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1 Motivation

= Analogue quantum simulations can teach us about fundamental
quantum physics in regimes that are difficult to simulate classically
such as quantum phase transitions near the critical point.

= Can’t use fault-tolerant error correction due to continuous
operations.

= Calculation length 1s limited by decoherence time, but error
mitigation can lengthen the decoherence time.



| Logical Cooling

* Find ground state of
H — a21Z2.

" Decoherence from environment

L, € (WVpX1,+/PX2}

all

Environment



3 ‘ Logical Cooling »

= Evolve under:

@ aZzZ @ H = alez -+ ﬁZA -+ E(Xl + XZ)XA
= 1% term: Hamiltonian in question

eXX eXX = 28d term: ancilla energy splitting
= 3 term: transfer heat from system to
x/ P4 N\Jro” -
VP il the ancilla
ptica _ .
Environment Pumping Decoherence:

L, € (\VpX1, VDX, \VDX4}

" Cooling the ancilla:

L, € {Nroa}



) |Master Equation

% = —i[(aZ{Z, — BZ,), p] Energy splittings
—ie[(X; + X2)X4,p ] Transfer heat to ancilla
—3pp + p(X1pX; + X,pX, + X4pX,)  Decoherence

- 2 (UA_O}TP + po'A_a[i" + UA_pGX) Optical pumping




7 |Why Should Logical Coolim

Interaction picture:
XSXA N (elatO.S+ e_latO'S_)(elﬁtO'X 1 e—lﬁtO.A—)
— elt(a+,8)0.5+0.2— elt(oz—,B)O.S+O.A— + e_lt(a_'B)O'S—O'X + e—lt(a+,8)O.S—O.A—

T e'“%gf oy + ofoy +o50f +e %oy
\ J

a=p Dominating term swaps

ancilla and system qubit

Rapidly rotating terms
approximate to nothing
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| Motivation
" QAOA can approximate the solution to NP-Hard problems.

" Can QAOA yield a better approximation ratio than classical
algorithms with equal time complexities?

" QAOA circuits ate low in depth. 2 QAOA could be a good NISQ
application.

= We know that QAOA even for p = 1 prepares a state that 1s
classically hard to sample from [1].

[1] E. Farhi and A. W. Harrow (2016)



| Approximation Ratio

C(x*) C(x*)

[ = =

B minC(x)’O
X

max C(x)
X

If the objective function C(X) is being minimized, then I' = 1.

If the objective function C(x) is being maximized, then [' < 1.



The Quantum Approximate
Optimization Algorithm (QAOA)

im’( | ' K,

[1] E. Farhi, ez 4/ (2014)



| QAOA
" Given C:{0,1}" - R, find x € {0,1}" s.t. C(x) is a minimum.

" We can represent C(x) as an objective Hamiltonian,

Hclx) = C(x)|x).

" Let the mixing Hamiltonian be



|QAOA

Let B = (B1, B2, -, Bp) and ¥ = (¥V1,V2, -, Vp) be free parameters.
Then, the @ operator is defined as

e_i.BkHMe_ikaC _

Q,(B,y) =

i

k=1




. ‘QAOA is a Variational Algorithm -
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: Goal

* Find good B and ¥ for some number of iterations p such
that the expectation value of the problem Hamiltonian 1s
close to the minimum.

" 1.e. The approximation ratio is close to 1.

[ = Hé%,“(ﬁly IHC|BIY>

min C(x)



| Does The QAOA Work!?

" From Trotterization, it follows that we obtain the optimal
solution when p — 0. But, we want to run on NISQ devices.
— Circuit depth & p should be small.

= Historically, it 1s a pattern to show the QAOA does better on a
problem only for a better classical algorithm to be discovered

1], [2], [3], and [4].

" We look at a way to improve QAOA’s performance.

[1] E. Farhi ez, o/ (2014), [2] Barak et. al. (2015), [3] Ryan-Anderson (2018) Ch. 3, [4] Z. Wang ¢z al. (2017)
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| Example Classical Heuristic: Local Search @

" In general, local search makes small changes to the input solution to
see if the objective can be improved.

" Traveling Sales Person (I'SP) example: Find the shortest distance one
can travel to visit each city exactly once.

I

d13 d24



. | Example Classical Heuristic: Local Search

" In general, local search makes small changes to the input solution to
see if the objective can be improved.

" Traveling Sales Person (TSP) example: D = d 4,

o [

da3 -

_d34_

- g
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| Example Classical Heuristic: Local Search

2

" In general, local search makes small changes to the input solution to
see if the objective can be improved.

" Traveling Sales Person (I'SP) example:




Example Classical Heuristic: Local Search
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" In general, local search makes small changes to the input solution to
see if the objective can be improved.

" Traveling Sales Person (I'SP) example:

[

(A

C1ty



.| Example Classical Heuristic: Local Search

2

" In general, local search makes small changes to the input solution to
see if the objective can be improved.

" Traveling Sales Person (I'SP) example:

- [

\d14 ds3
d13 d24

i
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, | Example Classical Heuristic: Local Search

" In general, local search makes small changes to the input solution to

see if the objective can be improved.

" Traveling Sales Person (TSP) example: D, = d1,

- [
AN

g ds3
dq3 dyy

i [

da3

A3y -

- g



Example Classical Heuristic: Local Search
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" In general, local search makes small changes to the input solution to
see if the objective can be improved.

=Traveling Sales Person (T'SP) example: If D, < D4, change solution.

—d1'2—> City 2

d14 d23
d13 o

Cir o B



Local Search on Bit Strings

14

Local search of depth k searches all bit strings within
hamming distance k of the input string.

Input: x = 010
Search depth: k = 2




_| Why Heuristics Instead of Approximation
" Algorithms?

Heuristics
" Intuitive

= Perform well on practical instances
= Ditticult to prove bounds on approximation ratio

Approximation Algorithms
" May perform poorly compared to heuristics
= Rigorous bound on worst-case performance

= Designed by performance proof — Can be less intuitive



. ‘ Hybrid QAOA Classical Heuristic
= Let h: {0, 1}®n - {0, 1}®n be a classical heuristic.

" For unconstrained problems, we choose a heuristic that
improves the output of objective function.

= For constrained problems, we choose a heuristic that maps
infeasible states to feasible states.



. ‘ Hybrid QAOA Classical Heuristic

Now define our new objective Hamiltonian,




. ‘ Hybrid QAOA Classical Heuristics -
C,h Hé’
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. MAXCUT

= Given a oraph G = (V, E ), we want to partition the vertices into
grap . P
two sets V' € V and V\V’, s.t. the number of edges cut is
maximized.

= An edge, {u, v} € E,is cut if u € V' and v € V\V' or vice versa.

= Example: MAXCUT =7?
o (2
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. MAXCUT

= Given a oraph G = (V, E ), we want to partition the vertices into
grap . P
two sets V' € V and V\V’, s.t. the number of edges cut is
maximized.

= An edge, {u, v} € E,is cut if u € V' and v € V\V' or vice versa.

= Example: MAXCUT =7?
1 & 12

!



_|MAXCUT Facts
= Decision problem related to MAXCUT 1s NP-complete. [1]

= MAXCUT 1s APX-complete. It can be approximated in
polynomial time to within a constant factor. [2]

= It is NP-Hard to approximate MAXCUT with an
approximation ratio ' > 16/, ~ 0.9412. [3]

[1] M. R. Gareyand D. S. Johnson (1979), [2] C. Papadimitriou and M. Yannakakis (1991), [3] J.Hastad (2001)



_|Mapping to Qubits




. Local Search Heuristic for MAXCUT

"C(x) = Z(M,V)EE(]‘ B x/,txv)

k=1 100 110

i 000 010 101 111

2 3 001 011



. Local Search Heuristic for MAXCUT

" C(x) = Z(M,V)EE(l — XuXy)
k=1




» | Local Search Heuristic for MAXCUT

" C(x) = Lunes(l —xuxy)
k=1
=x = 000
= C(000) = 0
(1

000

010 101

001




| Local Search Heuristic for MAXCuUT

"C(x) = Z(u,v)EE(l — XuXy) min
k=1
=x =000

= C(100) = €(010) = C(001) = 2 /

1 OOOi




| Local Search Heuristic for MAXCuUT

*"C(x) = Z(u,v)EE(l — XuXy) min
k=1
=x =000




Random Regular Graphs

MaxCut on 3 Regular Graphs with 10 Vertices
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_ | VERTEXCOVER

= Given a graph G = (V, E), we want to find a subset of vertices
V' €V, s.t. V edges are covered.

" An edge, {u, v} € E, is covered if u € V' orv € V.

= Example:



_ | VERTEXCOVER

= Given a graph G = (V, E), we want to find a subset of vertices
V' €V, s.t. V edges are covered.

" An edge, {u, v} € E, is covered if u € V' orv € V',
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= Example: Trivial VC Py
i N\
)/ O L) \
4 \
! 1
I i
! I
1 N
\\ F
3, 4 R
N P
~ ,,



) MINVERTEXCOVER

= Given a graph G = (V, E), we want to find a minimum subset of
vertices V' € V, s.t. V edges {u, v} € E are covered.

= Example: MINVERTEXCOVER = ?



) MINVERTEXCOVER

= Given a graph G = (V, E), we want to find a minimum subset of
vertices V' €V, s.t. V edges {u, v} € E are covered.

= Example: MINVERTEXCOVER = 2
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| MINVERTEXCOVER Facts @

Z

= Decistion problem related to MINVERTEXCOVER 1s NP-complete. [1]

" MINVERTEXCOVER 1s APX-complete. It can be approximated in
polynomial time to within a constant factor. [2]

= MINVERTEXCOVER has a (2 — 0(1/log n))—approximation. [3]

= It 1s NP-Hard to approximate MINVERTEXCOVER with an
approximation ratio I' > 1.3606. [4]

[1] T. H. Cormen e al. (2009). Gareyand D. S. Johnson, [2] C. Papadimitriou and M. Yannakakis (1991),
[3] G. Karakostas (2009) [4] I. Dinur and S. Safra (2005)



. | Mapping to Qubits




. Local Search Heuristic for MINVERTEXCOVER

. C(X) — Z/,LEV Xu
"k =3

0000

0001

0010

0100,

1000

1100

0110
1010

0101

1001

0011

—0111
/1011

L1201

11M0

1111



_|Local Search Heuristic for MINVERTEXCOVER @

" C(x) = Xpev Xy
"k =3




_|Local Search Heuristic for MINVERTEXCOVER

" C(x) = Xpev Xy

sk =3
« x = 0001
= 0001 ¢ F

(1) (2




_|Local Search Heuristic for MINVERTEXCOVER
" C(x) = Xpev Xy

"k =3

=x = 0001
={0000,0011,1001,0101} ¢ F.




_|Local Search Heuristic for MINVERTEXCOVER @
" C(x) = ZMEV Xu

k=3

=x = 0001

={0010,0100,1000} ¢ F

=C(0111) = €(1011) = €(1101) =3




_|Local Search Heuristic for MINVERTEXCOVER
" C(x) = Zpev 2y

"k =3

=x = 0001

={0010,0100} & F

=C(0110) = 2 and C(1111) = 4

(1 (2]




_|Local Search Heuristic for MINVERTEXCOVER @
" C(x) = Xpev Xy

" k=3
= x = 0001
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Random Regular Graphs

MinVertexCover on 3 Regular Graphs with 8 Vertices
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Conclusions

27

" The approximation ratio can be improved by increasing the

local search depth or the QAOA circuit depth.

= Combining QAOA with classical heuristics allows us to get a
good approximation ratio with a shorter circuit depth.

" This allows QAOA to be ran on NISQ devices.



.+ | Future Work

" Look at how our hybrid QAOA with local search performs
on TSP (Traveling Sales Person).

" Analyze QAOA’ performance with other classical heuristics.

= Run our hybrid QAOA on Rigetti.






Thanks!



Random Regular Graphs

MinVertexCover on 3 Regular Graphs with 8 Vertices
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Random Regular Graphs

MaxCut on 3 Regular Graphs with 10 Vertices
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