

SANDIA REPORT

SAND2019-3363

Unlimited Release

Printed June 2018

The Karhunen-Loéve Expansion

Karthik V. Aadithya, Eric Keiter, and Ting Mei

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, make any warranty, express or implied, or assume any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represent that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government, any agency thereof, or any of their contractors or subcontractors. The views and opinions expressed herein do not necessarily state or reflect those of the United States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov
Online ordering: <http://www.osti.gov/bridge>

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov
Online ordering: <http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online>

The Karhunen-Loéve Expansion

Karthik V. Aadithya[‡], Eric Keiter, and Ting Mei
Sandia National Laboratories, Albuquerque, NM, USA
[‡]Corresponding author. Email: kvaadit@sandia.gov

Abstract

We're trying to understand the math behind the Karhunen-Loéve expansion, and these are the notes we're taking along the way.

Contents

1. Statement of the Karhunen-Loéve expansion	9
2. Proof of the Karhunen-Loéve expansion	10
2.1 Proof strategy	10
2.2 Some facts about continuous stochastic processes	10
2.2.1 The autocorrelation function R_X	10
2.2.2 The Hilbert-Schmidt integral operator \mathcal{H}_X	11
2.2.3 Eigenvalues and eigenfunctions of \mathcal{H}_X	12
2.2.4 Self-adjointness of \mathcal{H}_X	14
2.3 The spectral theorem	15
2.4 Mercer's theorem	16
2.5 Finally, the Karhunen-Loéve expansion	16

List of Figures

1. Statement of the Karhunen-Loéve expansion

Let $\{X(t)\}_{t \in [t_0, t_f]}$, be a real-valued stochastic process. That is, for each $\tau \in [t_0, t_f]$, $X(\tau)$ is a real-valued random variable.

Also, let us denote the expected value of $X(\tau)$, $\mathbb{E}[X(\tau)]$, by $\mu_X(\tau)$, for each $\tau \in [t_0, t_f]$.

Then, the Karhunen-Loéve theorem [1–5] states that $X(t)$ can be written as:

$$X(t) = \mu_X(t) + \sum_{k=1}^{\infty} Z_k e_k(t), \quad \forall t \in [t_0, t_f]. \quad (1.1)$$

The $\{Z_k\}$ s above are “zero mean, pairwise uncorrelated” real-valued random variables. That is, we have:

$$\mathbb{E}[Z_k] = 0, \quad \forall k \in \mathbb{Z}_+, \text{ and} \quad (1.2)$$

$$\mathbb{E}[Z_{k_1} Z_{k_2}] = 0 \text{ whenever } k_1 \neq k_2, \quad \forall k_1, k_2 \in \mathbb{Z}_+, \quad (1.3)$$

where \mathbb{Z}_+ denotes the set of positive integers.

Also, the $\{e_k\}$ s in Eq. (1.1) are “orthonormal”. That is,

$$\int_{\tau=t_0}^{t_f} e_{k_1}(\tau) e_{k_2}(\tau) d\tau = \delta_{k_1 k_2}, \quad \forall k_1, k_2 \in \mathbb{Z}_+, \quad (1.4)$$

where $\delta_{k_1 k_2}$ denotes the Kronecker delta:

$$\delta_{k_1 k_2} \triangleq \begin{cases} 1, & \text{if } k_1 = k_2, \text{ and} \\ 0, & \text{otherwise,} \end{cases}, \quad \forall k_1, k_2 \in \mathbb{Z}_+. \quad (1.5)$$

2. Proof of the Karhunen-Loéve expansion

2.1 Proof strategy

Proving the Karhunen-Loéve expansion requires several pre-requisites. These include, (1) an understanding of the fundamentals of continuous stochastic processes, including the autocorrelation function and its properties such as symmetry and positive-semidefiniteness, the Hilbert-Schmidt integral operator and its properties such as linearity and self-adjointness, eigen-analysis of the Hilbert-Schmidt integral operator and some properties of the associated eigenvalues and eigenvectors, *etc.*, (2) the spectral theorem and various observations that can be made by applying it to the Hilbert-Schmidt integral operator, and (3) Mercer's theorem.

We haven't understood all these pre-requisites yet. For example, while we have learned about continuous stochastic processes and their properties, we still don't know how to prove the spectral theorem or Mercer's theorem. These are topics that require advanced courses in real analysis and abstract algebra.

So, while we have a good grasp of some pre-requisites, we're forced to take others on faith. So, in subsequent sections, we're going to prove some lemmas and theorems leading up to the Karhunen-Loéve expansion, but we're going to leave others without proof. Over time, as we learn more, we'll try and fill in the blanks. But until then, the proof below will necessarily be incomplete.

2.2 Some facts about continuous stochastic processes

2.2.1 The autocorrelation function R_X

We define the autocorrelation function $R_X(t_1, t_2)$ of the stochastic process $X(t)$ as follows:

$$\begin{aligned} R_X(t_1, t_2) &\triangleq \mathbb{E}[(X(t_1) - \mu_X(t_1))(X(t_2) - \mu_X(t_2))] \\ &= \mathbb{E}[X(t_1)X(t_2) - X(t_1)\mu_X(t_2) - \mu_X(t_1)X(t_2) + \mu_X(t_1)\mu_X(t_2)] \\ &= \mathbb{E}[X(t_1)X(t_2)] - \mathbb{E}[X(t_1)\mu_X(t_2)] - \mathbb{E}[\mu_X(t_1)X(t_2)] + \mathbb{E}[\mu_X(t_1)\mu_X(t_2)] \\ &= \mathbb{E}[X(t_1)X(t_2)] - \mu_X(t_2)\mathbb{E}[X(t_1)] - \mu_X(t_1)\mathbb{E}[X(t_2)] + \mu_X(t_1)\mu_X(t_2) \end{aligned}$$

$$\begin{aligned}
&= \mathbb{E}[X(t_1)X(t_2)] - \mu_X(t_2)\mu_X(t_1) - \mu_X(t_1)\mu_X(t_2) + \mu_X(t_1)\mu_X(t_2) \\
&= \mathbb{E}[X(t_1)X(t_2)] - \mu_X(t_1)\mu_X(t_2), \quad \forall t_1, t_2 \in [t_0, t_f].
\end{aligned} \tag{2.1}$$

Theorem 2.2.1. *The autocorrelation function R_X is symmetric. That is, for any $t_1, t_2 \in [t_0, t_f]$, we have:*

$$R_X(t_1, t_2) = R_X(t_2, t_1). \tag{2.2}$$

Proof. Follows from the definition above. \square

Theorem 2.2.2. *The autocorrelation function R_X is positive-semidefinite [6, 7]. That is, for any real-valued function $f : [t_0, t_f] \rightarrow \mathbb{R}$, we have:*

$$\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} f(\tau_1) R_X(\tau_1, \tau_2) f(\tau_2) d\tau_1 d\tau_2 \geq 0. \tag{2.3}$$

Proof. We have:

$$\begin{aligned}
0 &\leq \mathbb{E} \left[\left(\int_{\tau=t_0}^{t_f} f(\tau) (X(\tau) - \mu_X(\tau)) d\tau \right)^2 \right] \\
&= \mathbb{E} \left[\left(\int_{\tau=t_0}^{t_f} f(\tau) (X(\tau) - \mu_X(\tau)) d\tau \right) \left(\int_{\tau=t_0}^{t_f} f(\tau) (X(\tau) - \mu_X(\tau)) d\tau \right) \right] \\
&= \mathbb{E} \left[\left(\int_{\tau_1=t_0}^{t_f} f(\tau_1) (X(\tau_1) - \mu_X(\tau_1)) d\tau_1 \right) \left(\int_{\tau_2=t_0}^{t_f} f(\tau_2) (X(\tau_2) - \mu_X(\tau_2)) d\tau_2 \right) \right] \\
&= \mathbb{E} \left[\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} f(\tau_1) f(\tau_2) (X(\tau_1) - \mu_X(\tau_1)) (X(\tau_2) - \mu_X(\tau_2)) d\tau_1 d\tau_2 \right] \\
&= \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} \mathbb{E} [f(\tau_1) f(\tau_2) (X(\tau_1) - \mu_X(\tau_1)) (X(\tau_2) - \mu_X(\tau_2))] d\tau_1 d\tau_2 \\
&= \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} f(\tau_1) f(\tau_2) \mathbb{E} [(X(\tau_1) - \mu_X(\tau_1)) (X(\tau_2) - \mu_X(\tau_2))] d\tau_1 d\tau_2 \\
&= \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} f(\tau_1) f(\tau_2) R_X(\tau_1, \tau_2) d\tau_1 d\tau_2 \\
&= \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} f(\tau_1) R_X(\tau_1, \tau_2) f(\tau_2) d\tau_1 d\tau_2.
\end{aligned}$$

\square

2.2.2 The Hilbert-Schmidt integral operator \mathcal{H}_X

Based on the autocorrelation function R_X , we define an operator \mathcal{H}_X , called the Hilbert-Schmidt integral operator [8].

This operator acts on a real-valued function $f : [t_0, t_f] \rightarrow \mathbb{R}$, and as a result produces another real-valued function $g : [t_0, t_f] \rightarrow \mathbb{R}$.

The relationship between the functions f and g is given by:

$$g(t) = \mathcal{H}_X(f)|_t \triangleq \int_{\tau=t_0}^{t_f} R_X(t, \tau) f(\tau) d\tau \quad (2.4)$$

Theorem 2.2.3. \mathcal{H}_X is additive. That is, for any two functions f_1 and f_2 where $f_1, f_2 : [t_0, t_f] \rightarrow \mathbb{R}$, we have:

$$\mathcal{H}_X(f_1 + f_2) = \mathcal{H}_X(f_1) + \mathcal{H}_X(f_2). \quad (2.5)$$

Proof. Follows from the definition in Eq. (2.4). \square

Theorem 2.2.4. \mathcal{H}_X is homogeneous. That is, for every function $f : [t_0, t_f] \rightarrow \mathbb{R}$, and for every scalar $\alpha \in \mathbb{R}$, we have:

$$\mathcal{H}_X(\alpha f) = \alpha \mathcal{H}_X(f). \quad (2.6)$$

Proof. Follows from the definition in Eq. (2.4). \square

Remark 2.2.1. Because \mathcal{H}_X is both additive and homogeneous, it is said to be “linear”.

2.2.3 Eigenvalues and eigenfunctions of \mathcal{H}_X

We define λ to be an “eigenvalue” of \mathcal{H}_X if there exists a function $e_\lambda : [t_0, t_f] \rightarrow \mathbb{R}$ (called the “eigenfunction” associated with λ), such that:

$$\mathcal{H}_X(e_\lambda) = \lambda e_\lambda. \quad (2.7)$$

That is, we have:

$$\int_{\tau=t_0}^{t_f} R_X(t, \tau) e_\lambda(\tau) d\tau = \lambda e_\lambda(t), \quad \forall t \in [t_0, t_f]. \quad (2.8)$$

The pair (λ, e_λ) above is called an “eigenpair” of \mathcal{H}_X .

Theorem 2.2.5. All eigenvalues of \mathcal{H}_X are non-negative.

Proof. Let (λ, e_λ) be an eigenpair of \mathcal{H}_X . Then, we have:

$$\begin{aligned}
& \int_{\tau=t_0}^{t_f} R_X(t, \tau) e_\lambda(\tau) d\tau = \lambda e_\lambda(t), \forall t \in [t_0, t_f], \text{ by Eq. (2.8),} \\
& \Rightarrow \int_{\tau_2=t_0}^{t_f} R_X(t, \tau_2) e_\lambda(\tau_2) d\tau_2 = \lambda e_\lambda(t), \forall t \in [t_0, t_f], \\
& \Rightarrow \int_{\tau_2=t_0}^{t_f} R_X(\tau_1, \tau_2) e_\lambda(\tau_2) d\tau_2 = \lambda e_\lambda(\tau_1), \forall \tau_1 \in [t_0, t_f], \\
& \Rightarrow \int_{\tau_1=t_0}^{t_f} e_\lambda(\tau_1) \int_{\tau_2=t_0}^{t_f} R_X(\tau_1, \tau_2) e_\lambda(\tau_2) d\tau_2 d\tau_1 = \int_{\tau_1=t_0}^{t_f} e_\lambda(\tau_1) \lambda e_\lambda(\tau_1) d\tau_1, \\
& \Rightarrow \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} e_\lambda(\tau_1) R_X(\tau_1, \tau_2) e_\lambda(\tau_2) d\tau_1 d\tau_2 = \lambda \int_{\tau_1=t_0}^{t_f} e_\lambda(\tau_1)^2 d\tau_1, \\
& \Rightarrow \lambda \underbrace{\int_{\tau_1=t_0}^{t_f} e_\lambda(\tau_1)^2 d\tau_1}_{\geq 0} \geq 0, \text{ by the positive-semidefiniteness of } R_X \text{ (Theorem 2.2.2)} \\
& \Rightarrow \lambda \geq 0.
\end{aligned}$$

□

Theorem 2.2.6. *Eigenfunctions of \mathcal{H}_X that correspond to distinct eigenvalues are orthogonal. That is, if $(\lambda_1, e_{\lambda_1})$ and $(\lambda_2, e_{\lambda_2})$ are eigenpairs of \mathcal{H}_X , and $\lambda_1 \neq \lambda_2$, then we have:*

$$\int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau = 0. \quad (2.9)$$

Proof. We have:

$$\begin{aligned}
& (\lambda_1 - \lambda_2) \left[\int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau \right] \\
&= \left[\lambda_1 \int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau \right] - \left[\lambda_2 \int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau \right] \\
&= \left[\int_{\tau=t_0}^{t_f} \lambda_1 e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau \right] - \left[\int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) \lambda_2 e_{\lambda_2}(\tau) d\tau \right] \\
&= \left[\int_{t=t_0}^{t_f} \underbrace{\lambda_1 e_{\lambda_1}(t)}_{\text{Apply Eq. (2.8)}} e_{\lambda_2}(t) dt \right] - \left[\int_{t=t_0}^{t_f} e_{\lambda_1}(t) \underbrace{\lambda_2 e_{\lambda_2}(t)}_{\text{Apply Eq. (2.8)}} dt \right] \\
&= \left[\int_{t=t_0}^{t_f} \underbrace{\int_{\tau=t_0}^{t_f} R_X(t, \tau) e_{\lambda_1}(\tau) d\tau}_{\text{Eq. (2.8)}} e_{\lambda_2}(t) dt \right] - \left[\int_{t=t_0}^{t_f} e_{\lambda_1}(t) \int_{\tau=t_0}^{t_f} R_X(t, \tau) e_{\lambda_2}(\tau) d\tau dt \right] \\
&= \left[\int_{t=t_0}^{t_f} \int_{\tau=t_0}^{t_f} R_X(t, \tau) e_{\lambda_1}(\tau) e_{\lambda_2}(t) dt d\tau \right] - \left[\int_{t=t_0}^{t_f} \int_{\tau=t_0}^{t_f} e_{\lambda_1}(t) R_X(t, \tau) e_{\lambda_2}(\tau) dt d\tau \right] \\
&= \left[\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} R_X(\tau_1, \tau_2) e_{\lambda_1}(\tau_1) e_{\lambda_2}(\tau_2) d\tau_1 d\tau_2 \right] - \left[\int_{\tau_2=t_0}^{t_f} \int_{\tau_1=t_0}^{t_f} e_{\lambda_1}(\tau_2) R_X(\tau_2, \tau_1) e_{\lambda_2}(\tau_1) d\tau_2 d\tau_1 \right] \\
&= \left[\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} R_X(\tau_1, \tau_2) e_{\lambda_1}(\tau_2) e_{\lambda_2}(\tau_1) d\tau_1 d\tau_2 \right] - \left[\int_{\tau_2=t_0}^{t_f} \int_{\tau_1=t_0}^{t_f} e_{\lambda_1}(\tau_2) R_X(\tau_2, \tau_1) e_{\lambda_2}(\tau_1) d\tau_2 d\tau_1 \right]
\end{aligned}$$

$$\begin{aligned}
&= \left[\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} e_{\lambda_2}(\tau_1) R_X(\tau_1, \tau_2) e_{\lambda_1}(\tau_2) d\tau_1 d\tau_2 \right] - \left[\int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} e_{\lambda_2}(\tau_1) R_X(\tau_2, \tau_1) e_{\lambda_1}(\tau_2) d\tau_1 d\tau_2 \right] \\
&= \int_{\tau_1=t_0}^{t_f} \int_{\tau_2=t_0}^{t_f} e_{\lambda_2}(\tau_1) \underbrace{[R_X(\tau_1, \tau_2) - R_X(\tau_2, \tau_1)]}_{= 0, \text{ by the symmetry of } R_X \text{ (Theorem 2.2.1)}} e_{\lambda_1}(\tau_2) d\tau_1 d\tau_2 \\
&= 0.
\end{aligned}$$

$$\begin{aligned}
\implies \text{Either } \underbrace{(\lambda_1 - \lambda_2) = 0}_{\text{Not possible because } \lambda_1 \neq \lambda_2}, \text{ or } \underbrace{\left[\int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau \right]}_{\text{Only possibility}} = 0.
\end{aligned}$$

$$\implies \int_{\tau=t_0}^{t_f} e_{\lambda_1}(\tau) e_{\lambda_2}(\tau) d\tau = 0.$$

□

2.2.4 Self-adjointness of \mathcal{H}_X

For any two functions f and g , where $f, g : [t_0, t_f] \rightarrow \mathbb{R}$, we define the “inner product” of f and g , denoted by $\langle f, g \rangle$, to be:

$$\langle f, g \rangle \triangleq \int_{\tau=t_0}^{t_f} f(\tau) g(\tau) d\tau. \quad (2.10)$$

Theorem 2.2.7. \mathcal{H}_X is a self-adjoint operator. That is, for any two functions f and g where $f, g : [t_0, t_f] \rightarrow \mathbb{R}$, we have:

$$\langle f, \mathcal{H}_X(g) \rangle = \langle \mathcal{H}_X(f), g \rangle \quad (2.11)$$

Proof. We have:

$$\begin{aligned}
\langle f, \mathcal{H}_X(g) \rangle &= \int_{\tau=t_0}^{t_f} f(\tau) \mathcal{H}_X(g)(\tau) d\tau, \text{ from Eq. (2.10)} \\
&= \int_{\tau=t_0}^{t_f} f(\tau) \int_{t=t_0}^{t_f} R_X(\tau, t) g(t) dt d\tau, \text{ from Eq. (2.4)} \\
&= \int_{\tau=t_0}^{t_f} \int_{t=t_0}^{t_f} f(\tau) R_X(\tau, t) g(t) dt d\tau, \\
&= \int_{t=t_0}^{t_f} g(t) \int_{\tau=t_0}^{t_f} \underbrace{R_X(\tau, t)}_{= R_X(t, \tau), \text{ by symmetry of } R_X \text{ (Theorem 2.2.1)}} f(\tau) d\tau dt, \\
&= \int_{t=t_0}^{t_f} g(t) \underbrace{\int_{\tau=t_0}^{t_f} R_X(t, \tau) f(\tau) d\tau}_{= \mathcal{H}_X(f)(t), \text{ by Eq. (2.4)}} dt, \\
&= \int_{t=t_0}^{t_f} \mathcal{H}_X(f)(t) g(t) dt,
\end{aligned}$$

$= \langle \mathcal{H}_X(f), g \rangle$, by Eq. (2.10).

□

2.3 The spectral theorem

From Theorem 2.2.7, we know that \mathcal{H}_X is a self-adjoint operator. More specifically, \mathcal{H}_X is a *compact* self-adjoint operator *on a Hilbert space* [9, 10]. We don't know exactly what the word "compact" means, and we also don't know what a Hilbert space is. Understanding the proper meanings of these terms requires taking graduate-level courses in real analysis and abstract algebra, which we don't have time for at the moment. So, we're just taking these facts on faith for the time-being.

Theorem 2.3.1 (Spectral theorem). *Given a compact self-adjoint operator \mathcal{H}_X on a Hilbert space, there exists an orthonormal basis of eigenvectors of \mathcal{H}_X that span the space.*

Proof. We think the proof is well beyond our scope at this time. To learn the proof, some useful resources to consult include [11–16]. □

The spectral theorem tells us the following:

Observation 2.3.1. *We can find a countable set of eigenpairs $\{(\lambda_k, e_{\lambda_k})\}_{k \in \mathbb{Z}_+}$ of \mathcal{H}_X .*

Observation 2.3.2. *By Theorem 2.2.5, all the λ_k s above will be non-negative.*

Observation 2.3.3. *Without loss of generality, we can assume that the λ_k s above are in descending order.*

Observation 2.3.4. *We have:*

$$\lim_{k \rightarrow \infty} \lambda_k = 0. \quad (2.12)$$

Observation 2.3.5. *By the orthonormality of the e_{λ_k} s, we have:*

$$\langle e_{\lambda_{k_1}}, e_{\lambda_{k_2}} \rangle = \int_{t=t_0}^{t_f} e_{\lambda_{k_1}}(t) e_{\lambda_{k_2}}(t) dt = \delta_{k_1 k_2}, \quad \forall k_1, k_2 \in \mathbb{Z}_+. \quad (2.13)$$

Observation 2.3.6. *Because each e_{λ_k} above is an eigenvector of \mathcal{H}_X , with eigenvalue λ_k , we have the following from Eqs. 2.7 and 2.8:*

$$\mathcal{H}_X(e_{\lambda_k}) = \lambda_k e_{\lambda_k}, \quad \forall k \in \mathbb{Z}_+, \text{ and} \quad (2.14)$$

$$\begin{aligned} \mathcal{H}_X(e_{\lambda_k})(t) &= \int_{\tau=t_0}^{t_f} R_X(t, \tau) e_{\lambda_k}(\tau) d\tau \\ &= \lambda_k e_{\lambda_k}(t), \quad \forall t \in [t_0, t_f], \quad \forall k \in \mathbb{Z}_+. \end{aligned} \quad (2.15)$$

Observation 2.3.7. Because the e_{λ_k} s span the space of functions, we can write any function $f : [t_0, t_f] \rightarrow \mathbb{R}$ as a linear combination of the e_{λ_k} s. That is, given any such function f , we can find coefficients $\{c_k\}_{k \in \mathbb{Z}_+}$ such that:

$$f = \sum_{k=1}^{\infty} c_k e_{\lambda_k}, \text{ or} \quad (2.16)$$

$$f(t) = \sum_{k=1}^{\infty} c_k e_{\lambda_k}(t), \forall t \in [t_0, t_f]. \quad (2.17)$$

Observation 2.3.8. Based on the linear combination above, the result of applying the \mathcal{H}_X operation on any function $f : [t_0, t_f] \rightarrow \mathbb{R}$ can be written as:

$$\begin{aligned} \mathcal{H}_X(f) &= \mathcal{H}_X \left(\sum_{k=1}^{\infty} c_k e_{\lambda_k} \right), \text{ from Eq. (2.16)} \\ &= \sum_{k=1}^{\infty} c_k \mathcal{H}_X(e_{\lambda_k}), \text{ from the linearity of } \mathcal{H}_X \text{ (Theorems 2.2.3, 2.2.4)} \\ &= \sum_{k=1}^{\infty} c_k \lambda_k e_{\lambda_k}, \text{ from Eq. (2.14), or} \end{aligned} \quad (2.18)$$

$$\mathcal{H}_X(f)(t) = \sum_{k=1}^{\infty} c_k \lambda_k e_{\lambda_k}(t), \forall t \in [t_0, t_f]. \quad (2.19)$$

2.4 Mercer's theorem

Theorem 2.4.1 (Mercer's theorem). *The autocorrelation function R_X can be written as:*

$$R_X(t_1, t_2) = \sum_{k=1}^{\infty} \lambda_k e_{\lambda_k}(t_1) e_{\lambda_k}(t_2), \forall t_1, t_2 \in [t_0, t_f]. \quad (2.20)$$

Proof. We don't know the proof of this theorem yet, because it involves learning about various convergence criteria such as absolute convergence, uniform convergence, etc. But we're working on it. Once we understand the proof, we'll put it in here. Some useful resources to consult include [10, 17, 18]. \square

2.5 Finally, the Karhunen-Loéve expansion

From the stochastic process $\{X(t)\}_{t \in [t_0, t_f]}$, we define the random variables $\{Z_k\}_{k \in \mathbb{Z}_+}$ as follows:

$$Z_k \triangleq \int_{t=t_0}^{t_f} (X(t) - \mu_X(t)) e_{\lambda_k}(t) dt, \forall k \in \mathbb{Z}_+. \quad (2.21)$$

The e_{λ_k} s above are, of course, the eigenvectors of \mathcal{H}_X discussed in §2.3.

Theorem 2.5.1. *The Z_k s above are all zero-mean random variables.*

Proof. We have:

$$\begin{aligned}
\mathbb{E}[Z_k] &= \mathbb{E}\left[\int_{t=t_0}^{t_f} (X(t) - \mu_X(t)) e_{\lambda_k}(t) dt\right], \text{ from Eq. (2.21)} \\
&= \int_{t=t_0}^{t_f} \mathbb{E}[X(t) - \mu_X(t)] e_{\lambda_k}(t) dt, \\
&= \int_{t=t_0}^{t_f} (\mathbb{E}[X(t)] - \mu_X(t)) e_{\lambda_k}(t) dt, \\
&= \int_{t=t_0}^{t_f} (\mu_X(t) - \mu_X(t)) e_{\lambda_k}(t) dt, \\
&= 0, \forall k \in \mathbb{Z}_+.
\end{aligned} \tag{2.22}$$

□

Theorem 2.5.2. *The Z_k s above are all pairwise-uncorrelated.*

Proof. We have:

$$\begin{aligned}
\mathbb{E}[Z_{k_1} Z_{k_2}] &= \mathbb{E}\left[\left(\int_{t=t_0}^{t_f} (X(t) - \mu_X(t)) e_{\lambda_{k_1}}(t) dt\right) \left(\int_{t=t_0}^{t_f} (X(t) - \mu_X(t)) e_{\lambda_{k_2}}(t) dt\right)\right], \text{ from Eq. (2.21)} \\
&= \mathbb{E}\left[\left(\int_{t_1=t_0}^{t_f} (X(t_1) - \mu_X(t_1)) e_{\lambda_{k_1}}(t_1) dt_1\right) \left(\int_{t_2=t_0}^{t_f} (X(t_2) - \mu_X(t_2)) e_{\lambda_{k_2}}(t_2) dt_2\right)\right] \\
&= \mathbb{E}\left[\int_{t_1=t_0}^{t_f} \int_{t_2=t_0}^{t_f} (X(t_1) - \mu_X(t_1)) e_{\lambda_{k_1}}(t_1) (X(t_2) - \mu_X(t_2)) e_{\lambda_{k_2}}(t_2) dt_1 dt_2\right] \\
&= \int_{t_1=t_0}^{t_f} \int_{t_2=t_0}^{t_f} \mathbb{E}[(X(t_1) - \mu_X(t_1)) (X(t_2) - \mu_X(t_2))] e_{\lambda_{k_1}}(t_1) e_{\lambda_{k_2}}(t_2) dt_1 dt_2 \\
&= \int_{t_1=t_0}^{t_f} \int_{t_2=t_0}^{t_f} R_X(t_1, t_2) e_{\lambda_{k_1}}(t_1) e_{\lambda_{k_2}}(t_2) dt_1 dt_2, \text{ from Eq. (2.1)} \\
&= \int_{t_1=t_0}^{t_f} e_{\lambda_{k_1}}(t_1) \left[\int_{t_2=t_0}^{t_f} R_X(t_1, t_2) e_{\lambda_{k_2}}(t_2) dt_2 \right] dt_1 \\
&= \int_{t_1=t_0}^{t_f} e_{\lambda_{k_1}}(t_1) \left[\mathcal{H}_X(e_{\lambda_{k_2}})(t_1) \right] dt_1, \text{ from Eq. (2.4)} \\
&= \int_{t_1=t_0}^{t_f} e_{\lambda_{k_1}}(t_1) \left[\lambda_{k_2} e_{\lambda_{k_2}}(t_1) \right] dt_1, \text{ from Eq. (2.14)} \\
&= \lambda_{k_2} \int_{t_1=t_0}^{t_f} e_{\lambda_{k_1}}(t_1) e_{\lambda_{k_2}}(t_1) dt_1 \\
&= \lambda_{k_2} \delta_{k_1 k_2} \text{ (from Observation 2.3.5), } \forall k_1, k_2 \in \mathbb{Z}_+.
\end{aligned} \tag{2.23}$$

□

Theorem 2.5.3 (The Karhunen-Loéve theorem). *The stochastic process $\{X(t)\}_{t \in [t_0, t_f]}$ can be written in terms of the random variables $\{Z_k\}_{k \in \mathbb{Z}_+}$, as follows:*

$$X(t) = \mu_X(t) + \sum_{k=1}^{\infty} Z_k e_{\lambda_k}(t), \quad \forall t \in [t_0, t_f]. \quad (2.24)$$

This is true in the following sense:

$$\lim_{N \rightarrow \infty} \mathbb{E} \left[\left(X(t) - \left(\mu_X(t) + \sum_{k=1}^N Z_k e_{\lambda_k}(t) \right) \right)^2 \right] = 0, \quad \forall t \in [t_0, t_f]. \quad (2.25)$$

Proof. We have:

$$\begin{aligned} & \lim_{N \rightarrow \infty} \mathbb{E} \left[\left(X(t) - \left(\mu_X(t) + \sum_{k=1}^N Z_k e_{\lambda_k}(t) \right) \right)^2 \right] \\ &= \lim_{N \rightarrow \infty} \mathbb{E} \left[\left([X(t) - \mu_X(t)] - \sum_{k=1}^N Z_k e_{\lambda_k}(t) \right)^2 \right] \\ &= \lim_{N \rightarrow \infty} \mathbb{E} \left[(X(t) - \mu_X(t))^2 + \left(\sum_{k=1}^N Z_k e_{\lambda_k}(t) \right)^2 - 2 (X(t) - \mu_X(t)) \left(\sum_{k=1}^N Z_k e_{\lambda_k}(t) \right) \right] \\ &= \lim_{N \rightarrow \infty} \left(\mathbb{E} \left[(X(t) - \mu_X(t))^2 \right] + \mathbb{E} \left[\left(\sum_{k=1}^N Z_k e_{\lambda_k}(t) \right)^2 \right] - \mathbb{E} \left[2 (X(t) - \mu_X(t)) \left(\sum_{k=1}^N Z_k e_{\lambda_k}(t) \right) \right] \right) \\ &= \lim_{N \rightarrow \infty} \left(R_X(t, t) + \mathbb{E} \left[\left(\sum_{k_1=1}^N Z_{k_1} e_{\lambda_{k_1}}(t) \right) \left(\sum_{k_2=1}^N Z_{k_2} e_{\lambda_{k_2}}(t) \right) \right] - 2 \mathbb{E} \left[\sum_{k=1}^N (X(t) - \mu_X(t)) Z_k e_{\lambda_k}(t) \right] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\mathbb{E} \left[\sum_{k_1=1}^N \sum_{k_2=1}^N Z_{k_1} Z_{k_2} e_{\lambda_{k_1}}(t) e_{\lambda_{k_2}}(t) \right] - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} [(X(t) - \mu_X(t)) Z_k] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k_1=1}^N \sum_{k_2=1}^N e_{\lambda_{k_1}}(t) e_{\lambda_{k_2}}(t) \mathbb{E} [Z_{k_1} Z_{k_2}] - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} [(X(t) - \mu_X(t)) Z_k] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k_1=1}^N \sum_{k_2=1}^N e_{\lambda_{k_1}}(t) e_{\lambda_{k_2}}(t) \lambda_{k_2} \delta_{k_1 k_2} - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} [(X(t) - \mu_X(t)) Z_k] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} [(X(t) - \mu_X(t)) Z_k] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} \left[(X(t) - \mu_X(t)) \int_{\tau=t_0}^{t_f} (X(\tau) - \mu_X(\tau)) e_{\lambda_k}(\tau) d\tau \right] \right) \\ &= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \mathbb{E} \left[\int_{\tau=t_0}^{t_f} (X(t) - \mu_X(t)) (X(\tau) - \mu_X(\tau)) e_{\lambda_k}(\tau) d\tau \right] \right) \end{aligned}$$

$$\begin{aligned}
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \int_{\tau=t_0}^{t_f} e_{\lambda_k}(\tau) \mathbb{E}[(X(t) - \mu_X(t))(X(\tau) - \mu_X(\tau))] d\tau \right) \\
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \int_{\tau=t_0}^{t_f} e_{\lambda_k}(\tau) R_X(t, \tau) d\tau \right) \\
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) (\mathcal{H}_X(e_{\lambda_k})(t)) \right) \\
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N e_{\lambda_k}(t) \lambda_k e_{\lambda_k}(t) \right) \\
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) - 2 \sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) \right) \\
&= R_X(t, t) + \lim_{N \rightarrow \infty} \left(- \sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) \right) \\
&= R_X(t, t) - \lim_{N \rightarrow \infty} \left(\sum_{k=1}^N \lambda_k e_{\lambda_k}^2(t) \right) \\
&= R_X(t, t) - \sum_{k=1}^{\infty} \lambda_k e_{\lambda_k}^2(t) \\
&= 0, \forall t \in [t_0, t_f], \text{ by Mercer's theorem (Theorem 2.4.1).}
\end{aligned}$$

□

References

- [1] https://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem.
- [2] J. Burkardt. Covariance, correlation, and the KL expansion, 2012. https://people.sc.fsu.edu/~jburkardt/m_src/svd_snowfall/kl_2012.pdf.
- [3] P. Constantine. A primer on stochastic Galerkin methods. Technical report, 2007. <https://inside.mines.edu/~pconstan/docs/constantine-primer.pdf>.
- [4] A. Alexanderian. A brief note on the Karhunen-Loéve expansion, 2015. <http://users.ices.utexas.edu/~alen/articles/KL.pdf>.
- [5] O. Le Maître and O. M. Knio. *Spectral methods for uncertainty quantification, with applications to computational fluid dynamics*. Springer Science & Business Media, 2010.
- [6] J. Stewart. Positive definite functions and generalizations, an historical survey. *Rocky Mountain Journal of Mathematics*, 6(3):409–434, 1976. http://projecteuclid.org/download/pdf_1/euclid.rmj/1250130219.
- [7] https://en.wikipedia.org/wiki/Positive-definite_kernel.
- [8] https://en.wikipedia.org/wiki/Hilbert\0T1\textendashSchmidt_integral_operator.
- [9] https://en.wikipedia.org/Compact_operator_on_Hilbert_space.
- [10] <https://patternsofideas.wordpress.com/2016/12/12/mercers-theorem-and-svms/>.
- [11] <http://analysisyawp.blogspot.com/>.
- [12] https://en.wikipedia.org/wiki/Spectral_theorem.
- [13] P. R. Halmos. What does the spectral theorem say? *The American Mathematical Monthly*, 70(3):241–247, 1963. <http://www.math.wsu.edu/faculty/watkins/Math502/pdffiles/spectral.pdf>.
- [14] T. M. Apostol. *Mathematical analysis*. Addison-Wesley Reading, MA, 2nd edition, 1974.
- [15] W. Rudin. *Principles of mathematical analysis*. McGraw-Hill, New York, 3rd edition, 1964.
- [16] R. R. Goldberg. *Methods of real analysis*. Oxford and IBH Publishing, 1970.
- [17] https://en.wikipedia.org/wiki/Mercer%27s_theorem.
- [18] <https://math.stackexchange.com/questions/2133637/inequality-in-mercers-theorem-proof>.

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

Sandia National Laboratories