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1 Motivation

Analogue quantum simulations can teach us about fundamental
quantum physics in regimes that are difficult to simulate classically
such as quantum phase transitions near the critical point.

Can't use fault-tolerant error correction due to continuous
operations.

Calculation length is limited by decoherence time, but error
mitigation can lengthen the decoherence time.
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Logical Cooling

Q1

Environment

aZZ
1 Find ground state of

H = aZ1Z2.
Decoherence from environment

Li, E fAlf)X1, Ali:VA
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Logical Cooling

aZZ

EXX EXX

ieZ \fra-
ja

Optical
Knvironment Pumping

r
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I Evolve under:
H = aZ1Z2 + flZA + E(X1 + X2)XA

• 1st term: Hamiltonian in question
• 2nd term: ancilla energy splitting

• 3rd term: transfer heat from system to

the ancilla

Decoherence:

LI, E [AT9X1, AffiX2,\ToXA)

• Cooling the ancilla:

Li, E 65G,70



4

dp

dt

Master Equation

i[(aZ 1Z 2 i 6 ZA) ) P]

iEKX1+ X2)X A, P]

3PP + 13(X-D9X1 + X2PX2+ XAPXA)

4(6; aitp + pa;10-,- + 0-1-4- P4)

0

Energy splittings

Transfer heat to ancilla

Decoherence

Optical pumping



7 Why Should Logical Cooling Work? 0

Interaction picture:

XSXA (eiatas+ + e-iartas-xeißtait + e-ifltco

eit(a+(3) + + + eit(ame),+,- + e-it(a-fl),-,+ + e-it(a+ [1) -US (IA  uS 1lA  uS ui4  (IS °A
eit2 a as+ crA+ _F crs+ cc _F as- criiF + e -it2 a crs- crii. 

V Dominating term swaps
ancilla and system qubit

Rapidly rotating terms
approximate to nothing
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Motivation
7

QAOA can approximate the solution to NP-Hard problems.

• Can QAOA yield a better approximation ranc than classical
algorithms with equal time complexities?

• QAOA circuits are low in depth. 4 QAOA could be a good NISQ
application.

We know that QAOA even for p= 1 prepares a state that is
classically hard to sample from [1].

[1] E. Farhi and A. W. Harrow (2016)
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Approximation Ratio

r
C(x*) C(x*)

min C(x)
, or F  

max C(x)
x x

If the objective function C(x) is being minimized, then .

If the objective function C(x) is being maximized, then .

n
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The Quantum Approximate
Optimization Algorithm (QAOA)



9 QAOA

• Given C: fO, 1ln IR, find x E f 0, 1ln s.t. C(x) is a minimum.

We can represent C (x) as an objective Hamiltonian,
Hclx) = C(x)lx).

• Let the mixing Hamiltonian be
n

Hit4 =IXj .

j=i



10 QAOA

Let /I (el, 162, ..., f3p) and y = (yi, y2, ... , yp) be free parameters.

Then, the Qp operator is defined as

Qp(13).Y) El e-iflome-tykHc
k=1_
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QAOA is a Variational Algorithm

Quantum Computer
1/4r-

IA *V Qp(fl) )1+)®n
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Goal

Find good ß and y for some number of iterations p such
that the expectation value of the problem Hamiltonian is
close to the minimum.

i.e. The approximation ratio is close to 1.

r
rwyn(fi, y IHc 113) *V )

min C(x)
x

0
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Does The QAOA Work?

From Trotterization, it follows that we obtain the optimal
solution when p 00. But, we want to run on NISQ devices.

Circuit depth cx p should be small.

Historically, it is a pattern to show the QAOA does better on a
problem only for a better classical algorithm to be discovered
[1], [2], [3], and [4].

We look a way to improve QAONs performance

[1] E. Farhi et. al. (2014), [2] Barak et. al. (2015), [3] Ryan-Anderson (2018) Ch. 3, [4] Z. Wang et. al. (2017)
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In general, local search makes small changes to the input solution to
see if the objective can be improved.

Example Classical Heuristic: Local Search

Traveling Sales Person (TSP) example: Find the shortest distance one
can travel to visit each city exactly once.

City 1

d14
d13

City 4

d12

d 3 4

City 2

d 2 3

d2 4

City 3

0
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1 Example Classical Heuristic: Local Search

• In general, local search makes small changes to the input solution to
see if the objective can be improved.

Traveling Sales Person (TSP) example: D= d12 + d23 + d34 + d14

City 1 —d-r2

d13 d2 4

d14
)<

City 4 d 3 4

City 2

d 2 3

City 3

0
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In general, local search makes small changes to the input solution to
see if the objective can be improved.

Example Classical Heuristic: Local Search

Traveling Sales Person (TSP) example: D= d12 + d23 + d34 + d14

City 1

d14- 

C......City 4

d'172—

d13 d2 4

X

4._
d 3 4

City 2

1
d 2 3

City 3
Swap City 3

and City 4.

0
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In general, local search makes small changes to the input solution to
see if the objective can be improved.

Example Classical Heuristic: Local Search

Traveling Sales Person (TSP) example:

City 1 d'172— City 2

I d14 d23

d 

13 

24

City 4 d 3 4 City 3

0
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1 Example Classical Heuristic: Local Search

• In general, local search makes small changes to the input solution to
see if the objective can be improved.

Traveling Sales Person (TSP) example:

City 1

d13

City 4

—d-r2 City 2

d14 d 
/23

d24

d34 City 3

0
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1 Example Classical Heuristic: Local Search

• In general, local search makes small changes to the input solution to
see if the objective can be improved.

Traveling Sales Person (TSP) example:

City 1

d13

City 4

—d-r2

d 3 4

City 2

City 3

0
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1 Example Classical Heuristic: Local Search

• In general, local search makes small changes to the input solution to
see if the objective can be improved.

Traveling Sales Person (TSP) example: D2 d12 + d23 + d34 + d14

City 1

d13

City 4

—dT2

C134

City 2

d24

City 3

0



25 
Example Classical Heuristic: Local Search

• In general, local search makes small changes to the input solution to
see if the objective can be improved.

Traveling Sales Person (TSP) example: If D2 < D1, change solution.

City 1

d13

City 4

d12 City 2

d24

City 3

0
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Local Search on Bit Strings

Local search of depth k searches all bit strings within
hamming distance k of the input string.

Input: x = 010

Search depth: k

lAes11:1-1-6H1 110

00-0 cac 141

001 041
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Why Heuristics Instead of Approximation
Algorithms?

Heuristics

Intuitive

Perform well on practical instances

I Difficult to prove bounds on approximation ratio

Approximation Algorithms

' May perform poorly compared to heuristics

Rigorous bound on worst-case performance

Designed by performance proof Can be less intuitive

0
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Hybrid QAOA Classical Heuristic

• Let h: [0, lrn {0, 1}°' be a classical heuristic.

For unconstrained problems, we choose a heuristic that
improves the output of objective function.

For constrained problems, we choose a heuristic that maps
infeasible states to feasible states.
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Hybrid QAOA Classical Heuristic

Now define our new objective Hamiltonian,

2n 1
ci(h(x))1xXxl.



Hybrid QAOA Classical Heuristics

C, h

Quantum Computer
1/4r-

IA *V Qp ) +)(3n



MAXCUT Example



MAXCUT
18

• Given a graph G (V, E), we want to partition the vertices into
two sets V' c V and V\V', s.t. the number of edges cut is
maximized.

An edge, fu, v} E E, is cut if u E V' and v E V\V' or vice versa.

• Example: MAXCUT = ?

0 -0

\
0



MAXCUT
18

• Given a graph G (V, E), we want to partition the vertices into
two sets V' c V and V\V', s.t. the number of edges cut is
maximized.

An edge, fu, v} E E, is cut if u E V' and v E V\V' or vice versa.

• Example: MAXCUT = ?

0 -0

\
0

Z

0

0



MAXCUT
18

• Given a graph G (V, E), we want to partition the vertices into
two sets V' c V and V\V', s.t. the number of edges cut is
maximized.

An edge, fu, v} E E, is cut if u E V' and v E V\V' or vice versa.

• Example: MAXCUT = ?

0 -0

\
0 I

•

0

0
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MAXCUT Facts

Decision problem related to MAxeur is NP-complete. [1]

N MAXCUT is APX-complete. It can be approximated in
polynomial time to within a constant factor. [2]

1 It is NP-Hard to approximate MAx_CuT with an
approximation ratio F > 16/17 /•ei 0.9412. [3]

0

[1] M. R. Gareyand D. S. Johnson (1979), [2] C. Papadimitriou and M. Yannakakis (1991), [3] J.Hastad (2001)
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Mapping to Qubits

o

0
4og

1
11111

10100)

1234

0 1

n



Local Search Heuristic for MAXCUT
20

' C(x) E(µ,v)EE(1 - XTptiXv)

• k 1

0

e e

100 110

0000 010 101 111

001 041



Local Search Heuristic for MAXCUT



20 Local Search Heuristic for MAXCUT



2. Local Search Heuristic for MAXCUT



2. Local Search Heuristic for MAXCUT
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Random Regular Graphs

1.0

0.6

MaxCut on 3 Regular Graphs with 10 Vertices

•

. . .

• p=0
• p=i

# p=2

p=3

p=4

P=5

p=6

p= 7

P=8

P=9
p=10

0 1 2 3 4 5 6 7 8 9 10
Local Search Depth k



MINVERTEXCOVER Example



VERTEXCOVER
22

Given a graph G (V , E), we want to find a subset of vertices
V' c V , s.t. V edges are covered.

An edge, {u, v} E E , is covered if u E V' or v E V..

Example:

0



VERTEXCOVER
22 0

Given a graph G (V , E), we want to find a subset of vertices
V' c V , s.t. V edges are covered.

An edge, {u, v} E E , is covered if u E V' or v E V..

.........,. .
Example: Trivial VC •• ..# \# •• •• tt II II II /% /• I• •• •• ••

1.01 am mil silli ggi
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MINVERTEXCOVER

• Given a graph G = (V,E), we want to find a minimum subset of
vertices V' c V, s.t. V edges {it, v} E E are covered.

• Example: MINVERTEXCOVER = ?

o 4

© o

0
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MINVERTEXCOVER

• Given a graph G = (V,E), we want to find a minimum subset of
vertices V' c V, s.t. V edges {it, v} E E are covered.

• Example: MINVERTEXCOVER = 2

1
0 4 i•

i

0

0



24
MINVERTEXCOVER Facts 0

m Decision problem related to MINVERTEXCOVER is NP-complete. [1]

• MINVERTEXCOVER is APX-complete. It can be approximated in
polynomial time to within a constant factor. [2]

MINVERTEXCOVER has a (2 0 (1/log n))—approximation. [3]

N It is NP-Hard to approximate MINVFRTFACOVHR with an
approximation ratio F > 1.3606. [4]

[1] T. H. Cormen et. al. (2009). Gareyand D. S. Johnson, [2] C. Papadimitriou and M. Yannakakis (1991),

[3] G. Karakostas (2009) [4] I. Dinur and S. Safra (2005)
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Mapping to Qubits

1
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Local Search Heuristic for MINVERTEXCOVER



Local Search Heuristic for MINVERTEXCOVER



Local Search Heuristic for MINVERTEXCOVER



Local Search Heuristic for MINVERTEXCOVER
25

• c(x) = ElitET7 xpt
• k



Local Search Heuristic for MINVERTEXCOVER
25

C (X) = y, EV xi,
• k = 3

• x = 0001

•03010, 0100, 10001 0 F

•C(0111) = C(1011) = C(1101) = 3

0001

IMO Fr

/rAik

0011



Local Search Heuristic for MINVERTEXCOVER
25

• C CX ) = E la E V Xi/



Local Search Heuristic for MINVERTEXCOVER
25

• c(x) = ElitET7 xpt
• k
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Random Regular Graphs

1.0

0.6

MinVertexCover on 3 Regular Graphs with 8 Vertices

i 8 ;

.p=0 .p=5

0 p=1 • p=6

• p=2 .p=7

.p=3 • p=8
0 p=4

0 1 2 3 4 5
Local Search Depth k

6 7 8

n
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Conclusions
27

The approximation ratio can be improved by increasing the
local search depth or the QAOA circuit depth.

Combining QAOA with classical heuristics allows us to get a
good approximation ratio with a shorter circuit depth.

This allows QAOA to be ran on NISQ devices.

0



28 Future Work

Look at how our hybrid QAOA with local search performs
on TSP (Traveling Sales Person).

Analyze QA0A's performance with other classical heuristics.

Run our hybrid QAOA on Rigetti.

0
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Random Regular Graphs

MinVertexCover on 3 Regular Graphs with 8 Vertices

ii
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0 4

i

4

I

o

I
I

11

I

0

r

4

1

•

o

• •

3 4 5
Local Search Depth k

•

0 P=0 0 p=5
0 p=1 • p=6

0 p=2 .p=7

0 p=3 0 p=8

0 p=4

6 7 8

n
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Random Regular Graphs
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MaxCut on 3 Regular Graphs with 10 Vertices
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