeAk(t)>]
_ k=1

1
ngnw(EUX() ux(®)? | + {(szexk>

N
= J\}E)noo (RX (t, t) ! (Z Zk1e>\k1 (t)) (Z Zkzekkz (t)) ] —2E
ki=1

—-E

N
2 (X(t) — px(t)) (Z Zkexk(t)) ] )

k=1

N
D (X (1) — px(8) Zien, (1) ] )

k=1

N N
= Rx(t, t) + ]\}I—I}loo E Z Z ZkleQe,\kl 6)\k2 ] -2 Ze)\k /Lx(t)) Zk] )
=1ko=1
N N
= Rx(t, t) + ]\}I—I}loo Z Z 6)\k1 6)\k2 Zkle2 -2 Z 6>\k — px (1)) Zk]
k1=1ko=1
N N N
= Rx (ta t) + ]\}1—H>100 Z Z EXg, (t)e)\kz )‘kzéklkz -2 Z P)\k MX( )) Zk:]
k1=1ko=1 k=1
N N
= Rx(t, 1) + lim_ ( Z: Akei, () — 2 kzl ex, (t) E[(X (1) — pux(t)) Zi] >

:Rx(t, t)—l— lim (

N N ”
= Rx(t, )+ Jim ( > e 0 -2 Yen 0B | [ (00— ux(0) (X() () s, ()| )



= Rx(t, t) + lim

1 k=1 T=to
N N ty
= Rx(t, t) + ]\}gnoo kz_:l)\k e, (t) —2 kz_:lekk (1) /T_to ex,(7) Rx(t, 1) dT)

1 k=1
N N
= Rx(t, t) + Jim ;Ak €3, (t) — 2 ;% (H)Aken, (t))

N N
= Rx(t, t) + lim_ D odeer () —2 ) eik(t)>

(
(
<o
(
(
(

N
=Rx(t, )+ lim [ =" eik(t)>

= Rx(t, t) = Y _ Mpe, (t)
k=1

=0,V t € [to, ts], by Mercer's theorem (Theorem 2.4.1).
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