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1 ®* What theoretical tools support analysis of generalizable machine learning? ﬁ

* How do we quantify credible prediction uncertainty on abstract architectures?

® Our investigation leads us to understand that rational belief serves a central role in

the consistent measurement of information as quantified change in belief.
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Problem: Mislabeled Data

Experimental example of states of belief:

® Suppose we wish to use a suitably trained MLL model to identify mislabeled data.
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Claimed Label /* T(yi?f)
/¢ r(ylg)
Correct Label

Actual image:

Digit | 0 | 1 | 2 3 | 4] 5 [ 6] 78] 9
\+ o) 01 J01[01 [01 [01]01 Jo1[01]01][01
18 N1 (y[=) [ 0.952 [ 0.0 [ 0.045 | 0.001 | 0.0 | 0.001 | 0.0 | 0.0 | 0.0 | 0.002

00 (0000 |10 [00[00 |00]00][00]00
1.0 |00/00 |00 [00]00 [00[00]00]O0.0
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We would like an information measure to construct:
* Information gained by the prediction gy — q;.
® Residual information g = 7.

® Ideally the sum would be a conserved quantity.
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\Problem: Mislabeled Data

Potential information measures based on Shannon’s entropy:

* Kullback-Leibler divergence. Dxuq1(y|z)||lgo(y)] = / dy q1(y|x) ][()g(

* Lindley information.

Drg1(ylz)llq0(y)] = /

dy q1(y

z) log(q1(y|z)) —

¢ (ylz)
q0(y) )

dy qo(y) log(qo(y))

Original Label

Corrected Label

Information Type | Prediction | Residual | Sum | Prediction | Residual | Sum
Kullback-Leibler 3.02 (10.44) | 13.46 3.02 ( 0.07) | 3.09
Lindley 3.02 030 3.32 3.02 030 3.32
High KL residual information gives some useful indication
* KL does not conserve total information.
* Lindley information is conserved, but doesn’t change.
Preview of proposed information measure:
Original Label Corrected Label
Information Type | Prediction | Residual | Sum | Prediction | Residual | Sum
Proposed -7.11 10.44 3.32 3.25 0.07 3.32
ed Duersch, Sandia National Labs 1/24/2020
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The critical problem with the previous approaches is they do not respect the

\!\Reasonable Expectation (Cox, 19406) @?'
A

gravity of the role of rational belief in reasonable expectation.

O Ensemble of independent realizations from p(z): / = { 2y [ 7 € [n]}
7

.1 ‘
Ensemble mean of f(z) approaches expectation: lim — Z f(z) = Ep(z)f(z).

n—o00 1, 4
=1

OoO—

What is true? Digits of ™ example:

(z) — E 2)J 2 p(g)!5(z—ﬂ')
p(2) = Ep(z) f(2) H:{3.14159265.....,...,3.14159265.....}j

O

\ What may be known? |
T(Z) Y ]Er(z)f(Z) 7;(2) — M(3.14, 3.15)
[T = {3.148, 3.149, 3.141, 3.146, ...}
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* Cox (1946) uses binary logic to derive laws of probability as an extended logic.

Logic:
~~a=a, (1)
a-b=b-a, (2) avb=bva, (29
a-a=a, (3) ava=a, (3"
a-(b-c)=(a-b)-c=a b-c, (4)
av(bvc)=(avb)vc=avbve, (4’)
~(a-b)=~av ~Db, (5)
~(avb)=~a-~b, (5%)
a-(avb)=a, (6) av(a-b)=a. (6"

\What 1s Rational Belief? @?"

Extended logic:

® Probability is nonnegative.
® Impossibility has probability zero.
® Probability must be normalized to a constant.

® Bayes’ theorem conditions belief on evidence.

(alb) — p(bla)p(a)
p(alb) "0

Dutch Book: An irrational agent accepts a table of bets that guarantee the agent will lose money. j

Heads: 2:1 bet $2

Tails: 1:1 bet $3
/} * Rational belief requires a bet sequence to condition on previous results with Bayes’ theorem (Skyrms, 1987).
J

Coin flip example:
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:|> Total bet $5. Guaranteed win $6.
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Postulates of information as a rational measure of change in belief:

1. Information is an expectation over rational belief r(2z) that measures
the change in belief from qo(z) to updated belief q4(2)

\\ Information as Change in Beliet @?'
N

O
Lo (@) a0(2)] = [ der(2)fr(z), (), a0(2)
unspecified kernel
2. Information associated with independent processes is additive
l It go(z,w) = qo(2)g(w), @ (zw)=aq(z)q(w), and r(z,w)=r(z)r(w) then
R L (2 ) [ 41 (2,0) | 90 (2, w) | = Lr(2)[ 1(2) [| g0 (2) | 4 Lru [ @1 (w) || go(w) |

/] 3. If belief does not change then information is zero I 20(2) || g0(2)] = 0. j

4. Information gained from any proper hypothetical belief state to rational

/) belief is nonnegative Er(z)[T(Z) “ 90 (Z)] 2 0.
J
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Theorem 1. Information satisfying these postulates is computed as

4 )

. Lol lan(2)] = a f der(atog( 277
. | Y

for some a > 0 corresponding to a choice of information units.

K\ Principal Result =
A\

l Information measures the change in belief from an initial hypothesis q¢(2)
to updated belief hypothesis q1(Z) in the view of rational belief 1(z).

information, mutual information, and other information measures
within this theory.

/ Jed Duersch, Sandia National Labs 1/24/2020 8
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We recover entropy, cross-entropy, KL divergence, Lindley j



We may construct pseudometrics that measure distance between states
of belief qy(z) and q1(z) with the view of expectation 17(Z2),

\l\ Information Pseudometrics ?"
\

o by taking weighted-LF norms of information density

z
log ( ¢1(2) )
q0(2)
® These pseudometrics are weak discriminator functions; they identify a
/) weakened form of equivalence in belief states subject to rational belief. j

U @) = ( [ )

p\ 1/p
) forany p > 1.

j>/jjed Duersch, Sandia National Labs 1/24/2020 9 ﬁ)
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l\> Selected Corollaries @?—

Corollary 1 shows how we can measure information over arbitrary
1 correlations between multiple variables in each state of belief as

T(Zl,?jz) (h (Z], zz)||q@(z1, ZQ)] — HT(ZIL) [Q1 (Zl)lﬂ(ﬁ)(zl)]
r(zl)M?"(zz|Zl) [QI ('ZQ ZI)HQO(Zz“Z]L)] .

l We show how this and other corollaries help us derive information bounds
such as Corollary 14, Monotonically decreasing local inference
O information:

/z o 6,19) P(O2]9)[[p(02)] < Ly, |g) [P(01]9)[[p(01)] - j

where @ Note that using training data to infer model belief, which

then yields predictions y = 8 = Yy’ is a locally

conditioned sequence.
/D Jed Duersch, Sandia National Labs 1/24/2020 10 ?
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Proper Utility (Bernardo, 1981) @?

® Bernardo considers utility functions (objectives for optimization) expressible as

expectations over rational belief.

Ur(2), q()) = / dzr(2)f (r(2),4(2)) .

® For a utility function to be proper, rational belief must be the unique optimizer.

0" (2) = r(z) = argmax U[r(2), 4(2)

® Corollaries 10 and 11, information is a proper utility function j

Irzy[9(2) [l qo(2) ]




Informatlon in Training Labels

A second additivity property follows; Corollary 2 — information gained over
1 a sequence of belief updates is additive within the same view:

L) 92(2) [| 90(2) | = Lr ()| 2(2) [| 01 (2) ] + Lr(2)[ 41 (2) || @0 (2) | -

l Predictive label information: Ly [ (y]2) || 20(y) ] -

Q Residual label information:

Ly [ (W19) || g1 (y|z) ] -

\ /] Total label information: Ly [ 7 (W]9) [ 20(y) ] -

j>/3]ed Duersch, Sandia National Labs 1/24/2020 12
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K\Detecting Mislabeled Cases @?‘
I\

We compute prediction information in a trained neural network and examine prediction
information on previously unseen cases. Halt are randomly mislabeled.

O

MNIST Prediction Information Density
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\\ Poorly Trained Model
A

give any indication of the poor performance of this model.

In this experiment, the ML model was trained with some incorrect labels.
® Cross-validation optimum has learned to memorize incorrect labels.

® Again, neither KL nor Lindley constructions of prediction information

Digit 0 1 2 3 4 53 6 7 8 9
q0(vy) 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10
q1(ylz) || 0.03 | 0.00 (-10..6]) 0.04 | 0.00 | 0.00 | 0.02 | 0.00 | 0.30 | 0.00
r(y|y) 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
r(y|9) 0.00 | 0.00 | 0.00 | 1.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
Original Labels Corrected Labels
Information Type | Prediction | Residual | Sum | Prediction | Residual | Sum
Kullback-Leibler 1.87 0.72 2.59 1.87 4.78 6.65
Lindley 1.87 1.45 3.92 1.87 1.45 3.32
Proposed 2.60 0.72 3.32 (-1.46 ) 4.78 3.32
/ Jed Duersch, Sandia National Labs - 1/24/2020 14
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The information in each training example has a predicted component g

\\ Learning and Memorization
N

and a residual component.

y

e
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Pattern learning — we
alter the model and
multiple cases benefit.

Memorization — we
alter the model and

only a single case j
benefits.
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We can demonstrate memorization reversal on partially mislabeled MNIST data from the cross-validation
optimum. The result surpasses the best model obtainable from standard techniques.

K\Memoﬁzation Reversal @?'
N\

Cov(g) = U [diago] U"  §=Umax(0,1 —a0)® U'g
O o >
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\Information Optimality

Inference on under-expressive model families
can yield poor predictions.

We can improve prediction uncertainty
credibility by optimizing information over
distributions of models from the family.

Training Observations

KL residual information -

is not suitable for -
optimization in this case |
because it is infinite. Foechi o
» sample data |
0 02 044Featureo.e 08 1
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1st-order basis

2nd_grder basis
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\> Future Work

Sandia
Iooties
]X) * Efficiently controlling model complexity during model training. ﬁ

® Evaluating and controlling the influence of individual data points

F on the trained model and resulting predictions.

®* Robust anomaly detection.

l ® Understanding the influence of architectural design on predictability.
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