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Scientific advancement is requiring ever-increasing compute power

DOE Exascale Computing Project identifies the
following challenge areas:

National Security Needs

Advances in Material Science

New Energy Solutions

Advances in Healthcare

Predicting Severe Weather

Urban Science

High-Energy Physics, Astrophysics, Chemistry

Computer-Aided Design

HPC Computing Performance
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Scientific advancement is requiring ever-increasing compute power

Luckily, enabling algorithms are the same as
always:

Dense Linear Algebra

Sparse Linear Algebra

Computation on Grids

Unstructured Grids

Spectral Methods

Particle Methods

Monte Carlo

(Graph Analytics)

HPC Computing Performance

•

1.00E+17

1.00E+16

1.00E+15

1.00E+14

1.00E+13

1.00E+12

1.00E+11

1.00E+10

1'00E+09

2 1.00E+08
u.

1.00E+07

1.00E+06

1.00E+05

1.00E+04

1.00E+03

1.00E+02

1.00E+01

1.00E+00, 

CO
CD
0

Ruad Runnei
•

TMC CM-5
•

CDC 7600
• 

IBM 7090
•

VNIV 

• ♦

Gravy 1

Crayv -

•
Cray 2

•

Earth Simulator
• 

ASCI Red
•

Tianhe-2
K •
• 
•

A Titan 
Tianhe-1A

A Blue Gene/L

ASCI White

IBM 360/195

• EDSAC 1

co

N.)
C.J1 Ul

CD CD
I- -I

CO

CD
CD
N.)

-
CO

O

CD CD

O)

I- -I
CO
CO

N.3

Year

-

CID
O

CD
CD
NJ

I-
CD

CO

fN
O
O
O
O
O

rN
O
O
O
O
cr)

I I
NJ N)
O O
0
CO 0

IJ
O

fN
O

From Reed and Dongarra, 2015



100,000

10,000

1,000

100

500.00
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Supercomputers are increasingly limited
by power consumption.

Faascale systems forecasted to be
—100MW.

That's more than 1/10th the total solar
power generated in Colorado.

Or about 80,000 US homes.

Challenge: Can low-power neural-inspired or
neuromorphic hardware solve the same problems
for which we currently require traditional high-
petformance computing?



What is Neural-Inspired Computing?

What is neural-inspired, neuromorphic, brain-inspired computing?

• Many terms

• Fundamental notion of taking inspiration from how the brain performs computation

• Evidence of 10-10,000x improvement in Energy-Delay Product (EDP)
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Spiking Neural Networks

Subclass of Artificial Neural Network

Neurons compute their own state
independently, possibly asynchronously

Each neuron integrates incoming
information into a 'potential'

If 'potential' reaches a predetermined
threshold, the neuron alerts connected
neurons

Neuron communication is single-state
signals (spikes)

A time delay for spike propagation can be
included

Enables event-driven computation

■
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Neuromorphic Processors:Where are we today?

Analog

• Focus on Kirchhoff Law — enabled computation
• Neurons sum current across weighted synapses
• Neural nodes sum current over weighted memristors

• Substantial energy and time savings
• Non-trivial costs of precision
• Practical issues limit size and integration with digital logic

• Ideal scenario
• Train weights in situ
• Compatible with linear algorithms

#

Fig 1: Analog RRAMs can be used to reduce the energy of a

vector matrix multiply. The conductance of each RRAM

represents a weight. Analog input values are represented by the

input voltages or input pulse lengths. This allows all the read

operations, multiplication operations and sum operations to occur

in a single step. A conventional architecture rnust perform these

operations sequentially for each weight resulting in a higher

energy and delay. Agarwal et al., E3S 2015

Digital 

• Rely on event-driven "spiking" for communication
• Communication only needed for Ts', not otherwise
• Equivalent to large threshold gate networks + time dimension

• Substantial energy savings
• Information in time dimension; limiting time savings

• Compatible and scalable using conventional technology

• Ideal scenario
• Algorithms can be reframed in discrete spiking form
• Learning algorithms are reformulated for spiking approaches
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Neuromorphic Processors:Where are we today?

Analog
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Spiking Neural Networks — Neuron Dynamics

Generically, a discrete-time leaky-integrate-and-fire neuron well-modeled by simulators and
neuromorphic hardware.

For weights wii, delays di J, initial voltages V(0), probability of fire Pi, and initial action potentials
x(0) being algorithm dependent:

Vi(t + 1) = Vi(t) + 1/Vii.Xi(t — dij + 1)

1 i i
" 

(t + 1) > 17 i* and it kt < Pi
x i(t + 1) =( 

0, otherwise

Vi(t + 1) — 
ItiVi(t), xi(t + 1) = 0

0, xi(t + 1) = 1

Each neuron processes these functions at every time step in perfect parallel.
So all you need to do is take your algorithm and formulate it

as a network of these independent processes.
Remember: Neurons are cheap. Spikes are cheaper.

•



Let's imagine fully integrated neuromorphic onto HPC
platforms (sitting next to GPUs and CPUs)

Emerging neuromorphic chips
• Ultra-low power spiking circuits
• Scalable architecture -> easy to

achieve millions of neurons

mr



Machine Learning,Yes... but neural platforms on HPC do not
need to be limited to machine learning
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Model

Diffusion can be modeled either as a deterministic PDE or a stochastic process
° PDE solves the following equation

dC(x, t) = D 32C(x, 0
at ax2

o Stochastic process implements many random walkers to statistically approximate a solution

o Mean position of N walkers approaches expected mean of deterministic solution at rate of 1 /sqrt(N)



One dimensional random walk case

Model: P2

1-P1-P2

Stochastic Brownian motion

o Particle can either move or not (1-D case: probabilityp1 right orp2 left, with 1-P1-P2 for no move)

O Approximating PDE solutions requires sampling over MANY particles

Goal: Ensemble of neurons that represent stochastic particles, such that

o Efficient to update (randomly add / subtract value)

o Has sparse representation

O Requires few neurons

o Scalable across multiple dimensions / multiple particles

•



Neural random walkers evolve as expected
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Neural random walkers evolve as expected
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■

If we need lots of walkers, why are we using neurons to represent
walkers? I heard that spikes would be cheaper...



Tracking particles over space 4 tracking densities at each location

Instead of each particle owning a population of neurons
representing the particle's location...

P1 P2

P-1 Po P1

...have each location own a population of neurons that
represent the probability density of particles

•



Density model repeats basic circuit at every vertex of mesh

Each vertex encodes density of
particles in the internal potential of
certain nodes

Each time step "hands off" particles to
connected vertices according to
probabilistic maps

From Other Units

A

Buffer 4.

Readout

Probability Gate

To Other Units
4

Walker memory

Connection memory

Cost (for k locations, simulating N
walkers; 1-D case)

0(1 )

0(k)

Total neurons 0(k)

Time per physical timestep 0(max(p,)), where p, is the density of
walkers at each location

Position energy per timestep 0(N)

Update energy per timestep 0(N)

•

Severa, et al., IJCNN, 2018



Speed of simulation depends on density distribution of walkers •

Spike Raster Plot
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Density model is effective at looking at full distributions instantaneously
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Crossbar Architectures Well-Suited for Local Connectivity

20

Simulation on IBM TrueNorth hardware (<100mW)
• 20x20 grid
• 30 walkers initialized at 5 points
• 2000 timepoints

1

1C 20



Advantages of each method

Particle method

o Path dependent behavior is readily available

o Until readout, communication is entirely local within particles
(embarrassingly parallel)

o With unlimited neurons, can run in constant time

Density method
o Densities are readily available at all times

o Non-local or other complex graphs can easily be implemented

o With limited neurons, can tradeoff statistical approximation (i.e., number
of walkers) with longer or shorter simulations



The IPDE-IVP

has solution

A Class of Integro-PDEs with a Probabilistic Interpretation
i

ut (t, x) = —I a,j(t,x)u,,,
J 
(t, x) + I b,(t, x)ux,(t, x)

2
E 

,
J

+A(t, x) f et(t, x + h(t, x, 07)) — u(t, x)) N(a; t,x)diq

+ c (t , x)u(t , x) + f (t , x)
u(t, x) = g(x)

t t s
u(t, x) = IE [g (Xt) exp (I c(s,X5)ds)+ I f (s, Xs) exp (I c(u,Xu)du)ds

o o o

where dX t = b(t, X t)dt + 6(t, X t)d1/17t + h(t, X t, Q)dPt;,(2,t,A7t

and a, b , c, g,h, and f are all real valued, À < 0; further for each t and x that oh > 0

and f 0 h(q)diq so that P (t; Q, t, x) is a Poisson process with rate — fcts A(s,x)ds. We
further require that a = o-o-T ,b, and h are all defined so that the stochastic process
Xt has a unique solution that belongs almost surely to the support of g .

Xo = XI

•



The IPDE-IVP

A Class of Integro-PDEs with a Probabilistic Interpretation
i

ut (t , x) = —1 ao(t, x)u,,,
J 
(t, x) + I b, (t , x)ux,(t , x)

2
E 

,
J

+A(t, x) f et(t, x + h(t, x, 07)) — u(t, x)) N(a; t, x)diq

+ c (t , x)u(t , x) + f (t , x)
u(t, x) = g(x)

t t s
u(t, x) = IE [g(Xt) exp (I c(s, Xs)ds) + I f (s, Xs) exp (I c(u, Xu)du) ds

o o o

Non-Zero Terms

a

a, b, f

b, A., h, c, f

Application

Heat Equation

SDE Example

dXt = adifft

European Option Pricing dS t = rStdt + astdWt

Particle Transport

a, f Electrostatic Scalar Potential*

b, c Pollutant Source Deterioration

dXt = —vYtdt; dYt = WytdPut

de = VTdWt

dxt = vdtA

Xo = xl

•
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Graph Algorithms
•

1 Dynamic programming is a general technique for solving certain kinds of discrete optimization problems
Dynamic programming consolidates redundant computation

L 

f ib (n) = f ib — 1) + f ib — 2); fib(1) = 1, f ib (2) = 1

a*- 3)
•o ft2) •2) itic
ftA2) ft(0 11\am rki)

1)

Those who cannot remember the past
are condemned to repeat it.

-Dynamic Programming

[https://blog.usejournal.com/top-50-dynamic-programming-practice-problems-4208fed71aa3]
[https://programming.guide/dynamic-programming-vs-memoization-vs-tabulation.html]
[https://medium.com/@shmuel.lotman/the-2-00-am-javascript-blog-about-memoization-41347e8fa603]



Graph Algorithms

r  

New neuromorphic algorithms for dynamic programming
Generically solves a broad class of dynamic programs 

1

 _A

Spiking shortest paths algorithm
[Aibara et al., IEEE Int. Symp. on Circuits and Systems, 1991]

•

• Our dynamic programming algorithm leverages shortest path NGA

• Single neuron per dynamic program table entry

• Employs delays on links (simulatable using recurrent neurons)

• Novel temporal encoding: time when neuron first fires represents
value of dynamic program table entry

Aimone, et al., ICONS, 2019



Graph Algorithms

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems

• Recurrent solutions to lattice models for protein-DNA binding

• Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems

• Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems

• Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)

• Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.

• The Cocke—Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar

• Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

• The use of transposition tables and refutation tables in computer chess

• The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)

• The Earley algorithm (a type of chart parser)

• The Needleman—Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

• Floyd's all-pairs shortest path algorithm

• Optimizing the order for chain matrix multiplication

• Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems

• The dynamic time warping algorithm for computing the global distance between two time series

• The Selinger (a.k.a. System R) algorithm for relational database query optimization

• De Boor algorithm for evaluating B-spline curves

• Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

• The value iteration method for solving Markov decision processes

• Some graphic image edge following selection methods such as the "magner selection tool in Photoshop

• Some methods for solving interval scheduling problems

• Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)

• Recursive least squares method

• Beat tracking in music information retrieval

• Adaptive-critic training strategy for artificial neural networks

• Stereo algorithms for solving the correspondence problem used in stereo vision

• Seam carving (content-aware image resizing)

• The Bellman—Ford algorithm for finding the shortest distance in a graph

• Some approximate solution methods for the linear search problem

• Kadane's algorithm for the maximum subarray problem

• Optimization of electric generation expansion plans in the Wein Automatic System Planning (WASP) .3 package

1

A

ikipedia: 30 applications
oss diver - .omain

[https://en.wikipedia.org/wiki/Dyna
mic_programming]

Another list with 50
application
[https: blog.usejournal.com/top-50-
dynamic-programming-practice-
problems-4208fed71aa3]



Graph Algorithms — Considerations and Extensions

■ Dynamic program graph must be simulated on neuromorphic hardware graph
New graph embedding problems and techniques

■ Neuromorphic hardware has a fixed minimum delay
Problem-specified delays must be scaled, introducing multiplicative factor to running time

■ Dynamic programming graph loading and readout (I/0) costs may present bottlenecks
Optimized problem-specific algorithms possible (we do so for longest increasing subsequence)

■ Spiking approach as presented only gives value solution
Can use O(log n) extra neurons per graph node as memory to store solution
Novel Hebbian learning approach on edges also works!

■
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Deep Learning for Reduced Order and Surrogate Models

• High-Fidelity HPC physics simulations are expensive (e.g.
petascale DNS may take days to run)

• For co-design problems or uncertainty quantification, many
runs must be completed

• There exists a need for fast neural network approximations
of physical systems

• Good news: Standard Deep Learning techniques work well
for near-time predictions
• Encoder-Decoder Convolutional Neural Networks
• !so-error and 100x faster than DNS

pilot fl

merging flame

main jet flam

Turbulent Flow

plane 6

nln,

Input
Data

Encoder

Reduced-Order
Latent Space

Decoder

Predicted
Data

DNS of n-dodecane Multi-
injection Diesel Combustion Images from Freno, Carlberg and Chen



Challenges for DL Reduced Order and Surrogate Models

Preventing Accumulating Errors

Despite low errors for near-term
predictions, long-term predictions can

exhibit growing errors

Shallow Ice-Sheet Modell

114(x, • (cf (h2(-,t) olvkx, or-) V h(x, t)) M(x,t)
/3(x, z)

ht(x, t, z) = Tit, if h(x, t, z) > b(x) or ht(x,t, z) > 0,

h(x, t, z) = 0, otherwise ,

h(x, 0) =

LIMA, 20 pa*.

10.0

2

2
max (-

1 
— 
900

b2(x)), h(±L,t) = b(±L)

n41 e = 10

000

LSTM. 100 perornetere, window Wien 10

400 SOO 800

Time Time

Low-Power Implementations

GPUs used for deep learning still consume
100+Watts. Neuromorphic systems have

analog-readout issue.

ee, c.e,4- & <C, 4A , . _,0„-cy- e,c- c4e ' C 1 s• ""

Whetstone 'sharpening' trains
neuromorphic encoder-decoder

networks.2

•

Outperforming Existing Methods
for Q0I

Generally, the simulation is a necessary
step in approximating a quantity-of-

interest (Q01). For UQ efforts,
traditional function approximation may

out-perform Q0I regression deep
learning methods.

10-1

10-2

200

• PCE error

• M LP error

•
•

. • •
. • • ''''''

400 600 800

10-1

10-2

• PCE error

• MLP error

•

200 400 600 800

Q0I estimate for Polynomial Chaos
Expansion and Multi-Layer Perceptron1

1Perego, et al., SIAM Comp. Sci. Eng., 2019
2Severa, et al., Nature Machine Intelligence, 2019



Conclusions

Neural Inspired and Neuromorphic approaches have a wide
range of potential impacts in numerical computing.

While performance (throughput) is key, energy is also a
critical limiting factor

Yes, Deep Learning has a place, but new computer
architectures mean re-thinking all types of algorithms

Thanks!

Hydro-code Simulation ML Prediction
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ML prediction
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