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Scientific advancement is requiring ever-increasing compute power .
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Scientific advancement is requiring ever-increasing compute power .

Luckily, enabling algorithms are the same as ,) HPC Computing Performance
always:
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So what’s stopping us?

100,000

Power (kW) — Nov 2017 Top 500

Supercomputers are increasingly limited
by power consumption.

10,000

Exascale systems forecasted to be

~100MW.

1,000

That’s more than 1/10% the total solar
power generated in Colorado.

Ot about 80,000 US homes.

Challenge: Can low-power neunral-inspired or
neuromorphic hardware solve the same problems

5,000.00
TFlops / Second

50,000.00

for which we currently require traditional high-
Dperformance computing?



What is Neural-Inspired Computing?

What is neural-inspired, neuromorphic, brain-inspired computing?
Many terms
Fundamental notion of taking inspiration from how the brain performs computation

Evidence of 10-10,000x improvement in Energy-Delay Product (EDP)

Mathematical Representation
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Spiking Neural Networks

Subclass of Artificial Neural Network

Neurons compute their own state
independently, possibly asynchronously

Pre-synaptic
Neurons

Each neuron integrates incoming
information into a ‘potential’

If ‘potential’ reaches a predetermined
threshold, the neuron alerts connected
neurons Input spikes

Neuron communication is single-state LT Post-synaptic
signals (spikes) —‘- Neuron

A time delay for spike propagation can be

included

Enables event-driven computation



Neuromorphic Processors: Where are we today! _ I

Analog Digital I

Focus on Kirchhoff Law — enabled computation e Rely on event-driven “spiking” for communication

* Neurons sum current across weighted synapses * Communication only needed for ‘1’s’, not otherwise

* Neural nodes sum current over weighted memristors * Equivalent to large threshold gate networks + time dimension
Substantial energy and time savings e Substantial energy savings L

* Non-trivial costs of precision * Information in time dimension; limiting time savings

* Practical issues limit size and integration with digital logic * Compatible and scalable using conventional technology
Rl b o * Ideal scenario

irain wglghts !n SIFU ; e Algorithms can be reframed in discrete spiking form
* Compatible with linear algorithms * Learning algorithms are reformulated for spiking approaches

FIFO Buffers

Newron Potential

Fig 1: Analog RRAMs can be used to reduce the energy of a
vector matrix multiply. The conductance of each RRAM
represents a weight. Analog input values are represented by the
input voltages or input pulse lengths. This allows all the read

operations, multiplication operations and sum operations to occur onke
1,

Action Potential Output Vector

in a single step. A conventional architecture must perform these
operations sequentially for each weight resulting in a higher
energy and delay. Agarwal et al., E3S 2015




Neuromorphic Processors: Where are we today!?
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Spiking Neural Networks — Neuron Dynamics

Generically, a discrete-time leaky-integrate-and-fire neuron well-modeled by simulators and
neuromorphic hardware.

For weights w; ;, delays d; ;, initial voltages V(0), probability of fire P;, and initial action potentials
x(0) being algorithm dependent:

V\i(t + 1) = Vi(t) + z Wi’ij(t — di,j + 1)
J

LVi(t+1) >V andn;; <P,

xi(t+1) =
i( ) 0, otherwise

_ TiVi(t), Xi(t -+ 1) =0
Vilt+1) = { 0, xt+1)=1

Each neuron processes these functions at every time step in perfect parallel.
So all you need to do is take your algorithm and formulate it
as a network of these independent processes.
Remember: Neurons are cheap. Spikes are cheaper.



Let’s imagine fully integrated neuromorphic onto HPC
platforms (sitting next to GPUs and CPUs)
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Ll T H?I i} '““‘l ] M“ ’T 35. Emerging neuromorphic chips
] SR T | « Ultra-low power spiking circuits
Y « Scalable architecture -> easy to
achieve millions of neurons




Machine Learning, Yes... but neural platforms on HPC do not . |
need to be limited to machine learning
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Model _

Diffusion can be modeled either as a deterministic PDE or a stochastic process
PDE solves the following equation

0C(r,0) _  9*C@D)

ot dx?

Stochastic process implements many random walkers to statistically approximate a solution

Mean position of N walkers approaches expected mean of deterministic solution at rate of 1/sqrt(N)



One dimensional random walk case H I

MOdCl: p 1 p2

S
A 4

1-p4-p;

Stochastic Brownian motion
Particle can either move or not (1-D case: probability p, right or p, left, with 1-p,-p, for no move)
Approximating PDE solutions requires sampling over MANY particles

Goal: Ensemble of neurons that represent stochastic particles, such that
Efficient to update (randomly add / subtract value)
Has sparse representation I
Requires few neurons

Scalable across multiple dimensions / multiple particles



Neural random walkers evolve as expected




Neural random walkers evolve as expected
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250 walkers, 1250 time steps
with equal probability of moving (left) or strong bias (right)




If we need lots of walkers, why are we using neurons to represent
walkers? | heard that spikes would be cheaper...



Tracking particles over space =2 tracking densities at each location

o s s e

Instead of each particle owning a population of neurons
representing the particle’s location...

P1 P2

P-1 Po P1

...have each location own a population of neurons that
represent the probability density of particles



Density model repeats basic circuit at every vertex of mesh

From Other Units
|

Each vertex encodes density of
particles in the internal potential of
certain nodes

Each time step “hands off ™ particles to
connected vertices according to
probabilistic maps Supervisor
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Measure

Walker memory

Connection memory
Total neurons

Time per physical timestep

Position energy per timestep

Update energy per timestep

Cost (for k locations, simulating N

walkers; 1-D case)
0(1)
0(k)
O(k)

O(max(p;)), where p; is the density of "
walkers at each location

O(N)
O(N)

Severa, et al., [JCNN, 2018 I



Speed of simulation depends on density distribution of walkers

Spike Raster Plot

., Distribution of Walkers

Simulation Timestep

Timestep




Density model is effective at looking at full distributions instantaneously

|
J
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Crossbar Architectures Well-Suited for Local Connectivity

Simulation on IBM TrueNorth hardware (<100mW)
« 20x20 grid

» 30 walkers initialized at 5 points

« 2000 timepoints




Advantages of each method _ I

Particle method
Path dependent behavior is readily available

Until readout, communication is entirely local within particles
(embarrassingly parallel)

With unlimited neurons, can run in constant time

Density method

Densities are readily available at all times
Non-local or other complex graphs can easily be implemented

With Iimited neurons, can tradeoff statistical approximation (i.e., number
of walkers) with longer or shorter simulations




A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP ue(t, x) = i ;i j (t, XUy (8, X) + z b (t, X)uy, (t, x)
1] [

+A(t, %) f (u(t, x+h(t,x,q)) —u(t, x)) $0(q; t, x)dg

+c(t, x)u(t,x) + f(t, x)

u(t,x) = g(x)
t t s
has solution u(t,x) =E [g(Xt) exp (f C(S,XS)dS> + f f(s,X;) exp (j c(u,Xu)du> ds| X, = x]
0 0 0
Where dXt = b(t, Xt)dt o O-(t, Xt)th == h(t, Xt' Q)dpt;,Q,t,Xt

and a,b,c,g,h, and f are all real valued, 1 < 0; further for each t and x that ¢, = 0

and [ ¢,(q)dq so that P(¢t; Q,t,x) is a Poisson process with rate — fotl(s, x)ds. We

further require that a = oo 7, b, and h are all defined so that the stochastic process
X; has a unique solution that belongs almost surely to the support of g.



A Class of Integro-PDEs with a Probabilistic Interpretation

1
The IPDE-IVP ue(t, x) = i ;i j (t, XUy (8, X) + z b (t, X)uy, (t, x)
1] [

+A(t, %) f (u(t, x+h(t,x,q)) —u(t, x)) $0(q; t, x)dg

+c(t, x)u(t,x) + f(t, x)
u(t, x) = g(x)

t S

c(u, Xu)du> ds

t
c(s,XS)dS>+f f(s,X)exp (f X, =x]
0 0

Non-Zero Terms Application SDE Example
Heat Equation dX; = adWW;
European Option Pricing dS; = rS;dt + oS, dW;

u(t, %) = E [g<xt> exp ( f
0

Particle Transport dX, = —vYdt; dY; = wy,dPyy,

Electrostatic Scalar Potential* dxV = \edw,

Pollutant Source Deterioration dX, = vdt"
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Graph Algorithms

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems I
Dynamic programming consolidates redundant computation

. — £ . . e = =1 Those who cannot remember the past
flb(n) flb(n L +flb(n )'flb( ) 'flb( ) are condemned to repeat it.

-Dynamic Programming

fib(3) fib(3)

fib(2) fib(2)

fib(1) fib(1)

fib(0) fib(0) "




Graph Algorithms

New neuromorphic algorithms for dynamic programming !
Generically solves a broad class of dynamic programs

Spiking shortest paths algorithm

= QOur dynamic programming algorithm leverages shortest path NGA
= Single neuron per dynamic program table entry
=  Employs delays on links (simulatable using recurrent neurons)

= Novel temporal encoding: time when neuron first fires represents I
value of dynamic program table entry

i
Aimone, et al., ICONS, 2019 l



Graph Algorithms

Dynamic programming is a general technique for solving certain kinds of discrete optimization problems

Recurrent solutions to lattice models for protein-DNA binding
Backward induction as a solution method for finite-horizon discrete-time dynamic optimization problems
Method of undetermined coefficients can be used to solve the Bellman equation in infinite-horizon, discrete-time, discounted, time-invariant dynamic optimization problems
Many string algorithms including longest common subsequence, longest increasing subsequence, longest common substring, Levenshtein distance (edit distance)
Many algorithmic problems on graphs can be solved efficiently for graphs of bounded treewidth or bounded clique-width by using dynamic programming on a tree decomposition of the graph.

« The Cocke—Younger—Kasami (CYK) algorithm which determines whether and how a given string can be generated by a given context-free grammar

e Knuth's word wrapping algorithm that minimizes raggedness when word wrapping text

» The use of transposition tables and refutation tables in computer chess

» The Viterbi algorithm (used for hidden Markov models, and particularly in part of speech tagging)

« The Earley algorithm (a type of chart parser)

* The Needleman—Wunsch algorithm and other algorithms used in bioinformatics, including sequence alignment, structural alignment, RNA structure prediction

» Floyd's all-pairs shortest path algorithm

¢ Optimizing the order for chain matrix multiplication

* Pseudo-polynomial time algorithms for the subset sum, knapsack and partition problems

* The dynamic time warping algorithm for computing the global distance between two time series

* The Selinger (a.k.a. System R) algorithm for relational database query optimization

* De Boor algorithm for evaluating B-spline curves

» Duckworth—Lewis method for resolving the problem when games of cricket are interrupted

« The value iteration method for solving Markov decision processes

« Some graphic image edge following selection methods such as the "magnet" selection tool in Photoshop

* Some methods for solving interval scheduling problems

+ Some methods for solving the travelling salesman problem, either exactly (in exponential time) or approximately (e.g. via the bitonic tour)

« Recursive least squares method

» Beat tracking in music information retrieval

« Adaptive-critic training strategy for artificial neural networks

» Stereo algorithms for solving the correspondence problem used in stereo vision

o Seam carving (content-aware image resizing)

« The Bellman—Ford algorithm for finding the shortest distance in a graph

« Some approximate solution methods for the linear search problem

« Kadane's algorithm for the maximum subarray problem

» Optimization of electric generation expansion plans in the Wein Automatic System Planning (WASP) & package




Graph Algorithms — Considerations and Extensions

Dynamic program graph must be simulated on neuromorphic hardware graph
New graph embedding problems and techniques

Neuromorphic hardware has a fixed minimum delay
Problem-specified delays must be scaled, introducing multiplicative factor to running time

Dynamic programming graph loading and readout (I/O) costs may present bottlenecks
Optimized problem-specific algorithms possible (we do so for longest increasing subsequence)

Spiking approach as presented only gives value solution
Can use O(log n) extra neurons per graph node as memory to store solution
Novel Hebbian learning approach on edges also works!
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« High-Fidelity HPC physics simulations are expensive (e.g. I
petascale DNS may take days to run)

Deep Learning for Reduced Order and Surrogate Models
« For co-design problems or uncertainty quantification, many
Input
runs must be completed Data I
« There exists a need for fast neural network approximations :
for near-time predictions
* Encoder-Decoder Convolutional Neural Networks

of physical systems
* Good news: Standard Deep Learning techniques work well
 lIso-error and 100x faster than DNS v@r ‘
Reduced-Order

Latent Space

0.005 0.006 0.007 0.008

Decoder ! i

} |
Predicted
e Data
DNS of n-dodecane Multi-

injection Diesel Combustion Images from Freno, Carlberg and Chen I

0.001 0.602 0.003 0.004

Trbulent Flow

000




Error

Challenges for DL Reduced Order and Surrogate Models

Preventing Accumulating Errors

Despite low errors for near-term
predictions, long-term predictions can
exhibit growing errors

Shallow Ice-Sheet Model

ha(z,t,2) =V - (a <h,2("“ D | DH™2(z, )| Vh(z, t)\"") Vh(z, t)) + M(z,t)

‘.‘7’(;7‘. Z)
hi(z; t,2) = Ry, if h(z,t,z) > b(z) or i[,(.r. t,z) &0,
h(z,t,z) =0, otherwise ,

l—izzm h(£L,t) = b(+L)
3 o0’ @) )y AELD =0EL)

Time Time

Low-Power Implementations Outperforming Existing Methods
I{e]g0]0]
GPUs used for deep learning still consume
100+Watts. Neuromorphic systems have Generally, the simulation is a necessary
analog-readout issue. step in approximating a quantity-of-

interest (QOIl). For UQ efforts,
traditional function approximation may
out-perform QOI regression deep
learning methods.

QOI estimate for Polynomial Chaos
Expansion and Multi-Layer Perceptron’

Whetstone ‘sharpening’ trains
neuromorphic encoder-decoder
networks.?2

'Perego, et al., SIAM Comp. Sci. Eng., 2019
2Severa, et al., Nature Machine Intelligence, 2019



Conclusions

Neural Inspired and Neuromorphic approaches have a wide
range of potential impacts in numerical computing.

While performance (throughput) is key, energy is also a
critical limiting factor

Yes, Deep Learning has a place, but new computer
architectures mean re-thinking all types of algorithms

Thanks!
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