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Abstract

To understand the mathematics behind Uncertainty Quantification (UQ), one first needs to become

familiar with orthogonal polynomials, which in turn requires a grasp of abstract algebra. This note

covers some of the basics of abstract algebra.
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1. Fields

Definition 1.0.1 (Field). A field F(F, +, ∗) is a set F , together with binary operations + : F ×F →
F (called “addition”) and ∗ : F ×F → F (called “multiplication”) that satisfy the following properties

(called “field axioms”):

1. Closure of + and ∗.

For all f1 and f2 in F , f1 + f2 and f1 ∗ f2 also belong to F .

2. Commutativity of + and ∗.

For all f1 and f2 in F , f1 + f2 = f2 + f1, and f1 ∗ f2 = f2 ∗ f1.

3. Associativity of + and ∗.

For all f1, f2, and f3 in F , (f1 + f2) + f3 = f1 + (f2 + f3), and (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3).

4. Identities of + and ∗.

There exist elements 0 (called “zero”) and 1 (called “one”) in F such that, for every f in F ,

f + 0 = f and f ∗ 1 = f . (And from the commutativity of + and ∗, we have 0 + f = f and

1 ∗ f = f as well.)

5. Inverses of + and ∗.

(a) For every f in F , there exists an element (called the field additive inverse of f , or the

inverse of f with respect to +, and denoted f−) in F such that f + f− = 0, and

(b) For every f 6= 0 in F , there exists an element (called the field multiplicative inverse of f ,

or the inverse of f with respect to ∗, and denoted f−1) in F such that f ∗ f−1 = 1.

6. Distributivity of ∗ over +.

For all f1, f2, and f3 in F , f1 ∗ (f2 + f3) = (f1 ∗ f2) + (f1 ∗ f3).

Example 1.0.2. The real numbers, together with “normal” addition and multiplication operations,

form a field (denoted R).

Example 1.0.3. The complex numbers, together with “normal” addition and multiplication opera-

tions, form a field (denoted C).

Lots of interesting lemmas and theorems can be deduced from the field axioms above. Some

examples are given below.

Theorem 1.0.4 (Field Multiplication by Zero). Let F(F, +, ∗) be a field. Then, for every f in F ,

f ∗ 0 = 0.
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Proof. This seems like a trivial result. After all, we all know that multiplying anything by zero results

in zero. But, if you notice, the field axioms above say nothing about multiplying elements by zero.

They only say that adding zero to elements leaves them unchanged. So we need to decude the

“multiplication by zero” property from the field axioms. Here’s how it’s usually done:

Take any element f in F . Then, we have:

f ∗ 0 = (f ∗ 0) + 0 (by the identity of +)

= (f ∗ 0) + ((f ∗ f) + (f ∗ f)−) (by the inverse of +)

= ((f ∗ 0) + (f ∗ f)) + (f ∗ f)− (by the associativity of +)

= (f ∗ (0 + f)) + (f ∗ f)− (by the distributivity of ∗ over +)

= (f ∗ (f + 0)) + (f ∗ f)− (by the commutativity of +)

= (f ∗ f) + (f ∗ f)− (by the identity of +)

= 0 (by the inverse of +).

Theorem 1.0.5 (Unique Field Additive Inverse). Let F(F, +, ∗) be a field. Then, for every f in F ,

the field additive inverse f− is unique.

Proof. Suppose, for the sake of contradiction, that there is an f in F with two different field additive

inverses f−,1 and f−, 2. Then, we have:

f + f−, 1 = 0 (by the inverse of +)

=⇒ f−,2 + (f + f−,1) = f−, 2 + 0 (adding f−, 2 to both sides)

=⇒ (f−, 2 + f) + f−, 1 = f−, 2 + 0 (by the associativity of +)

=⇒ (f + f−, 2) + f−, 1 = f−, 2 + 0 (by the commutativity of +)

=⇒ 0 + f−, 1 = f−,2 + 0 (by the inverse of +)

=⇒ f−,1 + 0 = f−,2 + 0 (by the commutativity of +)

=⇒ f−,1 = f−, 2 (by the identity of +).

Thus, the two field additive inverses f−, 1 and f−, 2 have to be identical.

This means that, for every f in F , a corresponding f− not only has to exist; it also has to be unique.

Therefore, we don’t have to be careful and say that f− is a field additive inverse of f . We can go

ahead and say that f− is the field additive inverse of f .

Theorem 1.0.6 (Reciprocity of Field Additive Inverses). Let F(F, +, ∗) be a field. Then, for all f1
and f2 in F , f1 = (f2)− ⇐⇒ f2 = (f1)−. That is, field additive inverses occur in “mutual pairs”: if

f1 is the field additive inverse of f2, then f2 is also the field additive inverse of f1, and vice versa.

10



Proof.

f1 is the field additive inverse of f2

⇐⇒ f2 + f1 = 0 (by the definition of field additive inverse)

⇐⇒ f1 + f2 = 0 (by the commutativity of+)

⇐⇒ f2 is the field additive inverse of f1 (by the definition of field additive inverse).

A succinct way of stating the above is: for every f in F , (f−)− = f .

Theorem 1.0.7 (Unique Field Multiplicative Inverse). Let F(F, +, ∗) be a field. Then, for every

f 6= 0 in F , the field multiplicative inverse f−1 is unique.

Proof. Suppose, for the sake of contradiction, that there is an f 6= 0 in F with two different field

multiplicative inversess f−1

1
and f−1

2
. Then, we have:

f ∗ f−1

1
= 1 (by the inverse of ∗)

=⇒ f−1

2
∗ (f ∗ f−1

1
) = f−1

2
∗ 1 (pre-multiplying both sides by f−1

2
)

=⇒ (f−1

2
∗ f) ∗ f−1

1
= f−1

2
∗ 1 (by the associativity of ∗)

=⇒ (f ∗ f−1

2
) ∗ f−1

1
= f−1

2
∗ 1 (by the commutativity of ∗)

=⇒ 1 ∗ f−1

1
= f−1

2
∗ 1 (by the inverse of ∗)

=⇒ f−1

1
∗ 1 = f−1

2
∗ 1 (by the commutativity of ∗)

=⇒ f−1

1
= f−1

2
(by the identity of ∗).

Thus, the two field multiplicative inverses f−1

1
and f−1

2
have to be identical.

Again, this means that, for every f 6= 0 in F , a corresponding f−1 not only has to exist; it also

has to be unique. Therefore, we don’t have to be careful and say that f−1 is a field multiplicative

inverse of f . We can go ahead and say that f−1 is the field multiplicative inverse of f .

Theorem 1.0.8 (Reciprocity of Field Multiplicative Inverses). Let F(F, +, ∗) be a field. Then, for

all f1 and f2 in F , f1 = f−1

2
⇐⇒ f2 = f−1

1
. That is, field multiplicative inverses occur in “mutual

pairs”: if f1 is the field multiplicative inverse of f2, then f2 is also the field multiplicative inverse of

f1, and vice versa.

Proof.

f1 is the field multiplicative inverse of f2

⇐⇒ f2 ∗ f1 = 1 (by the definition of field multiplicative inverse)

⇐⇒ f1 ∗ f2 = 1 (by the commutativity of∗)

⇐⇒ f2 is the field multiplicative inverse of f1 (by the definition of field multiplicative inverse).

A succinct way of stating the above is: for every f 6= 0 in F , (f−1)−1 = f .
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Theorem 1.0.9 (Field Multiplication and Field Additive Inverses). Let F(F, +, ∗) be a field. Then,

for all f in F , f− = f ∗1−. In other words, the field additive inverse of any element can be obtained

by multiplying the element with the field additive inverse of 1.

Proof. Let f be any element of F . Then, we have:

(f ∗ 1−) + f = (f ∗ 1−) + (f ∗ 1) (by the identity of ∗)

= f ∗ (1− + 1) (by the distributivity of ∗ over +)

= f ∗ (1 + 1−) (by the commutativity of +)

= f ∗ 0 (by the inverse of +)

= 0 (by Theorem 1.0.4).

Therefore, f ∗ 1− and f are additive inverses of each other. So, f− = f ∗ 1−.
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2. Vector Spaces

Definition 2.0.1 (Vector Space). A vector space V(F, V, ⊕, •), over a field F(F, +, ∗), is a set V ,

together with operations ⊕ : V × V → V (called “vector addition”) and • : F × V → V (called

“scalar multiplication”) that satisfy the following properties (called “vector space axioms”):

1. Closure of ⊕ and •.

For all ~v1 and ~v2 in V , ~v1 ⊕ ~v2 belongs to V , and

For every f in F and ~v in V , f • ~v belongs to V .

2. Commutativity of ⊕.

For all ~v1 and ~v2 in V , ~v1 ⊕ ~v2 = ~v2 ⊕ ~v1.

3. Associativity of ⊕.

For all ~v1, ~v2, and ~v3 in V , (~v1 ⊕ ~v2)⊕ ~v3 = ~v1 ⊕ (~v2 ⊕ ~v3).

4. Identity of ⊕.

There exists an element ~0 (called the “zero vector”) in V such that, for every ~v in V , ~v⊕~0 = ~v.

5. Inverse of ⊕.

For every ~v in V , there exists an element (called the vector space additive inverse of ~v, or

the inverse of ~v with respect to ⊕, and denoted ~v⊖) in V such that ~v ⊕ ~v⊖ = ~0.

6. Scalar multiplication by 1.

For every ~v in V , 1 • ~v = ~v.

7. Compatibility of scalar multiplication.

For every ~v in V , and for all f1 and f2 in F , f1 • (f2 • ~v) = (f1 ∗ f2) • ~v.

8. Distributive properties.

For every ~v in V , and for all f1 and f2 in F , (f1 + f2) • ~v = (f1 • ~v)⊕ (f2 • ~v), and

For every f in F , and for all ~v1 and ~v2 in V , f • (~v1 ⊕ ~v2) = (f • ~v1)⊕ (f • ~v2).

The elements of V above are usually called “vectors”, while the elements of F are usually called

“scalars”.

Example 2.0.2. The set of all m×n matrices, over the field of either real numbers or complex num-

bers, with ⊕ and • defined to be “normal” matrix addition and “normal” scalar matrix multiplication

respectively, forms a vector space.

Example 2.0.3. The set of all polynomials (with complex coefficients) of degree n, over the field

of complex numbers, with ⊕ and • defined to be “normal” polynomial addition and “normal” scalar

polynomial multiplication respectively, forms a vector space.
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As with fields, several interesting lemmas and theorems can be deduced from the vector space

axioms as well. Some important results are as follows.

Theorem 2.0.4 (Multiplication by the Zero Vector). Let V(F, V, ⊕, •) be a vector space. Then, for

every f in F , f •~0 = ~0.

Proof. Take any element f in F . Then, we have:

f •~0 = (f •~0)⊕~0 (by the identity of ⊕ )

= (f •~0)⊕
(

(f •~0)⊕ (f •~0)⊖

)

(by the inverse of ⊕ )

=
(

(f •~0)⊕ (f •~0)
)

⊕ (f •~0)⊖ (by the associativity of ⊕ )

=
(

f • (~0⊕~0)
)

⊕ (f •~0)⊖ (by the second distributive property)

= (f •~0)⊕ (f •~0)⊖ (by the identity of ⊕ )

= ~0 (by the inverse of ⊕ ).

Theorem 2.0.5 (Multiplication by Scalar Zero). Let V(F, V, ⊕, •) be a vector space. Then, for

every ~v in V , 0 • ~v = ~0.

Proof. Take any element ~v in V . Then, we have:

0 • ~v = (0 • ~v)⊕~0 (by the identity of ⊕ )

= (0 • ~v)⊕ ((0 • ~v)⊕ (0 • ~v)⊖) (by the inverse of ⊕ )

= ((0 • ~v)⊕ (0 • ~v))⊕ (0 • ~v)⊖ (by the associativity of ⊕ )

= ((0 + 0) • ~v)⊕ (0 • ~v)⊖ (by the first distributive property)

= (0 • ~v)⊕ (0 • ~v)⊖ (by the identity of + )

= ~0 (by the inverse of ⊕ ).

Theorem 2.0.6 (Unique Vector Space Additive Inverse). Let V(F, V, ⊕, •) be a vector space.

Then, for every ~v in V , the vector space additive inverse ~v⊖ is unique.

Proof. Suppose, for the sake of contradiction, that there is a ~v in V with two different vector space

additive inverses ~v⊖, 1 and ~v⊖, 2. Then, we have:

~v ⊕ ~v⊖, 1 = ~0 (by the inverse of ⊕ )

=⇒ ~v⊖, 2 ⊕ (~v ⊕ ~v⊖, 1) = ~v⊖, 2 ⊕~0 (vector adding ~v⊖, 2 to both sides)

14



=⇒ (~v⊖, 2 ⊕ ~v)⊕ ~v⊖, 1 = ~v⊖, 2 ⊕~0 (by the associativity of ⊕ )

=⇒ (~v ⊕ ~v⊖, 2)⊕ ~v⊖, 1 = ~v⊖, 2 ⊕~0 (by the commutativity of ⊕ )

=⇒ ~0⊕ ~v⊖, 1 = ~v⊖, 2 ⊕~0 (by the inverse of ⊕ )

=⇒ ~v⊖, 1 ⊕~0 = ~v⊖, 2 ⊕~0 (by the commutativity of ⊕ )

=⇒ ~v⊖, 1 = ~v⊖, 2 (by the identity of ⊕ )

Thus, the two vector space additive inverses ~v⊖, 1 and ~v⊖, 2 have to be identical.

Again, this means that, for every ~v in V , a corresponding ~v⊖ not only has to exist; it also has to be

unique. Therefore, we don’t have to be careful and say that ~v⊖ is a vector space additive inverse

of ~v. We can go ahead and say that ~v⊖ is the vector space additive inverse of ~v.

Theorem 2.0.7 (Reciprocity of Vector Space Additive Inverses). Let V(F, V, ⊕, •) be a vector

space. Then, for all ~v1 and ~v2 in V , ~v1 = (~v2)⊖ ⇐⇒ ~v2 = (~v1)⊖. That is, vector space additive

inverses occur in “mutual pairs”: if ~v1 is the vector space additive inverse of ~v2, then ~v2 is also the

vector space additive inverse of ~v1, and vice versa.

Proof.

~v1 is the vector space additive inverse of ~v2

⇐⇒ ~v2 ⊕ ~v1 = ~0 (by the definition of vector space additive inverse)

⇐⇒ ~v1 ⊕ ~v2 = ~0 (by the commutativity of ⊕ )

⇐⇒ ~v2 is the vector space additive inverse of ~v1 (by the definition of vector space additive inverse).

A succinct way of stating the above is: for every ~v in V , (~v⊖)⊖ = ~v.

Definition 2.0.8 (Linear Independence). Let V(F, V, ⊕, •) be a vector space over the field F(F, +, ∗).
Then, a set of n vectors {~v1, ~v2, . . . , ~vn} (where each ~vi (1 ≤ i ≤ n) belongs to V ) is said to be

linearly independent if:

(

n
∑

i=1

(ci • ~vi)

)

= (c1 • ~v1)⊕ (c2 • ~v2)⊕ . . .⊕ (cn • ~vn) = ~0

⇐⇒ c1 = c2 = . . . = cn = 0,

where each ci (1 ≤ i ≤ n) belongs to F . That is, if any of the scalars ci is not 0, then the sum
∑n

i=1
(ci • vi) will not be ~0.

Definition 2.0.9 (Linear Dependence). Let V(F, V, ⊕, •) be a vector space over the field F(F, +, ∗).
Then, a set of n vectors {~v1, ~v2, . . . , ~vn} (where each ~vi (1 ≤ i ≤ n) belongs to V ) is said to be

linearly dependent if it is not linearly independent. That is, there exist scalars ci (1 ≤ i ≤ n)

belonging to F , not all of which are 0, such that:

n
∑

i=1

(ci • vi) = (c1 • ~v1)⊕ (c2 • ~v2)⊕ . . .⊕ (cn • ~vn) = ~0.

15



Definition 2.0.10 (Span). Let V(F, V, ⊕, •) be a vector space over the field F(F, +, ∗). Then, the

span of a set of n vectors {~v1, ~v2, . . . , ~vn} (where each ~vi (1 ≤ i ≤ n) belongs to V ) is the set of

all vectors ~v in V that can be written as a linear combination of the vectors ~vi (1 ≤ i ≤ n). That is:

span ({vi}1≤i≤n) =

{

n
∑

i=1

(ci • vi), where ci ∈ F for each 1 ≤ i ≤ n

}

.

Note: the concepts of linear independence and dependence, as well as span, have only been

defined for finite subsets of V above. When you deal with infinite subsets of V , you have to grapple

with notions of convergence and so on. This becomes hairy very quickly, so I’m not getting into it.

Definition 2.0.11 (Basis). Let V(F, V, ⊕, •) be a vector space. Then, a linearly independent set

of n vectors B = {~v1, ~v2, . . . , ~vn} (where each ~vi (1 ≤ i ≤ n) belongs to V ) is said to form a basis

(or be a basis set) of V if span ({vi}1≤i≤n) = V . That is, any vector ~v in the vector space can be

expressed as a linear combination of the basis vectors ~vi (1 ≤ i ≤ n). The number n, which is the

size of the basis set B, is called the dimension of B.

Note: the notion of basis above assumes that n is finite. As such, the definition above applies

only to the so called finite dimensional vector spaces (those that have a finite basis). Infinite

dimensional vector spaces are far more complicated, and we’re not going to concern ourselves

with those here.

Theorem 2.0.12 (Dimension Theorem for Vector Spaces). Let V(F, V, ⊕, •) be a vector space,

and let B1 and B2 be two (finite) basis sets of V. Then, B1 and B2 have the same dimension.

Proof. See the Wikipedia article on the dimension theorem for vector spaces [1].
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3. Inner Products

In this section, we’ll consider vector spaces whose underlying field is either the real numbers or

the complex numbers (with + and ∗ defined to be the “normal” addition and multiplication of such

numbers respectively). We’ll also assume that the reader is familiar with the basics of complex

arithmetic, including addition and multiplication of complex numbers, properties of the complex

conjugate, absolute values of complex numbers etc. We won’t cover these basics here; a good

place to look them up would be the Wikipedia article on complex numbers [2].

Below, we’ll use z to denote the complex conjugate of the real/complex number z; of course, if z is

real, z and z are the same thing. Also, we’ll use |z| to denote the absolute value of the real/complex

number z.

Definition 3.0.1 (Inner Product). Suppose you have a vector space V(F, V, ⊕, •) over the field

F(F, +, ∗). Suppose the field F is either R (the real numbers) or C (the complex numbers), where

the field operations + and ∗ correspond to “normally” adding and multiplying real/complex numbers

respectively. Then, an “inner product” is a function 〈., .〉 : V × V → F , that assigns to every pair of

vectors (~v1, ~v2) from V a number in F (denoted 〈~v1, ~v2〉), and that satisfies the following properties

(called the “inner product axioms”):

1. Closure.

For all ~v1 and ~v2 in V , 〈~v1, ~v2〉 belongs to F (and as we said above, F is either the set of real

numbers or the set of complex numbers).

2. Conjugate symmetry.

For all ~v1 and ~v2 in V , 〈~v2, ~v1〉 = 〈~v1, ~v2〉.

3. Linearity in the first argument.

For all ~v1, ~v2, and ~v3 in V , and for all f in F , we have:

Additivity: 〈 (~v1 ⊕ ~v2), ~v3 〉 = 〈~v1, ~v3〉+ 〈~v2, ~v3〉 , and

Homogeneity: 〈 (f • ~v1), ~v2) 〉 = f ∗ 〈~v1, ~v2〉 .

4. Realness and non-negativity on the diagonal.

For every ~v in V , 〈~v, ~v 〉 ≥ 0. That is, the inner product of every vector with itself is real and

non-negative.

5. Definiteness.

For every ~v in V , 〈~v, ~v 〉 = 0 ⇐⇒ ~v = ~0.
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If an inner product function 〈., .〉 satisfying the properties above is defined for a vector space V,

then V is called an “inner product space” associated with the inner product 〈., .〉.

Theorem 3.0.2 (Inner Product with the Zero Vector). Let V(F, V, ⊕, •) be an inner product space,

associated with the inner product 〈., .〉, over the field F(F, +, ∗). Then, for any vector ~v in V ,
〈

~v, ~0
〉

= 0.

Proof. Let ~v be any vector in V . Then, we have:

〈

~v, ~0
〉

= 〈~v, (0 • ~v) 〉 (by Theorem 2.0.5)

= 〈 (0 • ~v), ~v 〉 (by the conjugate symmetry of 〈., .〉 )

= 0 ∗ 〈~v, ~v 〉 (by the homogeneity of 〈., .〉 in the first argument)

= 〈~v, ~v 〉 ∗ 0 (by the commutativity of ∗ )

= 0 (by Theorem 1.0.4)

= 0 (from the definition of complex conjugate).

Theorem 3.0.3 (Inner Products and Additive Inverses). Let V(F, V, ⊕, •) be an inner product

space, associated with the inner product 〈., .〉, over the field F(F, +, ∗). Then, for all ~v1 and ~v2 in

V , 〈~v1, (~v2)⊖〉 = 〈(~v1)⊖, ~v2〉 = 〈~v1, ~v2〉− = 〈~v1, ~v2〉 ∗ 1−

Proof. Let ~v1 and ~v2 be any two vectors in V . Then, we have:

〈~v1, (~v2)⊖〉+ 〈~v1, ~v2〉 = 〈(~v2)⊖, ~v1〉+ 〈~v2, ~v1〉 (by the conjugate symmetry of 〈., .〉 )

= 〈(~v2)⊖, ~v1〉+ 〈~v2, ~v1〉 (because z1 + z2 = z1 + z2 for all real/complex z1, z2)

= 〈 ((~v2)⊖ ⊕ ~v2), ~v1 〉 (by the additivity of 〈., .〉 in the first argument)

= 〈 (~v2 ⊕ (~v2)⊖), ~v1 〉 (by the commutativity of ⊕ )

=
〈

~0, ~v1

〉

(by the inverse of ⊕ )

=
〈

~v1, ~0
〉

(by the conjugate symmetry of 〈., .〉 )

= 0 (by Theorem 3.0.2).

Therefore, 〈~v1, (~v2)⊖〉 and 〈~v1, ~v2〉 are field additive inverses of each other. Therefore, we have:

〈~v1, (~v2)⊖〉 = 〈~v1, ~v2〉−
= 〈~v1, ~v2〉 ∗ 1− (by Theorem 1.0.9). (3.1)

Furthermore, we have:

〈(~v1)⊖, ~v2〉+ 〈~v1, ~v2〉 = 〈(~v1)⊖ ⊕ ~v1, ~v2〉 (by the additivity of 〈., .〉 in the first argument)

= 〈~v1 ⊕ (~v1)⊖, ~v2〉 (by the commutativity of ⊕ )

=
〈

~0, ~v2

〉

(by the inverse of ⊕ )
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=
〈

~v2, ~0
〉

(by the conjugate symmetry of 〈., .〉 )

= 0 (by Theorem 3.0.2)

= 0 (because the complex conjugate of 0 is 0).

Therefore, 〈(~v1)⊖, ~v2〉 and 〈~v1, ~v2〉 are field additive inverses of each other. Therefore, we have:

〈(~v1)⊖, ~v2〉 = 〈~v1, ~v2〉−
= 〈~v1, ~v2〉 ∗ 1− (by Theorem 1.0.9). (3.2)

From Eq. (3.1) and Eq. (3.2), it follows that 〈~v1, (~v2)⊖〉 = 〈(~v1)⊖, ~v2〉 = 〈~v1, ~v2〉− = 〈~v1, ~v2〉∗1−.

Lemma 3.0.4. Let V(F, V, ⊕, •) be an inner product space, associated with the inner product

〈., .〉, over the field F(F, +, ∗). Then, for all ~v1 and ~v2 in V , 〈(~v1)⊖, (~v2)⊖〉 = 〈~v1, ~v2〉.

Proof. Let ~v1 and ~v2 be any two vectors in V . Then, we have:

〈(~v1)⊖, (~v2)⊖〉 = 〈(~v1)⊖, ~v2〉− (by Theorem 3.0.3)

= (〈~v1, ~v2〉−)− (by Theorem 3.0.3)

= 〈~v1, ~v2〉 (by Theorem 1.0.6).

Theorem 3.0.5 (Cauchy-Schwarz Inequality). Let V(F, V, ⊕, •) be an inner product space, asso-

ciated with the inner product 〈., .〉, over the field F(F, +, ∗). Then, for any two vectors ~v1 and ~v2 in

V , we have:

|〈~v1, ~v2〉|
2 ≤ 〈~v1, ~v1〉 ∗ 〈~v2, ~v2〉 . (3.3)

Proof. Let ~v1 and ~v2 be any two vectors in V . Then, we have:

0 ≤ 〈(〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖) , (〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖)〉

(apply 〈~v, ~v 〉 ≥ 0, with ~v = (〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖) )

= 〈~v2, ~v2〉 ∗ 〈~v1, (〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖)〉

+ 〈~v1, ~v2〉 ∗ 〈(~v2)⊖, (〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖)〉

(by the linearity of 〈., .〉 in the first argument)

= 〈~v2, ~v2〉 ∗ 〈(〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖) , ~v1〉

+ 〈~v1, ~v2〉 ∗ 〈(〈~v2, ~v2〉 • ~v1)⊕ (〈~v1, ~v2〉 • (~v2)⊖) , (~v2)⊖〉

(by the conjugate symmetry of 〈., .〉 )

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉) + (〈~v1, ~v2〉 ∗ 〈(~v2)⊖, ~v1〉)

+ 〈~v1, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, (~v2)⊖〉) + (〈~v1, ~v2〉 ∗ 〈(~v2)⊖, (~v2)⊖〉)

(by the linearity of 〈., .〉 in the first argument)

= 〈~v2, ~v2〉 ∗
(

〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v1, ~v2〉 ∗ 〈(~v2)⊖, ~v1〉
)
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+ 〈~v1, ~v2〉 ∗
(

〈~v2, ~v2〉 ∗ 〈~v1, (~v2)⊖〉+ 〈~v1, ~v2〉 ∗ 〈(~v2)⊖, (~v2)⊖〉
)

(using basic properties of complex conjugates)

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉)

+ 〈~v1, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈(~v2)⊖, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈(~v2)⊖, (~v2)⊖〉)

(by the conjugate symmetry of 〈., .〉 )

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉)

+ 〈~v1, ~v2〉 ∗
(

〈~v2, ~v2〉 ∗ 〈~v2, ~v1〉− + 〈~v2, ~v1〉 ∗ 〈~v2, ~v2〉
)

(by Theorem 3.0.3 and Lemma 3.0.4)

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉)

+ (〈~v1, ~v2〉 ∗ 〈~v2, ~v2〉) ∗
(

〈~v2, ~v1〉+ 〈~v2, ~v1〉−
)

(using basic properties of addition and multiplication of real/complex numbers)

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉) + (〈~v1, ~v2〉 ∗ 〈~v2, ~v2〉) ∗ 0

(by the inverse of + )

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉) + 0

(by Theorem 1.0.4)

= 〈~v2, ~v2〉 ∗ (〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉)

(by the identity of + ).

Dividing both sides above by the non-negative quantity 〈~v2, ~v2〉, we obtain:

0 ≤ 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ 〈~v1, (~v2)⊖〉

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 〈~v2, ~v1〉 ∗ (〈~v1, ~v2〉 ∗ 1−) (by Theorem 3.0.3)

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ (〈~v2, ~v1〉 ∗ 〈~v1, ~v2〉) ∗ 1− (by the commutativity of ∗ )

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ (〈~v2, ~v1〉 ∗ 〈~v1, ~v2〉)− (by Theorem 1.0.9)

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ (〈~v1, ~v2〉 ∗ 〈~v1, ~v2〉)− (by the conjugate symmetry of 〈., .〉 )

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ (|〈~v1, ~v2〉|
2)− (because zz = |z|2 for all real/complex z).

Adding |〈~v1, ~v2〉|
2 to both sides, we obtain:

|〈~v1, ~v2〉|
2 ≤

(

〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+
(

|〈~v1, ~v2〉|
2
)

−

)

+ |〈~v1, ~v2〉|
2

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+
(

(

|〈~v1, ~v2〉|
2
)

−
+ |〈~v1, ~v2〉|

2
)

(by the associativity of + )

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+
(

|〈~v1, ~v2〉|
2 +

(

|〈~v1, ~v2〉|
2
)

−

)

(by the commutativity of + )

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉+ 0

(by the inverse of + )

= 〈~v2, ~v2〉 ∗ 〈~v1, ~v1〉

(by the identity of + )

= 〈~v1, ~v1〉 ∗ 〈~v2, ~v2〉

(by the commutativity of ∗ ).
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Therefore, we have:

|〈~v1, ~v2〉|
2 ≤ 〈~v1, ~v1〉 ∗ 〈~v2, ~v2〉 ,

which is the required result.

21



4. Norms

Below, we use R+ to denote the set of non-negative real numbers.

Definition 4.0.1 (Norm). Suppose you have a vector space V(F, V, ⊕, •) over the field F(F, +, ∗).
Suppose the field F is either R (the real numbers) or C (the complex numbers), where the field

operations + and ∗ correspond to “normally” adding and multiplying real/complex numbers respec-

tively. Then, a “norm” is a function ‖.‖ : V → R+, that assigns to every vector ~v in V a non-negative

real number (denoted ‖~v‖), and that satisfies the following properties (called the “norm axioms”):

1. Realness and non-negativity.

For every ~v in V , ‖~v ‖ is real and non-negative, i.e., ‖~v ‖ ≥ 0.

2. Definiteness.

‖~v ‖ = 0 ⇐⇒ ~v = ~0.

3. Absolute homogeneity.

For every f in F and ~v in V , ‖ f • ~v ‖ = |f | ∗ ‖~v ‖.

4. The triangle inequality.

For all ~v1 and ~v2 in V , ‖~v1 ⊕ ~v2‖ ≤ ‖~v1‖+ ‖~v2‖.

Theorem 4.0.2 (Norm Induced by an Inner Product). Let V(F, V, ⊕, •) be an inner product space,

associated with the inner product 〈., .〉, over the field F(F, +, ∗). Define a function g : V → R+,

where g(~v) =
√

〈~v, ~v 〉 for every vector ~v in V . Then, g is a norm. That is, g satisfies all the norm

axioms of Definition 4.0.1.

Proof. Let’s take the norm axioms one at a time and prove that g satisfies all of them.

1. Realness and non-negativity.

For every ~v in V , we have:

g(~v) =
√

〈~v, ~v 〉

=
√

a real non-negative number

(from the “realness and non-negativity on the diagonal” of 〈., .〉 )

= a real non-negative number

(using basic properties of the square root).
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2. Definiteness.

We have:

g(~v) =
√

〈~v, ~v 〉 = 0

⇐⇒ 〈~v, ~v 〉 = 0 (using basic properties of the square root)

⇐⇒ ~v = ~0 (from the “definiteness” of 〈., .〉 ).

3. Absolute homogeneity.

For every ~v in V and f in F , we have:

g(f • ~v) =
√

〈 f • ~v, f • ~v 〉 (from the definition of g)

=
√

f ∗ 〈~v, f • ~v 〉 (from the homogeneity of 〈., .〉 in the first argument)

=

√

f ∗ 〈 f • ~v, ~v 〉 (from the conjugate symmetry of 〈., .〉 )

=

√

f ∗ f ∗ 〈~v, ~v 〉 (from the homogeneity of 〈., .〉 in the first argument)

=

√

f ∗ f ∗ 〈~v, ~v 〉 (using basic properties of the complex conjugate)

=

√

|f |2 ∗ 〈~v, ~v 〉 (using basic properties of the complex conjugate)

=
√

|f |2 ∗ 〈~v, ~v 〉 (from the conjugate symmetry of 〈., .〉 )

= |f | ∗
√

〈~v, ~v 〉 (using basic properties of the square root)

= |f | ∗ g(~v) (from the definition of g).

4. The triangle inequality.

Let ~v1 and ~v2 be any two vectors in V . Then, we have:

g(~v1 ⊕ ~v2) =
√

〈~v1 ⊕ ~v2, ~v1 ⊕ ~v2 〉

(from the definition of g)

=
√

〈~v1, ~v1 ⊕ ~v2 〉+ 〈~v2, ~v1 ⊕ ~v2 〉

(from the additivity of 〈., .〉 in the first argument)

=

√

〈~v1 ⊕ ~v2, ~v1 〉+ 〈~v1 ⊕ ~v2, ~v2 〉

(from the conjugate symmetry of 〈., .〉 )

=

√

〈~v1, ~v1 〉+ 〈~v2, ~v1 〉+ 〈~v1, ~v2 〉+ 〈~v2, ~v2 〉

(from the additivity of 〈., .〉 in the first argument)

=

√

〈~v1, ~v1 〉+ 〈~v2, ~v1 〉+ 〈~v1, ~v2 〉+ 〈~v2, ~v2 〉

(using basic properties of the complex conjugate)

=

√

〈~v1, ~v1 〉+ 〈~v1, ~v2 〉+ 〈~v1, ~v2 〉+ 〈~v2, ~v2 〉

(from the conjugate symmetry of 〈., .〉 )

=
√

〈~v1, ~v1 〉+ 2 ∗ Re (〈~v1, ~v2 〉) + 〈~v2, ~v2 〉

(using basic complex arithmetic)

≤
√

〈~v1, ~v1 〉+ 2 ∗ |〈~v1, ~v2 〉|+ 〈~v2, ~v2 〉
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(because Re(z) ≤ |z| for all real/complex z)

≤

√

〈~v1, ~v1 〉+ 2 ∗
√

〈~v1, ~v1 〉 〈~v2, ~v2 〉+ 〈~v2, ~v2 〉

(by the Cauchy-Schwarz inequality (Theorem 3.0.5))

=

√

(g(~v1))2 + 2 ∗
√

(g(~v1))2(g(~v2))2 + (g(~v2))2

(from the definition of g)

=
√

(g(~v1))2 + 2 ∗ g(~v1) ∗ g(~v2) + (g(~v2))2

(using basic properties of the square root)

=

√

(g(~v1) + g(~v2))
2

(using basic real arithmetic)

= g(~v1) + g(~v2)

(using basic properties of the square root).

Thus, whenever 〈., .〉 is a valid inner product, the function defined by ‖~v ‖ ,
√

〈~v, ~v 〉 is a valid

norm, called the “norm induced by the inner product” 〈., .〉.
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