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Abstract

We’re trying to understand the math behind the Karhunen-Loéve expansion, and these are the

notes we’re taking along the way.
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2.1 Proof strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Some facts about continuous stochastic processes . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 The autocorrelation function RX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 The Hilbert-Schmidt integral operator HX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 Eigenvalues and eigenfunctions of HX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Self-adjointness of HX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The spectral theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Mercer’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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1. Statement of the

Karhunen-Loéve expansion

Let {X(t)}t∈[t0 , tf ], be a real-valued stochastic process. That is, for each τ ∈ [t0, tf ], X(τ) is a

real-valued random variable.

Also, let us denote the expected value of X(τ), E[X(τ)], by µX(τ), for each τ ∈ [t0, tf ].

Then, the Karhunen-Loéve theorem [1–5] states that X(t) can be written as:

X(t) = µX(t) +
∞∑

k=1

Zkek(t), ∀ t ∈ [t0, tf ]. (1.1)

The {Zk}s above are “zero mean, pairwise uncorrelated” real-valued random variables. That is,

we have:

E[Zk] = 0, ∀ k ∈ Z+, and (1.2)

E[Zk1Zk2 ] = 0 whenever k1 6= k2, ∀ k1, k2 ∈ Z+, (1.3)

where Z+ denotes the set of positive integers.

Also, the {ek}s in Eq. (1.1) are “orthonormal”. That is,

∫ tf

τ=t0

ek1(τ) ek2(τ) dτ = δk1k2 , ∀ k1, k2 ∈ Z+, (1.4)

where δk1k2 denotes the Kronecker delta:

δk1k2 ,

{

1, if k1 = k2, and

0, otherwise,
, ∀ k1, k2 ∈ Z+. (1.5)
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2. Proof of the

Karhunen-Loéve expansion

2.1 Proof strategy

Proving the Karhunen-Loéve expansion requires several pre-requisites. These include, (1) an un-

derstanding of the fundamentals of continuous stochastic processes, including the autocorrelation

function and its properties such as symmetry and positive-semidefiniteness, the Hilbert-Schmidt

integral operator and its properties such as linearity and self-adjointness, eigen-analysis of the

Hilbert-Schmidt integral operator and some properties of the associated eigenvalues and eigen-

vectors, etc., (2) the spectral theorem and various observations that can be made by applying it to

the Hilbert-Schmidt integral operator, and (3) Mercer’s theorem.

We haven’t understood all these pre-requisites yet. For example, while we have learned about

continuous stochastic processes and their properties, we still don’t know how to prove the spectral

theorem or Mercer’s theorem. These are topics that require advanced courses in real analysis and

abstract algebra.

So, while we have a good grasp of some pre-requisites, we’re forced to take others on faith.

So, in subsequent sections, we’re going to prove some lemmas and theorems leading up to the

Karhunen-Loéve expansion, but we’re going to leave others without proof. Over time, as we learn

more, we’ll try and fill in the blanks. But until then, the proof below will necessarily be incomplete.

2.2 Some facts about continuous

stochastic processes

2.2.1 The autocorrelation function RX

We define the autocorrelation function RX(t1, t2) of the stochastic process X(t) as follows:

RX(t1, t2) , E[(X(t1)− µX(t1))(X(t2)− µX(t2))]

= E[X(t1)X(t2)−X(t1)µX(t2)− µX(t1)X(t2) + µX(t1)µX(t2)]

= E[X(t1)X(t2)]− E[X(t1)µX(t2)]− E[µX(t1)X(t2)] + E[µX(t1)µX(t2)]

= E[X(t1)X(t2)]− µX(t2)E[X(t1)]− µX(t1)E[X(t2)] + µX(t1)µX(t2)
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= E[X(t1)X(t2)]− µX(t2)µX(t1)− µX(t1)µX(t2) + µX(t1)µX(t2)

= E[X(t1)X(t2)]− µX(t1)µX(t2), ∀ t1, t2 ∈ [t0, tf ]. (2.1)

Theorem 2.2.1. The autocorrelation function RX is symmetric. That is, for any t1, t2 ∈ [t0, tf ], we

have:

RX(t1, t2) = RX(t2, t1). (2.2)

Proof. Follows from the definition above.

Theorem 2.2.2. The autocorrelation function RX is positive-semidefinite [6, 7]. That is, for any

real-valued function f : [t0, tf ] → R, we have:

∫ tf

τ1=t0

∫ tf

τ2=t0

f(τ1) RX(τ1, τ2) f(τ2) dτ1 dτ2 ≥ 0. (2.3)

Proof. We have:

0 ≤ E

[ (∫ tf

τ=t0

f(τ) (X(τ) − µX(τ)) dτ

)2
]

= E

[ (∫ tf

τ=t0

f(τ) (X(τ) − µX(τ)) dτ

) (∫ tf

τ=t0

f(τ) (X(τ) − µX(τ)) dτ

) ]

= E

[ (∫ tf

τ1=t0

f(τ1) (X(τ1)− µX(τ1)) dτ1

) (∫ tf

τ2=t0

f(τ2) (X(τ2)− µX(τ2)) dτ2

) ]

= E

[ ∫ tf

τ1=t0

∫ tf

τ2=t0

f(τ1) f(τ2) (X(τ1)− µX(τ1)) (X(τ2)− µX(τ2)) dτ1 dτ2

]

=

∫ tf

τ1=t0

∫ tf

τ2=t0

E [ f(τ1) f(τ2) (X(τ1)− µX(τ1)) (X(τ2)− µX(τ2)) ] dτ1 dτ2

=

∫ tf

τ1=t0

∫ tf

τ2=t0

f(τ1) f(τ2) E [ (X(τ1)− µX(τ1)) (X(τ2)− µX(τ2)) ] dτ1 dτ2

=

∫ tf

τ1=t0

∫ tf

τ2=t0

f(τ1) f(τ2) RX(τ1, τ2) dτ1 dτ2

=

∫ tf

τ1=t0

∫ tf

τ2=t0

f(τ1) RX(τ1, τ2) f(τ2) dτ1 dτ2.

2.2.2 The Hilbert-Schmidt integral operator HX

Based on the autocorrelation function RX , we define an operator HX , called the Hilbert-Schmidt

integral operator [8].
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This operator acts on a real-valued function f : [t0, tf ] → R, and as a result produces another

real-valued function g : [t0, tf ] → R.

The relationship between the functions f and g is given by:

g(t) = HX(f)|t ,

∫ tf

τ=t0

RX(t, τ) f(τ) dτ (2.4)

Theorem 2.2.3. HX is additive. That is, for any two functions f1 and f2 where f1, f2 : [t0, tf ] → R,

we have:

HX(f1 + f2) = HX(f1) +HX(f2). (2.5)

Proof. Follows from the definition in Eq. (2.4).

Theorem 2.2.4. HX is homogeneous. That is, for every function f : [t0, tf ] → R, and for every

scalar α ∈ R, we have:

HX(αf) = αHX(f). (2.6)

Proof. Follows from the definition in Eq. (2.4).

Remark 2.2.1. Because HX is both additive and homogeneous, it is said to be “linear”.

2.2.3 Eigenvalues and eigenfunctions of HX

We define λ to be an “eigenvalue” of HX if there exists a function eλ : [t0, tf ] → R (called the

“eigenfunction” associated with λ), such that:

HX(eλ) = λ eλ. (2.7)

That is, we have:

∫ tf

τ=t0

RX(t, τ) eλ(τ) dτ = λ eλ(t), ∀ t ∈ [t0, tf ]. (2.8)

The pair (λ, eλ) above is called an “eigenpair” of HX .

Theorem 2.2.5. All eigenvalues of HX are non-negative.

Proof. Let (λ, eλ) be an eigenpair of HX . Then, we have:
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∫ tf

τ=t0

RX(t, τ) eλ(τ) dτ = λ eλ(t), ∀ t ∈ [t0, tf ], by Eq. (2.8),

=⇒

∫ tf

τ2=t0

RX(t, τ2) eλ(τ2) dτ2 = λ eλ(t), ∀ t ∈ [t0, tf ],

=⇒

∫ tf

τ2=t0

RX(τ1, τ2) eλ(τ2) dτ2 = λ eλ(τ1), ∀ τ1 ∈ [t0, tf ],

=⇒

∫ tf

τ1=t0

eλ(τ1)

∫ tf

τ2=t0

RX(τ1, τ2) eλ(τ2) dτ2 dτ1 =

∫ tf

τ1=t0

eλ(τ1) λ eλ(τ1) dτ1,

=⇒

∫ tf

τ1=t0

∫ tf

τ2=t0

eλ(τ1) RX(τ1, τ2) eλ(τ2) dτ1 dτ2 = λ

∫ tf

τ1=t0

eλ(τ1)
2 dτ1,

=⇒ λ

∫ tf

τ1=t0

eλ(τ1)
2 dτ1

︸ ︷︷ ︸

≥0

≥ 0, by the positive-semidefiniteness of RX (Theorem 2.2.2)

=⇒ λ ≥ 0.

Theorem 2.2.6. Eigenfunctions of HX that correspond to distinct eigenvalues are orthogonal. That

is, if (λ1, eλ1
) and (λ2, eλ2

) are eigenpairs of HX , and λ1 6= λ2, then we have:

∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ = 0. (2.9)

Proof. We have:

(λ1 − λ2)

[ ∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ

]

=

[

λ1

∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ

]

−

[

λ2

∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ

]

=

[ ∫ tf

τ=t0

λ1 eλ1
(τ) eλ2

(τ) dτ

]

−

[ ∫ tf

τ=t0

eλ1
(τ) λ2 eλ2

(τ) dτ

]

=






∫ tf

t=t0

λ1 eλ1
(t)

︸ ︷︷ ︸

Apply Eq. (2.8)

eλ2
(t) dt




 −






∫ tf

t=t0

eλ1
(t) λ2 eλ2

(t)
︸ ︷︷ ︸

Apply Eq. (2.8)

dt






=

[ ∫ tf

t=t0

∫ tf

τ=t0

RX(t, τ) eλ1
(τ) dτ eλ2

(t) dt

]

−

[ ∫ tf

t=t0

eλ1
(t)

∫ tf

τ=t0

RX(t, τ) eλ2
(τ) dτ dt

]

=

[ ∫ tf

t=t0

∫ tf

τ=t0

RX(t, τ) eλ1
(τ) eλ2

(t) dt dτ

]

−

[ ∫ tf

t=t0

∫ tf

τ=t0

eλ1
(t) RX(t, τ) eλ2

(τ) dt dτ

]

=

[ ∫ tf

τ1=t0

∫ tf

τ=t0

RX(τ1, τ) eλ1
(τ) eλ2

(τ1) dτ1 dτ

]

−

[ ∫ tf

τ2=t0

∫ tf

τ=t0

eλ1
(τ2) RX(τ2, τ) eλ2

(τ) dτ2 dτ

]

=

[ ∫ tf

τ1=t0

∫ tf

τ2=t0

RX(τ1, τ2) eλ1
(τ2) eλ2

(τ1) dτ1 dτ2

]

−

[ ∫ tf

τ2=t0

∫ tf

τ1=t0

eλ1
(τ2) RX(τ2, τ1) eλ2

(τ1) dτ2 dτ1

]
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=

[ ∫ tf

τ1=t0

∫ tf

τ2=t0

eλ2
(τ1) RX(τ1, τ2) eλ1

(τ2) dτ1 dτ2

]

−

[ ∫ tf

τ1=t0

∫ tf

τ2=t0

eλ2
(τ1) RX(τ2, τ1) eλ1

(τ2) dτ1 dτ2

]

=

∫ tf

τ1=t0

∫ tf

τ2=t0

eλ2
(τ1) [RX(τ1, τ2)−RX(τ2, τ1)]

︸ ︷︷ ︸

= 0, by the symmetry of RX (Theorem 2.2.1)

eλ1
(τ2) dτ1 dτ2

= 0.

=⇒ Either (λ1 − λ2) = 0
︸ ︷︷ ︸

Not possible because λ1 6=λ2

, or

[ ∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ

]

= 0

︸ ︷︷ ︸

Only possibility

.

=⇒

∫ tf

τ=t0

eλ1
(τ) eλ2

(τ) dτ = 0.

2.2.4 Self-adjointness of HX

For any two functions f and g, where f, g : [t0, tf ] → R, we define the “inner product” of f and g,

denoted by 〈f, g〉, to be:

〈f, g〉 ,

∫ tf

τ=t0

f(τ) g(τ) dτ. (2.10)

Theorem 2.2.7. HX is a self-adjoint operator. That is, for any two functions f and g where f, g :
[t0, tf ] → R, we have:

〈f, HX(g)〉 = 〈HX(f), g〉 (2.11)

Proof. We have:

〈f, HX(g)〉 =

∫ tf

τ=t0

f(τ) HX(g)(τ) dτ , from Eq. (2.10)

=

∫ tf

τ=t0

f(τ)

∫ tf

t=t0

RX(τ, t) g(t) dt dτ , from Eq. (2.4)

=

∫ tf

τ=t0

∫ tf

t=t0

f(τ) RX(τ, t) g(t) dt dτ,

=

∫ tf

t=t0

g(t)

∫ tf

τ=t0

RX(τ, t)
︸ ︷︷ ︸

= RX(t, τ), by symmetry of RX (Theorem 2.2.1)

f(τ) dτ dt,

=

∫ tf

t=t0

g(t)

∫ tf

τ=t0

RX(t, τ) f(τ) dτ

︸ ︷︷ ︸

= HX(f)(t), by Eq. (2.4)

dt,

=

∫ tf

t=t0

HX(f)(t) g(t) dt,
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= 〈HX(f), g〉, by Eq. (2.10).

2.3 The spectral theorem

From Theorem 2.2.7, we know that HX is a self-adjoint operator. More specifically, HX is a com-

pact self-adjoint operator on a Hilbert space [9, 10]. We don’t know exactly what the word “com-

pact” means, and we also don’t know what a Hilbert space is. Understanding the proper meanings

of these terms requires taking graduate-level courses in real analysis and abstract algebra, which

we don’t have time for at the moment. So, we’re just taking these facts on faith for the time-being.

Theorem 2.3.1 (Spectral theorem). Given a compact self-adjoint operator HX on a Hilbert space,

there exists an orthonormal basis of eigenvectors of HX that span the space.

Proof. We think the proof is well beyond our scope at this time. To learn the proof, some useful

resources to consult include [11–16].

The spectral theorem tells us the following:

Observation 2.3.1. We can find a countable set of eigenpairs {(λk, eλk
)}k∈Z+

of HX .

Observation 2.3.2. By Theorem 2.2.5, all the λks above will be non-negative.

Observation 2.3.3. Without loss of generality, we can assume that the λks above are in descend-

ing order.

Observation 2.3.4. We have:

lim
k→∞

λk = 0. (2.12)

Observation 2.3.5. By the orthonormality of the eλk
s, we have:

〈eλk1
, eλk2

〉 =

∫ tf

t=t0

eλk1
(t) eλk2

(t) dt = δk1k2 , ∀ k1, k2 ∈ Z+. (2.13)

Observation 2.3.6. Because each eλk
above is an eigenvector of HX , with eigenvalue λk, we

have the following from Eqs. 2.7 and 2.8:

HX (eλk
) = λk eλk

, ∀ k ∈ Z+, and (2.14)

HX (eλk
) (t) =

∫ tf

τ=t0

RX(t, τ) eλk
(τ) dτ

= λk eλk
(t), ∀ t ∈ [t0, tf ], ∀ k ∈ Z+. (2.15)
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Observation 2.3.7. Because the eλk
s span the space of functions, we can write any function

f : [t0, tf ] → R as a linear combination of the eλk
s. That is, given any such function f , we can

find coefficients {ck}k∈Z+
such that:

f =

∞∑

k=1

ckeλk
,or (2.16)

f(t) =

∞∑

k=1

ckeλk
(t), ∀ t ∈ [t0, tf ]. (2.17)

Observation 2.3.8. Based on the linear combination above, the result of applying the HX opera-

tion on any function f : [t0, tf ] → R can be written as:

HX(f) = HX

(
∞∑

k=1

ck eλk

)

, from Eq. (2.16)

=

∞∑

k=1

ck HX (eλk
) , from the linearity of HX (Theorems 2.2.3, 2.2.4)

=

∞∑

k=1

ck λk eλk
, from Eq. (2.14), or (2.18)

HX(f)(t) =

∞∑

k=1

ck λk eλk
(t), ∀ t ∈ [t0, tf ]. (2.19)

2.4 Mercer’s theorem

Theorem 2.4.1 (Mercer’s theorem). The autocorrelation function RX can be written as:

RX(t1, t2) =

∞∑

k=1

λk eλk
(t1) eλk

(t2), ∀ t1, t2 ∈ [t0, tf ]. (2.20)

Proof. We don’t know the proof of this theorem yet, because it involves learning about various

convergence criteria such as absolute convergence, uniform convergence, etc. But we’re working

on it. Once we understand the proof, we’ll put it in here. Some useful resources to consult

include [10,17,18].

2.5 Finally, the Karhunen-Loéve expansion

From the stochastic process {X(t)}t∈[t0 , tf ], we define the random variables {Zk}k∈Z+
as follows:

Zk ,

∫ tf

t=t0

(X(t)− µX(t)) eλk
(t) dt, ∀ k ∈ Z+. (2.21)
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The eλk
s above are, of course, the eigenvectors of HX discussed in §2.3.

Theorem 2.5.1. The Zks above are all zero-mean random variables.

Proof. We have:

E [Zk] = E

[∫ tf

t=t0

(X(t)− µX(t)) eλk
(t) dt

]

, from Eq. (2.21)

=

∫ tf

t=t0

E [X(t)− µX(t)] eλk
(t) dt,

=

∫ tf

t=t0

(E [X(t)] − µX(t)) eλk
(t) dt,

=

∫ tf

t=t0

(µX(t)− µX(t)) eλk
(t) dt,

= 0, ∀ k ∈ Z+. (2.22)

Theorem 2.5.2. The Zks above are all pairwise-uncorrelated.

Proof. We have:

E [Zk1Zk2 ] = E

[(∫ tf

t=t0

(X(t) − µX(t)) eλk1
(t) dt

)(∫ tf

t=t0

(X(t)− µX(t)) eλk2
(t) dt

)]

, from Eq. (2.21)

= E

[(∫ tf

t1=t0

(X(t1)− µX(t1)) eλk1
(t1) dt1

)(∫ tf

t2=t0

(X(t2)− µX(t2)) eλk2
(t2) dt2

)]

= E

[∫ tf

t1=t0

∫ tf

t2=t0

(X(t1)− µX(t1)) eλk1
(t1) (X(t2)− µX(t2)) eλk2

(t2) dt1 dt2

]

=

∫ tf

t1=t0

∫ tf

t2=t0

E [(X(t1)− µX(t1)) (X(t2)− µX(t2)) ] eλk1
(t1) eλk2

(t2) dt1 dt2

=

∫ tf

t1=t0

∫ tf

t2=t0

RX(t1, t2) eλk1
(t1) eλk2

(t2) dt1 dt2, from Eq. (2.1)

=

∫ tf

t1=t0

eλk1
(t1)

[∫ tf

t2=t0

RX(t1, t2) eλk2
(t2) dt2

]

dt1

=

∫ tf

t1=t0

eλk1
(t1)

[

HX(eλk2
)(t1)

]

dt1, from Eq. (2.4)

=

∫ tf

t1=t0

eλk1
(t1)

[

λk2 eλk2
(t1)
]

dt1, from Eq. (2.14)

= λk2

∫ tf

t1=t0

eλk1
(t1) eλk2

(t1) dt1

= λk2 δk1k2 (from Observation 2.3.5), ∀ k1, k2 ∈ Z+. (2.23)
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Theorem 2.5.3 (The Karhunen-Loéve theorem). The stochastic process {X(t)}t∈[t0 , tf ] can be

written in terms of the random variables {Zk}k∈Z+
, as follows:

X(t) = µX(t) +

∞∑

k=1

Zkeλk
(t), ∀ t ∈ [t0, tf ]. (2.24)

This is true in the following sense:

lim
N→∞

E





(

X(t)−

(

µX(t) +
N∑

k=1

Zkeλk
(t)

))2


 = 0, ∀ t ∈ [t0, tf ]. (2.25)

Proof. We have:

lim
N→∞

E





(

X(t)−

(

µX(t) +
N∑

k=1

Zkeλk
(t)

))2




= lim
N→∞

E





(

[X(t) − µX(t)]−

N∑

k=1

Zkeλk
(t)

)2




= lim
N→∞

E



 (X(t) − µX(t))2 +

(
N∑

k=1

Zkeλk
(t)

)2

− 2 (X(t) − µX(t))

(
N∑

k=1

Zkeλk
(t)

) 



= lim
N→∞



 E

[

(X(t)− µX(t))2
]

+ E





(
N∑

k=1

Zkeλk
(t)

)2


− E

[

2 (X(t)− µX(t))

(
N∑

k=1

Zkeλk
(t)

) ] 



= lim
N→∞



 RX(t, t) + E









N∑

k1=1

Zk1eλk1
(t)









N∑

k2=1

Zk2eλk2
(t)







− 2 E

[
N∑

k=1

(X(t)− µX(t))Zkeλk
(t)

] 



= RX(t, t) + lim
N→∞



 E





N∑

k1=1

N∑

k2=1

Zk1Zk2eλk1
(t)eλk2

(t)



− 2

N∑

k=1

eλk
(t) E [(X(t)− µX(t))Zk]





= RX(t, t) + lim
N→∞





N∑

k1=1

N∑

k2=1

eλk1
(t)eλk2

(t)E [Zk1Zk2 ]− 2
N∑

k=1

eλk
(t) E [(X(t) − µX(t))Zk]





= RX(t, t) + lim
N→∞





N∑

k1=1

N∑

k2=1

eλk1
(t)eλk2

(t)λk2δk1k2 − 2

N∑

k=1

eλk
(t) E [(X(t)− µX(t))Zk]





= RX(t, t) + lim
N→∞

(
N∑

k=1

λke
2
λk
(t)− 2

N∑

k=1

eλk
(t) E [(X(t)− µX(t))Zk]

)

= RX(t, t) + lim
N→∞

(
N∑

k=1

λke
2
λk
(t)− 2

N∑

k=1

eλk
(t) E

[

(X(t)− µX(t))

∫ tf

τ=t0

(X(τ) − µX(τ)) eλk
(τ) dτ

] )

= RX(t, t) + lim
N→∞

(
N∑

k=1

λke
2
λk
(t)− 2

N∑

k=1

eλk
(t) E

[∫ tf

τ=t0

(X(t)− µX(t)) (X(τ)− µX(τ)) eλk
(τ)dτ

] )
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= RX(t, t) + lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)− 2

N∑

k=1

eλk
(t)

∫ tf

τ=t0

eλk
(τ) E [(X(t)− µX(t)) (X(τ) − µX(τ))] dτ

)

= RX(t, t) + lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)− 2

N∑

k=1

eλk
(t)

∫ tf

τ=t0

eλk
(τ) RX(t, τ) dτ

)

= RX(t, t) + lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)− 2

N∑

k=1

eλk
(t) (HX(eλk

)(t))

)

= RX(t, t) + lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)− 2

N∑

k=1

eλk
(t)λkeλk

(t)

)

= RX(t, t) + lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)− 2

N∑

k=1

λk e
2
λk
(t)

)

= RX(t, t) + lim
N→∞

(

−

N∑

k=1

λk e
2
λk
(t)

)

= RX(t, t)− lim
N→∞

(
N∑

k=1

λk e
2
λk
(t)

)

= RX(t, t)−
∞∑

k=1

λk e
2
λk
(t)

= 0,∀ t ∈ [t0, tf ], by Mercer’s theorem (Theorem 2.4.1).
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http://users.ices.utexas.edu/~alen/articles/KL.pdf.

[5] O. Le Maı̂tre and O. M. Knio. Spectral methods for uncertainty quantification, with applications

to computational fluid dynamics. Springer Science & Business Media, 2010.

[6] J. Stewart. Positive definite functions and generalizations, an histori-

cal survey. Rocky Mountain Journal of Mathematics, 6(3):409–434, 1976.

http://projecteuclid.org/download/pdf_1/euclid.rmjm/1250130219.

[7] https://en.wikipedia.org/wiki/Positive-definite_kernel.

[8] https://en.wikipedia.org/wiki/Hilbert\OT1\textendashSchmidt_integral_operator.

[9] https://en.wikipedia.org/Compact_operator_on_Hilbert_space.

[10] https://patternsofideas.wordpress.com/2016/12/12/mercers-theorem-and-svms/.

[11] http://analysisyawp.blogspot.com/.

[12] https://en.wikipedia.org/wiki/Spectral_theorem.

[13] P. R. Halmos. What does the spectral theorem say?

The American Mathematical Monthly, 70(3):241–247, 1963.

http://www.math.wsu.edu/faculty/watkins/Math502/pdfiles/spectral.pdf.

[14] T. M. Apostol. Mathematical analysis. Addison-Wesley Reading, MA, 2nd edition, 1974.

[15] W. Rudin. Principles of mathematical analysis. McGraw-Hill, New York, 3rd edition, 1964.

[16] R. R. Goldberg. Methods of real analysis. Oxford and IBH Publishing, 1970.

[17] https://en.wikipedia.org/wiki/Mercer%27s_theorem.

[18] https://math.stackexchange.com/questions/2133637/inequality-in-mercers-theorem-proof.

20

https://en.wikipedia.org/wiki/Karhunen%E2%80%93Lo%C3%A8ve_theorem
https://people.sc.fsu.edu/~jburkardt/m_src/svd_snowfall/kl_2012.pdf
https://inside.mines.edu/~pconstan/docs/constantine-primer.pdf
http://users.ices.utexas.edu/~alen/articles/KL.pdf
http://projecteuclid.org/download/pdf_1/euclid.rmjm/1250130219
https://en.wikipedia.org/wiki/Positive-definite_kernel
https://en.wikipedia.org/wiki/Hilbert\OT1\textendash Schmidt_integral_operator
https://en.wikipedia.org/Compact_operator_on_Hilbert_space
https://patternsofideas.wordpress.com/2016/12/12/mercers-theorem-and-svms/
http://analysisyawp.blogspot.com/
https://en.wikipedia.org/wiki/Spectral_theorem
http://www.math.wsu.edu/faculty/watkins/Math502/pdfiles/spectral.pdf
https://en.wikipedia.org/wiki/Mercer%27s_theorem
https://math.stackexchange.com/questions/2133637/inequality-in-mercers-theorem-proof


DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

21



22



v1.40

23



24


	Statement of the Karhunen-Loéve expansion
	Proof of the Karhunen-Loéve expansion
	Proof strategy
	Some facts about continuous stochastic processes
	The autocorrelation function RX
	The Hilbert-Schmidt integral operator HX
	Eigenvalues and eigenfunctions of HX
	Self-adjointness of HX

	The spectral theorem
	Mercer's theorem
	Finally, the Karhunen-Loéve expansion


