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K\\D Credible Prediction Uncertainty

What theoretical tools support analysis of generalizable machine learning?

• How do we quantify credible prediction uncertainty on abstract architectures?

• Our investigation leads us to understand that rational belief serves a central role in

the consistent measurement of information as quantified change in belief.
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\ b • Suppose we wish to use a suitably trained ML model to identify mislabeled data.

0

0

Problem: Mislabeled Data

Experimental example of states of belief:

Uninformed

ML Predictions y qi (y

Claimed Label

Correct Label

Actual image:

Digit o 2 5 6 7 8 9

go(y) 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

x) 952 0.0 0.045 0.001 0.0 0.001 0.0 0.0 0.0 0.002

► r(YIM - 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0

(yl 'W 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

We would like an information measure to construct:

• Information gained by the prediction q0 q1.
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• Residual information q1 r.
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• Ideally the sum would be a conserved quantity.
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\\DpoProblem.: Mislabeled Data,s entropy:K,

0

• Kullback-Leibler divergence. DKL [q1 (y1x)11q0(y)] dy qi(y1x) log

• Lindley information. 
[q (y1x)143(y)] dy qi(y1x) log(q (ylx))

qi(y1x))
go(y) 1

dy qo (y) log(qo (y))

Original Label Corrected Label
Information Type Prediction Residual Sum Prediction Residual Sum
Kullback-Leibler 3.02 10.44 13.46 3. 12 0.07 3.09

Lindley 3.02 1 3.32 3.02 1 3 2

High KT, residual information gives some useful indication

• KT, does not conserve total information.

• Lindley information is conserved, but doesn't change.

Preview of proposed information measure:

Origina abel C. rected Label
Information Type Prediction Residual Sum Prediction Residual Sum

Proposed -7.11 10.44 3 2 3.25 0.07 3 2
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Reasonable Expectation (Cox, 1946)

The critical problem with the previous approaches is they do not respect the

gravity of the role of rational belief in reasonable expectation.

Ensemble of independent realizations from p (z) : Z

Ensemble mean of f (z) approaches expectation: Thh.

z E

(

[nil

Ep(z) f (z)

What is true? Digits of m example:

p(z)   Ep(z)f(z) -13(z — 7r)

14159265 ... 3 1 59265 ...

0 
What may be known?

r(z   (3.14, 3 15)1-r(z) E )14(z)
148 3 149 41 146,

/ Jed Duersch, Sandia National Labs 1/24/2020 5



What is Rational Belief?
• Cox (1946) uses binary logic to derive laws of probability as an extended logic.

Logic:

(2) avb=bva,

a • a= a, (3) a v a =a,

(I)

(2')

(3')

a- (b,c) (a•b)•c--=a b•c, (4)

av(bvc)=(avb)vc=.avbve, (4')

--(a•b)--- —a v —b, (5)

vb)= —a. (5i)

a • (a. vb) =a, (6) a v (a-b) =a.. (6')

Extended logic:
• Probability is nonnegative.

• Impossibility has probability zero.

• Probability must be normalized to a constant.

• Bayes' theorem conditions belief on evidence.

p(bla)p(a) 
p(a b)

p(b)

Dutch Book: An irrational agent accepts a table of bets that guarantee the agent will lose money.

Heads: 2:1 bet $2
Coin flip example:

0 Tails: 1:1 bet $3
Total bet $5. Guaranteed win $6.

• Rational belief requires a bet sequence to condition on previous results with Bayes' theorem (Skyrms, 1987).
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Information as Change in Belief
\° Postulates of information as a rational measure of change in belief: 

sC(1. Information is an expectation over rational belief r(z) that measures 

the change in belief from ch(z) to updated belief ch(z)

(z) q (z) 1 q0(z) ]= J dz r(z) f (z), qi(z), qo (z))
►

o

unspecified kernel

2. Information associated with independent processes is additive
If qo (z , w) = qo (z)qo (w) , qi(z, w) = qi(z)qi (0, and r(z, w) = r(z)r(w) then

lir(z,w) [ (z, go (z, w) (z) l q0(z)] I )[ qi (W) II go( _

P 3. If belief does not change then information is zero

P 
lir (,)[ go(z) )Ilq®C glow

0 4. Information gained from any proper hypothetical belief state to rational(

belief is nonnegative
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( ) [ (Z) 11 q0(z)] > O.
1/24/2020 7



0

( Principal Result
Theorem 1. Information satisfying these postulates is computed as

[q ( )11 go(z)] dz r(z) log
qi(z))

qo (z)

for some a > 0 corresponding to a choice of information units.

Information measures the change in belief from an initial hypothesis go(z)

to updated belief hypothesis ch(z) in the view of rational belief r (z) .

/A) We recover entropy, cross-entropy, KL divergence, Lindleyinformation, mutual information, and other information measures
O within this theory.
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\ I foWe may ratio e dotricconstruct.  pseudosmetrics thatemeassure distance between statesK()
of belief q 0 (z) and q 1 (z) with the view of expectation r (z) ,

by taking weighted-LP norms of information density

P
( 

kh. (z)11q0(z)] — (f dz r(z) log (qi(z)
.q10(z)

P) 1/P
for any p > 1.

0

0 These pseudometrics are weak discriminator functions; they identify a

0

weakened form of equivalence in belief states subject to rational belief.
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Ko\\D Selected Corollaries
Corollary 1 shows how we can measure information over arbitrary

correlations between multiple variables in each state of belief as

i[r(z,,z2) [q (zi,z2)i qo (zi, z2) (z (z

( Z2

)1 qo
[q

(z

(Z2 )11q Z2 Zi)]

We show how this and other corollaries help us derive information bounds

0 such as Corollary 14, Monotonically decreasing local inference

0 information:

where
0

lip(021 aA
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P(92)] l[p(t9 P( IY)11130

Note that using training data to infer model belief, which

then yields predictions y 1-> 9 1-> )11 is a locally
conditioned sequence.
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Proper Utility (Bernardo, 1981)\K

o

• Bernardo considers utility functions (objectives for optimization) expressible as

expectations over rational belief.

(z) q(z) = J dz r(z)1 q(z))

• For a utility function to be proper, rational belief must be the unique optimizer.

(z) = r(z) = arg m [ (z), q(z)1
q(z)

• Corollaries 10 and 11, information is a proper utility function

Jed Duersch, Sandia National Labs
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Ki\>DInformation in Training Labels

A second additivity property follows; Corollary 2 information gained over

a sequence of belief updates is additive within the same view:

0

)[q2(z) I go(z)]

Predictive label information:

Residual label information:

Total label information:

Jed Duersch, Sandia National Labs

)[q2(z) I qi(z)1

(y10

qi (Y1

(

x)

)[qi(z) go(

11 qo(y)]

I qi(Ylx)]

go(y)

z)
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Detecting Mislabeled Cases

\
We compute prediction information in a trained neural network and examine prediction

information on previously unseen cases. Half are randomly mislabeled.

) 
Label 5  Label 9 15 Label 3

o
o

o
o_ 0.6

0 4

2 0 2

0

MNIST Prediction Information Density

Information histogram for

original labels J 
-45 -40 -35 -30 -25 -20

0
-45 -40 -35 -30 -25 -20 -15 -10

Prediction information (bits)

-15 -10 -5 0 5

Information histogram for

mislabeled cases

dMh 

Jed Duersch, Sandia National Labs

-5 0 5

9, 

Pred Pred 5, -11.7 bits Pred 0, -11.2 bits Pred 6, -9.4 bits

Label 8 Label 8 Label 7

...._ Pred 7, 3.3 bits Pred 8, 3.3 bits Pred 8, 3.3 bits Pred 8, 3.3 bits Pred 7, 3.3 bits

Pred 7, -7.7 bits

Label 7

Pred 7, 3.3 bits

Label 4

Pred 7, -68.4 bits

Label 1

Label 7

Pred 6, -67.8 bits

Label 6

Label 7

Pred 6, -66.2 bits

Label 6

Label 4

Pred 7, -66.1 bits

Label 9

Label 1

Pred 0, -65.2 bits

Label 9

2.7 bits Pred 6, 2.8 bits Pred 6, 2.9 bits Pred 9, 3.0 bits Pred 9, 3.0 bits

Label 4

Pred 7, -64.0 bits

Label 8

8:1(1

ril7•111

Pred 8, 3.0 bits
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Poorly Trained Model

In this experiment, the L model was trained with some incorrect labels.

• Cross-validation optimum has learned to memorize incorrect labels.

• Again, neither M. nor Lindley constructions of prediction information

give any indication of the poor performance of this model.

O

O

Digit 0 1 2 3 4 5 6 7 8 9

qo (y) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
qi(yjx) 0.03 0.00(6.61 0.04 0.00 0.00 0.02 0.00 0.30 0.00
(ylM 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(y10 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

/F(/)
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Original Labels Corrected Labels
Information pe Prediction Residual Sum Prediction Residual Sum
Kullback-Leibler 1.87 0.72 2.59 1.87 4.78 6.65

Lindley 1.87 1.45 3.32 1.87 1.45 3.32
Proposed 2.60 0.72 3.32 C1.46) 4.78 3.32



HLearning and Memorization

\ The information in each training example has a predicted component

) and a residual component.
) 3.32 bits

1
o

//'
1

7

,;

. 
(ao (y1)) ► a (yilxi, (50  

>

(ao (Y2)) 

(qo (Y3)) 

(qo (Y4)

(y21x2, e

*@)73 lx3, 0)
1— —>

abiztlx4,e3) 

->

(ao (ys)  ►Efi. (Y5 lx5, 0

 .
(/''(3/1n)) 7

r (y2 n))

Pattern learning we

alter the model and
6 multiple cases benefit.

r(y3 1s3)) 5

(/''(37,4154)) 7

rbisis5)) 8

Memorization we

alter the model and
only a single case
benefits.
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Memorization Reversal
We can demonstrate memorization reversal on partially mislabeled MNIST data from the cross-validation

optimum. The result surpasses the best model obtainable from standard techniques.

Cov(g) [diag 2 UT = max(0, 1 au

0

0

1

2

o

1

0

Initial Training and Cross-Validation

•

0

• Training

• Validation

0 Test

X Optimum

•

o
.

®0
000o®ciiiiniT®coizi®ci.

/  

50 
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Epochs
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o

0.4

Prototype Memorization Reversal
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0

1.5

o 1

20 0.5

• Training

• Validation

• Test
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20

Standard Training Memorization

40 60

Epochs

80 100 120

0.9

0.8
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cross-validation optimum

con tin tied 
t standraining 

ard

#NOV10.0044 e, A

0 20 40 60
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o

o

H Information Optimality
inferred information optimum

) 
Posterior-Predictive Density 2 Information-Optimal Predictive Density

Inference on under-expressive model families , 8 1 8

) can yield poor predictions. 1 6 1 6

1 4 1 4

1 2

We can improve prediction uncertainty

credibility by optimizing information over

distributions of models from the family.

KL residual information

is not suitable for

optimization in this case

because it is infinite.
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Future Work
• Efficiently controlling model complexity during model training.

) • Evaluating and controlling the influence of individual data points
\ 

on the trained model and resulting predictions.

• Robust anomaly detection.

• Understanding the influence of architectural design on predictability.
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