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1 Introduction

A variety of recent work has expanded capabilities in LAME with respect to anisotropic
and modular plasticity models (e.g. [1, 2, 3]). In this context, modular refers to a flexible
framework and consistent implementation such that different hardening functional forms
may all be incorporated into the same material model implementation rather than needing a
new model for each description. However, such work has been focused on three-dimensional
formulations and limited attention has been paid to structural formulations; .e. for use with
beam or shell elements. As a first step to bringing some of these recent advances towards
structural elements, modular isotropic hardening capabilities will be added to the J5, von
Mises plane-stress plasticity formulation of Simo and Taylor [4].

To accomplish this effort, in Section 2 and 3 the theory and numerical formulation of the
model are given. Specific functional forms of the hardening and example syntax to use them
are then presented in Section 4 while verification exercises are documented in Section 5.
Finally, some concluding thoughts about future work are given in Section 6.

2 Theory

The “Modular Plane Stress Plasticity” (MPSP) model is essentially the .J; plane-stress model
of Simo and Taylor [4] (also documented in Simo and Hughes [5]) with modified forms for
the hardening. Specifically, kinematic hardening is neglected and the isotropic hardening is
expanded to include rate-dependence and other recent advances in modularity.

In general, a .J5, von Mises effective stress measure, ¢, may be written as,
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¢? = §5ij5ij7 ; Sij = Oij — gakkéija (1)
in s;; and o;; are the deviatoric and Cauchy stresses, respectively. Introducing the plane-
stress assumption, 013 = 093 = 033 = 0, the stress tensor has only three non-zero components.
To go from three-dimensional descriptions to the plane-stress space, Simo and Taylor [4]
introduce a projection matrix, P,

B 1 2 =10
g = 3 -1 2 0|, (2)
0 0 3
such that,
s=Po, (3)
with,
o11 S11
g = | 09 ) S= 1 S22 | - (4)
012 $12

Note, in the preceding relations, and those that follow, matrix notation is used to directly
represent variables in the projected plane-stress space to reinforce that the matrices are not
tensors. A single underline () is for arrays while a variable underlined twice (X) is a matrix.

In projected plane-stress space, the Jo, von Mises effective stress measure!, ¢, may be written,

¢*=0"Po, (5)

where a superscipt T' denotes transpose and,

I
Il

0
2 0. (6)
0 0 6

!Note, with the projected plane-stress effective stress measure (Eqn. 5), a slight difference may be noted ver-
sus the typical, three-dimensional form (Eqn. 1) associated with with the leading constant. This arises from
subtle differences in notation between the plane-stress references [4, 5] and the typical three-dimensional
forms. The difference is accounted for in the forthcoming introduction of the yield surface radius, R, and
the resulting yield functions are equivalent.
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The yield function is then given as,

f = &2 (Uij) - R2 (§p7 ép) ) (7)

with R being the yield surface radius in the deviatoric m-plane and encapsulates the effects
of isotropic hardening and &P and &P are the equivalent plastic strain (isotropic hardening
variable) and its rate. Note, models like Johnson-Cook [6, 7] also include temperature
dependencies on the isotropic hardening. While such effects may be incorporated at a later
date, for the moment they are neglected. The radius may be written in terms of the current

yield stress, o, as,
2_ -
R= \/;a (&%, &%) . (8)

Reflecting the intended “modular” nature of the model, descriptions for the current yield
stress range from rate-independent, linear hardening to the most general “decoupled flow
stress” form that may be written,

o (eP,eP) = 02% (e°) + K (&°) 63, (eP), 9)
in which 02 and K are the initial yield stress and isotropic hardening, respectively, while o,
and &, are rate-dependent multipliers for the yield and hardening. Note, rate-independence
corresponds to constant values for the multipliers of one. While the various options and
their corresponding syntax for &, K, &,, and 6, will be discussed later, a large variety of
functional dependencies may be incorporated into such a hardening expression.

3 Implementation

To numerically integrate the MPSP model presented in Section 2, a hypoelastic approach
leveraging an elastic-predictor/inelastic-corrector scheme is used. Note, with the exception
of treatment of the modular hardening and utilization of a line-search step, the following
scheme is largely that of Simo and Taylor [4] and Simo and Hughes [5]. As a first step, given
a total strain increment de = £At, with At = t,,1 — t,, where ¢, is the current time and
t, is the time at the previous (known) solution step, a trial stress may be calculated as,

(10)

with,
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being the plane-stress elastic stiffness matrix while £ and v are the elastic modulus and
Poisson’s ratio, respectively. A trial yield function value assuming purely elastic deformation
may then be evaluated as,

fr=9¢"(c") — R*(£5,0). (12)
If f* < 0, the solution is elastic and the variables may be updated with ¢, = ¢ and
g1 = &b In the case of plastic deformation, f™ > 0 an inelastic correction must be
performed returning the trial stress state to an admissible state. For .J, plasticity, this is
commonly referred to as the “radial return” algorithm which requires the solution of only
one non-linear equation. In the current plane-stress case, the same “radial return” approach
cannot be used. However, the inelastic correction problem may still be reduced to a single
non-linear equation to be solved. Thus, the development of an implementation for the
current model requires two steps: (i) reduction/identification to a single equation and (i)
a numerical approach to solving it.

To address the first point, it is noted that the plastic strain tensor and equivalent plastic
strain may be integrated (in a backward Euler fashion) as,

Eny1 = &n + AL T, (13)

9 _
Bty = 5_24‘)\\/;(?%1, (14)

in which X is the consistency multiplier. It is emphasized that because Eqn. 7 is second order
the consistency multiplier and equivalent plastic strain increment are different quantities.
Noting that the updated stress, o,,,,, may be written,

Opt1 = Q (§n+1 - §fz+1) , (15)

which, by using Eqns. 10 and 13 and rearranging results in,

L+XCP|gpy =2, (16)

in which [ is the identity matrix.
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As discussed more completely in Simo and Taylor [4], the plane-stress projection, P, and
elasticity matrix, g , share characteristic subspaces, @, enabling them to be decomposed as,

P=QAQ", ; C=QAQ", (17)
with,
1 1 0 100 £ 0 0
1 3 1—v
Qr=—1]-11 0 - AP=10 10| ; A° 0 2u 0 (18)
= \/§ = =
0 0 2 00 2 0 0 u
Introducing a transformed stress, 7, such that,
n=Q"c (19)
allows Eqn. 16 to be rewritten,
CaP — tr
[L+MTA =0 (20)

It can be noted that from previous relations, the premultiplying matrix of Eqn. 20 is diagonal
allowing for easy and analytic inversion.

Importantly, by inverting the matrix in Eqn. 20 the updated tranformed stress, n may be

n+1’
written in terms of the trial value (a known value) and a single unknown — the consistency
multiplier. Thus, by inverting Eqn. 19, substituting into Eqn. 5, and using Eqn. 20, the

effective stress ¢,,.1 may be written as a function of \ alone as,

- L (npt)? (n%)? + 2 (nt)?
= . 21
» () [1+A EV)]Q [14+ A2u]” (21)

Furthermore, from Eqn. 14 it is observed that the updated value of the equivalent plastic
strain, &2, is solely a function of \ such that,

2 _
&=t A\/;cbnﬂ (). (22)

and the equivalent plastic strain rate, £°, may be approximated as,

n+1
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“p gfl—‘rl - gp
£ ()\) ~ T = At ¢n+1 (23)

Thus, performing the return map involves enforcing the consistency equation at the updated
time step and may be written in terms of a single unknown as,

fart (V) =G0 (\) = B*(A) = 0. (24)

To numerically solve Eqn. 24 a line-search augmented Newton-Raphson scheme is used. Re-
cent work with non-quadratic and/or anisotropic plasticity models [1, 2] has demonstrated
improved robustness by adopting such an approach over a traditional Newton-Raphson
scheme. To this end, Eqn. 24 is recast in residual form as,

rf = fon 0) =0, (25)
and linearized such that,
daf
T,J:H —rl + ) — A, (26)

where “k” is used to denote non-linear correction iteration and A\ is the increment in the
consistency multiplier. Enforcing that r,{ +1 = 0 leads to,

—rf
X
The derivative may be simply evaluated as,
df d d
I gy (e, 29
with
1/ tr)2 tr\2 tr\2
i (&2) — 9 E 5 (1) 9 (73)” + 2 (n13) . (29)

7
3(1—v 3 1+ x2u)?

Given the modular and flexible nature of the isotropic hardening specification, the form of
the derivative of the radius can vary from quite simple to more complex. With the general
form given in Eqn. 9, the derivative may be written,
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in which,

oer 2 96
- = \[<¢+Am) (31)

o2 1 |00
oL (¢+ ) (32)

based on the expressions given in Eqns. 22 and 23, respectively.

The preceding relations all pertain to using the Newton-Raphson method to identify a “step-
direction” in terms of the solution variable, A\. A line-search augmentation pertains to
introducing and finding a “step-size”, 0 < o < 1, that sufficiently minimizes a merit function
thereby avoiding bad increments and improving robustness. Details on general line-search
methods may be found in [8, 9] and their application to plasticity modeling in Pérez-Foguet
and Armero [10] or Scherzinger [1]. Note, a = 1 corresponds to a traditional Newton-
Raphson scheme. For the current problem, a scaled merit function, 4, is introduced such
that,

T‘f ?
wm%( (A)> 7 (33)

(09)”

with (02)2 introduced as a scaling term (see [2] for a discussion on the impact of scaling).
If the full Newton-Raphson step (a = 1) sufficiently reduces the merit function, that step
is used to increment the state variable. Otherwise, a quadratic approximation to the merit
function is constructed and used to find a updated value of o to enforce that the merit
function is always decreasing thereby ensuring convergence.

4 Hardening Specification and Examples

The previous sections laid out the theory and numerical implementation of the MPSP model.
However, the specific forms of the isotropic hardening functions were left undefined given
the multiple possibilities with the current modular framework. In this section, the different
functional representations are described and examples of usage and corresponding syntax
are given. Specifically, Section 4.1 describes different rate-independent options while rate-
dependent formulations are given in Section 4.2.
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To use the MODULAR_PLANE_STRESS PLASTICITY model, the general input syntax is given
below. Reflecting the modular nature, there are nine different hardening models that may
be selected. In an attempt to clearly and simply present the required syntax for each of the
models, the requisite input of each model will be defined in the following sections along with
definitions of the corresponding parameters.

BEGIN PARAMETERS FOR MODEL MODULAR_PLANE_STRESS_PLASTICITY

YOUNGS MODULUS = F
POISSONS RATIO = v
YIELD STRESS = oY

Y

HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED

| CUBIC_HERMITE_SPLINE

| JOHNSON_COOK | POWER_LAW_BREAKDOWN

| FLOW_STRESS | DECOUPLED_FLOW_STRESS

[ ]

[

hardening model specification
[ ]
[ ]

END PARAMETERS FOR MODEL MODULAR_PLANE_STRESS PLASTICITY

4.1 Rate-Independent

Rate-independent isotropic hardening takes the simplest form and may generally be written,

7 () =0y + K (&). (34)

Representations of this form have been long studied and a number of specific forms exist.
Currently, three of the more common analytic expressions — linear (K'™), power-law (KP!),
and Voce (KY°°°) — have been implemented and their expressions are given in Eqns. 35-37.
Note, Voce is also sometimes referred to as “saturation” given the decaying exponential
nature.

K™ = H'&P, (35)
KP = AP ()™, (36)
K¥® = A(1 —exp(—n"e?)), (37)
g = ") =0, + K" (). (38)

Additionally, Eqn. 38 indicates capabilities exist to use user-defined expressions (either in
tabular or analytical form) to define isotropic hardening. However, Eqn. 38 also highlights
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that some care must be taken in defining the corresponding function as different formu-
lations may have slightly different interpretations. Specifically, in the rate-independent
USER _DEFINED model, 6" (2P) must be defined which includes both the constant initial yield
stress and isotropic hardening. As such, 6" (0) = 02. In rate-dependent models, however,
either 64 (2P) or K (P) may be requested depending on the formulation. As indicated by
Eqn. 38, the key difference between the two functions is that K1 (£P) incorporates isotropic
hardening only. Therefore, K'4(0) = 0. To be clear, in what follows the two different
functions will be used to explicitly indicate which should be used. Furthermore, 5% (&)
is referred to as the HARDENING FUNCTION while K¢ (¢P) is denoted ISOTROPIC HARDENING
FUNCTION. These functions are defined outside the material model definition block.

Example syntax for the different rate-independent models is given below.

HARDENING MODEL = LINEAR
HARDENING MODULUS = H’

HARDENING MODEL = POWER_LAW
HARDENING CONSTANT= AP!
HARDENING EXPONENT= nP!

HARDENING MODEL = VOCE
HARDENING MODULUS= A"
EXPONENTIAL COEFFICIENT= nV

HARDENING MODEL = USER_DEFINED
HARDENING FUNCTION= 5“¢ (2P)

4.2 Rate-Dependence

To incorporate rate-dependence, two different functional forms are considered. The first is
the classic Johnson-Cook [6, 7] multiplier, ¢, while the second is referred to as “power-
law breakdown”, 6P'®. This latter form has been used with various models, notably that of
Brown and Bammann [11], and detailed discussion of the motivation is left to that work.
Expressions for these two models are given in Eqns. 39 and 40, respectively, in which C, &, g,
and m are fitting coefficients.

. gpP
o = 14cm(2), (39)

€o

~plb : £P Hm
P = 1+ asinh 7 : (40)

plb

As indicated by their expressions, 67 and 6P are referred to as rate multipliers as they take
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a value on the order of 1 and scale the specified isotropic hardening function. In both cases,
the rate-independent limit is one.

Hardening models for both JOHNSON_COOK and POWER_LAW_BREAKDOWN exist and may be spec-
ified as,

G (&P, &P) = 6" (7) 61 (7) (41)

in which "¢ is a user-defined hardening function. Example syntax for these models is given
below.

HARDENING MODEL = JOHNSON_COOK
HARDENING FUNCTION = 54 (&P)
RATE CONSTANT= C
REFERENCE RATE = &,

HARDENING MODEL = POWER_LAW BREAKDQOWN
HARDENING FUNCTION = "¢ (&P)
RATE COEFFICIENT= g
RATE EXPONENT = n

Flow Stress

Flow_Stress is the generic name of a hardening model that directly leverages the modular
capabilities by assuming the form,

7 (e°,e%) = (o) + K (%)) 6 (7), (42)

in which K and ¢ are a user-specified isotropic hardening and rate multiplier functions. The
previously discussed JOHNSON_COOK and POWER_LAW BREAKDOWN hardening models have very
similar forms; the difference is the ability to analytically specify the isotropic hardening. As
a first step to using this model, the forms of the isotropic hardening and rate multiplier must
be specified via the below syntax.

HARDENING MODEL = FLOW_STRESS
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
RATE_INDEPENDENT (RATE_INDEPENDENT)

Note, while the isotropic hardening model must be specified, the rate multiplier does not
need to be specified. If the rate multiplier is left undefined, the response is taken to be rate
independent and no further definition is needed. RATE_INDEPENDENT is also an acceptable
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input enforcing that the rate multiplier takes a constant value of one. No additional in-
put is needed for that option. To use the LINEAR, POWER_LAW, or VOCE isotropic hardening
functions the corresponding parameters discussed in Section 4.1 must be defined. For the
USER_DEFINED, however, an ISOTROPIC HARDENING FUNCTION is defined in lieu of HARDENING
FUNCTION. This distinction is made to reinforce that KU (&P) needs to be provided instead
of g1 (&P).

ISOTROPIC HARDENING FUNCTION = USER_DEFINED
ISOTROPIC HARDENING FUNCTION = K¢ (&P)

With respect to the rate multipliers, while the names are the same as the hardening models
their input syntax is slightly different. Namely, a hardening function does not need to be
specified for their use. For clarity, the required parameters are repeated below.

RATE MULTIPLIER = JOHNSON_COCK
RATE CONSTANT= C'
REFERENCE RATE = &

RATE MULTIPLIER = POWER_LAW_BREAKDOWN
RATE COEFFICIENT= g
RATE EXPONENT = n

Decoupled Flow Stress

The DECOUPLED_FLOW_STRESS model essentially builds on the developments of the FLOW_STRESS
capability to fully leverage the modular capabilities by allowing rate multipliers to be sep-
arately defined for the yield stress and isotropic hardening. The functional form was given
previously in Eqn. 9. To use the DECOUPLED _FLOW_STRESS model the different functional
forms must be specified. As with the FLOW_STRESS model, only the isotropic hardening
model must be specified. If either (or both) of the rate multipliers are undefined, it is taken
to be rate independent.

HARDENING MODEL = DECOUPLED_FLOW_STRESS
ISOTROPIC HARDENING MODEL = LINEAR | POWER_LAW | VOCE | USER_DEFINED
YIELD RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
RATE_INDEPENDENT (RATE_INDEPENDENT)
HARDENING RATE MULTIPLIER = JOHNSON_COOK | POWER_LAW_BREAKDOWN |
RATE_INDEPENDENT (RATE_INDEPENDENT)

Specification of the ISOTROPIC HARDENING MODEL proceeds as discussed in the FLOW_STRESS
section. Again, to be clear, if the USER_DEFINED option is used the required function to be
input is K" (£P) and not 6 (2P). For the rate dependence, each multiplier must be defined
as with the FLOW_STRESS model. Note, the key difference in this model is that a preceding
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YIELD or HARDENING must be included to differentiate if the coefficient is with respect to
g, (EP) or G5, (P). An example is given below.

YIELD RATE MULTIPLIER = JOHNSON_COOK
YIELD RATE CONSTANT= C
YIELD REFERENCE RATE = ¢

HARDENING RATE MULTIPLIER = POWER_LAW_BREAKDOWN
HARDENING RATE COEFFICIENT= g
HARDENING RATE EXPONENT = n

While the previous example used separate rate multipliers for yield and hardening there is no
restriction in the formulation. If desired, the same rate multiplier models may be specified
for the rate multipliers. Furthermore, even if the same model form is used, the associated
model parameters do not need to be the same. It should be emphasized, however, that each
rate multiplier and its corresponding properties must be specified separately. If the yield is
defined but hardening is not, the hardening rate multiplier is taken to be rate independent
and vice versa.

5 Verification

While the modularity of the MPSP model gives it some exciting possibilities, it does pose
a slight complication for verification of the implementation. Specifically, covering all of
the different combinations of hardening requires a large set of tests. To address this fact,
more than 100 different hardening/loading tests have been conducted to ensure satisfactory
performance of the implemented model. Here, a sampling of these tests are presented to
demonstrate the verification process that has been undertaken and give some examples of
results.

As all of the tests discussed here are for verification of the constitutive model, only one
element was used. Additionally, only a single shell formulation was considered. The model
parameters that were used for these verification tests are given in Table 1. “User-defined”
hardening options were tested by defining a function equivalent to the Voce model. Given
the similar responses, the “user-defined” results are omitted for clarity. Nonetheless, this
functional capability was tested to the same extent as other hardening functions and the
correct responses returned.

5.1 Uniaxial Stress

As a first verification step, the response of the model subject to a uniaxial tensile loading is
investigated. In this case, the stress is assumed to take the form,
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70GPa | H [500 MPa ][ C | 01 ()
0.33 (-) || AP | 400 MPa || & | 1 x 10* s~
o) | 200 MPa | n*' | 0.25(-) || ¢ 0.21 s71
A [ 200MPa || n | 164 ()
n’ 20 (-)

b

Table 1: Model parameters used for verification testing

(43)

A two step test is considered in which a constant strain rate in the loading direction is
applied. The first step is simply elastic loading and the total strain, € (¢), may be taken to
be e (t) = &t. Trivially, o (t) = Eét and the time at the elastic limit (yield), ¢, is

00

=L, 44

e (44)
The second loading step corresponds to the elastic-plastic domain and a constant equivalent
plastic strain rate is assumed such that &P = £. For convenience, £ is taken to be the same
both during the elastic and elastic-plastic steps. To determine the plastic strain rate in the
loading direction, P, the plastic work equivalency is considered. This expression may be
given as,

0i€;; = 65". (45)

p
ij

With the assumed uniaxial stress state, ¢? = %0 (t) and during plastic deformation ¢* = R?

leading to ¢ = o (t). Using these observations and simplifying the plastic work equivalency
with the known stress state leads to,

i€y = 0 (t)€P = o (t) EP — €P = £P. (46)

Hooke’s law may then be written as,

o(t)=E(e(t) —e?), (47)

which may be rearranged to write the total strain as,
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Noting the results of Eqn. 46 and the assumed constant plastic strain rate, e? = &P =
€ (t — tel). With the equivalent plastic strain also known as a function of time, the current
stress may simply be written as,

o(t)=5(t)=0,)+ K ((t—1t7)), (49)
yielding,

e(t) = o+ K (z(t ~ ta)) +ER—1t). (50)

With this result and the previous observation pertaining to the purely elastic stage, the
total strain is known as a function of time. Thus, the corresponding displacement that may
produce this result is simply,

u(t) =exp (e (t)) — 1. (51)

Note, if yield is taken to be rate independent but hardening has rate dependence the same
assumptions may be used to write the strain during plastic deformation as,

e(t) = 7 + o (é)f;(g(t_tel)) +&(t—1). (52)

To verify the model performance, Fig. 1 presents the results determined analytically (de-
noted with an “(A)” in the legend) and numerically (“(N)”) through finite element analysis
for the rate-independent hardening forms. Clear agreement is noted in these cases between
the various results. Additionally, some of the characteristic features of the different hard-
ening models may be observed. Namely, the linear model has a linear slope during the
elastic-plastic domain and the Voce response “saturates” and does not exhibit any addi-
tional hardening at sufficiently large plastic strains. The power_law hardening model, on
the other hand, exhibits initial non-linearity but at larger strains exhibits a fairly linear
slope.

To look at rate-dependent formulations, the decoupled flow stress model is used to test
the results of Eqn. 52. Figure 2 presents the results of such a problem at two different
strain rates using the power_law_breakdown model ; &7 = 1 x 107% s7! in Fig. 2a and
P = 1 s7! in Fig. 2b. Similar tests were conducted with the Johnson_Cook model and
exhibited comparable agreement but are not presented for brevity. Again clear agreement
is noted between the analytical and numerical results and the impact of the rate is readily
discernible by comparing the two result sets.

Next, the uniaxial stress problem is used to demonstrate the effect of the different rate
multiplier combinations. To that end, Fig. 3 presents the results of a uniaxial stress problem
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Figure 1: Analytical (A) and numerical (N) verification results of the rate-independent
uniaxial stress problem considering different isotropic hardening functions.
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Figure 2: Analytical (A) and numerical (N) verification results of the rate-dependent uniaxial

stress problem with different isotropic hardening functions and constant strain rates of (a)
E=1x103s"'and (a)e=1s""

with a constant engineering (not equivalent plastic) strain rate applied of epg = 1x 1072 571,
The engineering rate is used instead of equivalent plastic to ensure a common strain path
across the different problems. For the isotropic hardening, the user-defined functionality is
used with a Voce like expression. The decoupled flow_stress model is used to allow for
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different descriptions of the rate multipliers. Different assumptions, either rate-independent
or Johnson-Cook, are used for the rate multipliers to demonstrate the impact of each of the
modular capabilities. From the results of Fig. 3 it is clear that having a rate multiplier on
the constant yield stress will increase the apparent flow stress while having a hardening rate
multiplier modifies (increases) the plastic hardening slope. Clearly, the biggest impact is in
the Johnson-Cook like expression in which the rate multiplier acts on both terms.
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Figure 3: Stress-strain responses with a constant nominal strain rate éeng =1x10"%s"! with
different Johnson-Cook rate multiplier selections.

5.2 Balanced Biaxial

For a second test, a balanced biaxial loading is considered. This problem has multiple stress
components and, as will be seen in the next section, is equivalent to a pure shear solution in
a rotated frame of reference. The current problem assumes a stress state of,

at)=| —o() |. (53)

As with the uniaxial case, a two-step solution is pursued with an elastic step followed by an
elastic-plastic step. A constant strain rate, £, is considered during both stages. During the
elastic step, it can be trivially shown that e1; (£) = —eqy (t) = £t and, after accounting for

the Poisson effect,

o (t) = 2uét. (54)
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For the assumed stress state, ¢> = 202 (t) leading to an elastic limit time of,

o0

=8 55
W T (55)

During plastic deformation, the equivalent plastic strain rate is taken to be constant, &P = £,
and, given the stress state, the plastic strain rate is assumed to be of the form,

ép = —&P 9 (56)

in which it is clear that £} + &5, = 0 — €5, = 0 due to plastic incompressibility. The plastic
work equivalency is then,

. 5.
0% = 20 (£) &P = GEP — &P = gép. (57)

Finally, by decomposing the total strain such that,

t .
8(t) _ O'é) o Epmsson +€p, (58)

and rearranging using previous results,

1 ek E(-t) V3

e(t) = 7 2 - 75 (t—1t). (59)

The desired material response may then be generated by applying a displacement of u (t) =
exp (e (t)) — 1 in the tensile loading direction (“11”) and u(t) = exp(—e(t)) — 1 in the
compressive loading direction (“22”).

Verification results of for this problem are presented in Fig. 4 for the rate-independent case.
The positive values correspond to o7 and compressive stresses are o,5. Both are given
as functions of the tensile strain, €11, for convenience. For the rate-dependent cases, the
power_law_breakdown model is again used and results for constant strain rates of &P =
1 x 1073s7! and &P = 1s! are given in Figs. 5a and 5b, respectively.

In all cases, clear agreement is observed between the analytical (“(A)”) and finite element
(numerical “(N)”) results. Importantly, agreement is observed for both the considered stress
components verifying the capability of the implementation to handle multiaxial states of
stress.
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Figure 4: Analytical (A) and numerical (N) verification results of the rate-independent
balanced biaxial stress problem considering different isotropic hardening functions. Positive
results correspond to o1; while the compressive results are for ggs.

400 o0-6-0-6-069 400 ..;:::::::::====:
200}/ ; __-=======:===== 200 ___=:=====:=======
,,A=:======'-'= ----- f£=========--
g ' oo (A K™ — (N) K™ - I oo (A) K™ — (N) K™
= 0} o o (A) K" — (N K = 0 oo (A K — (N K
b_ “-- i O O (A) K — (N) K~ 6 l - O O (A) K™ — (N) K~
—200 y A _--=======:========= -200 —--=====:======== ____
—-400 e 2P 0000 —-400 --:=:====:;;::===::=
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10 0.15 0.20
11 (') E1 (')
(a) E=1x10"3s71 (b)e=1s"1

Figure 5: Analytical (A) and numerical (N) verification results of the rate-dependent bal-
anced biaxial stress problem with different isotropic hardening functions and constant strain
rates of (a) £=1x 1072 s7! and (a) £ =1 s~!. Positive results correspond to oy; while the
compressive results are for og.

5.3 Biaxial Shear

For a final verification test, a problem which probes the shear response is desired. To that
end, a stress state of,
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at)=1 0 |, (60)

is assumed. In tensor form, it can also be trivially established that the balanced biaxial
(Eqn. 53) and pure shear state (Eqn. 60) have the same principal stresses. Thus, a sim-
ple coordinate transformation of the problem should suffice to go from one to the other.
This observation is also reinforced by the presence of the shear modulus, pu, in the various
expressions of the balanced biaxial case rather than elastic modulus.

Therefore, to test the shear response, a rotated form of the balanced biaxial test is considered
and will be referred to as “biaxial shear” for simplicity. To accomplish this task, the single
element of the previous problems is rotated 45° about the out-of-plane direction. If the
solution displacements of Section 5.2 are applied in the directions normal to the rotated
model the desired pure shear stress state will result. Additionally, o, (t) = o (t) from that
same previous problem.

The results of these verification exercises are given in Fig. 6 for the rate-independent cases
and Fig. 7 for rate-dependent instances with Figs. 7a and 7b presenting cases with &P =
1 x 1073 s7! and &P = 1 s7!, respectively. As alluded to previously, the solution matches
very closely with that of the previous balanced biaxial results and the analytical (“A”) and
numerical /finite element (“(N)”) show excellent agreement.

300

250¢

100
50 o 0o (A) K™ — - {N)-Ki....{
0 O (A) K — (N) K
0 O (A) K" — (N) K"
§oo 0.05 0.10 0.15 0.20

Egyr ()

Figure 6: Analytical (A) and numerical (N) verification results of the rate-independent
biaxial shear stress problem considering different isotropic hardening functions.

Importantly, although the test considers only one stress component it is the shear component.
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Previous tests did not exercise the implementation of the model pertaining to the shear stress
whereas this test does giving further credence to model performance.
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Figure 7: Analytical (A) and numerical (N) verification results of the rate-dependent biaxial
shear stress problem with different isotropic hardening functions and constant strain rates
of (a) e=1x103 s and (a) e=1s""1.

6 Conclusion

In this work, the MODULAR_PLASTICITY_PLANE_STRESS material model has been presented
and discussed. Specifically, the considered model is a modified form of the .J; plane-stress
model of Simo and Taylor [4] incorporating recent improvements in modular, rate-dependent
isotropic hardening and numerical implementation. To this end, the theory, numerical im-
plementation, usage syntax, and examples have all been presented. The examples also served
as verification exercises in which corresponding analytical solutions for the uniaxial stress,
balanced biaxial, and biaxial shear were also determined and excellent agreement between
the model and analytical results found.

Importantly, the developed model can also serve as a platform for additional extensions such
as modular temperature dependence (e.g. Johnson-Cook [6] temperature multipliers), non-
quadratic and/or anisotropic effective stress functions (e.g. the classic form of Hill [12]),
different hardening forms (e.g. kinematic or distortional), or potentially failure models.
Given the flexible form and robust implementation presented here, such additional capabili-
ties could be readily integrated. Additionally, while verification exercises have been presented
for the new model, model performance (i.e. speed) has not been investigated. Such consider-
ations include both comparisons to other existing model forms as well as benchmarks against
different combinations or specifications of hardening model in larger benchmark problems.
These studies will be considered in the future.
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