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Abstract

Once Synthetic Aperture Radar (SAR) images are formed, they typically need to be stored in
some file format which might restrict the dynamic range of what can be represented. Thereafter,
for exploitation by human observers, the images might need to be displayed in a manner to
reveal the subtle scene reflectivity characteristics the observer seeks, which generally requires
further manipulation of dynamic range. Proper image scaling, for both storage and for display,
to maximize the perceived dynamic range of interest to an observer depends on many factors,
and an understanding of underlying data characteristics. While SAR images are typically
rendered with gray-scale, or at least monochromatic intensity variations, color might also be
usefully employed in some cases. We analyze these and other issues pertaining to SAR image
scaling, dynamic range, radiometric calibration, and display.
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1 Introduction and Background

We discuss herein Synthetic Aperture Radar (SAR) images. While other radar modes such as
Inverse SAR (ISAR) also form similar images, with similar issues, we nevertheless confine
ourselves in this report to SAR images.

SAR scenes may offer dynamic ranges (defines as the ratio of brightest target allowable in the
scene without saturation to the noise level) of many orders of magnitude, well beyond 100 dB or
so. For example, a 0.1-m resolution SAR image with a noise equivalent reflectivity of —35
dBsm/m?, and allowing for a 60 dB non-saturating target requires a dynamic range of 115 dB.
Finer resolutions, lower noise floor, or brighter non-saturating targets will increase this. A SAR
image is simply a rendering of the scene being interrogated, with pixel values some function of
Radar Cross Section (RCS) values.

Modern high-performance SAR systems will typically perform image formation using double-
precision floating-point calculations. However, a final step is often to convert the resulting
image to something else, often an integer representation, for storage and transmission. Several
standards exist for SAR image formats, including

National Imagery Transmission Format (NITF), with latest version 2.1, and
Sensor Independent Complex Data (SICD).
Appendix B discusses some aspects of the SICD format.

Regardless of what an image format may represent, when displaying a SAR image for human
observation, we are further encumbered by the limits of the Human Visual System (HVS).
While there is much debate over what the HVS can perceive in a single image, as this is a very
complex subject and a number of dependencies must be considered, commonly quoted numbers
suggest the HVS can only perceive about 30-40 dB of dynamic range.> Display technology is
understandably keenly aware of the HVS characteristics, or should be.

Consequently, regardless of the dynamic range of the original SAR image calculations, they need
to be fit into some image format. Then, regardless of the image data, we need to contend with
the limits of the HVS if those images are to be displayed for human consumption and
exploitation.

We address herein two issues.
1. What should be the scaling of a SAR image in the output image data, and

2. How should a SAR image be displayed?



Image Power Measures

While the radar engineer tends to work with measures of energy and power, with respective units
of Joules and Watts," the Optical and Display communities tend to work with other measures and
units. We address some of them here.

Irradiance — a.k.a. intensity, optical intensity — is the optical power per unit area; a power
density. In the SI system, it has units of watts per square meter (W/m?).

Luminous flux — is a measure of the perceived power of light. The SI unit of luminous flux is
the lumen (Im). The luminous flux is the total radiant flux weighted by a model of the sensitivity
of the human eye, called the luminosity function.

[lluminance — is the luminous flux per unit area. The SI unit of illuminance is the lux (Ix). One
lux equates to 1 lumen per m?. For a wavelength of 555 nm (green), which is the peak of the
luminosity function, 683.002 lux equates to 1 W/m?>.

Luminous intensity — is the luminous flux (power) per solid angle. The SI unit of luminous
intensity is the candela (cd). One candela equals 1 lumen per steradian.

f-stop — a.k.a. stop, f-number, exposure value (EV) -- is the ratio of the focal length to the
effective aperture. This means that an increase of one f-stop will decrease the aperture by half,
and hence the intensity by half; two f-stops will decrease the intensity to a quarter, etc. The
intensity as a function of f-stop is a geometric progression.

¥ Note that RCS is a ratio of re-radiated (i.e. reflected) power (W) to incident power density (W/m?).

-10 -



2 Image Representation

While it is easy enough to conjure, or even optimize, a pixel representation for a particular
complex image (where each pixel is a complex-valued element that can be represented with real
and imaginary components, or equivalently with magnitude and phase components),>* we are
often not given the luxury of our choice. We are often left with “How can we cram an image
into a representation given to us, like perhaps 16-bit integer real and imaginary data. We further
stipulate that most often, such requirements include a linear magnitude representation, where
RCS is proportional to the square of the pixel magnitude, forgoing any companding.**

Given that a SAR scene’s dynamic range is bounded by the noise floor on the low end, and the
brightest reflector on the high end, there is little sense in the image rendering (allocating pixel
values to) levels to below the noise floor or above the brightest expected target. We allow that
other characteristics of the data might modulate this somewhat.

How noise levels relate to RCS, and hence pixel values, is a function of the radar equation,
which can be found in many texts and papers, including a previous report.> We stipulate here
that desired maximum noise-equivalent reflectivity, o, for various target scenes at Ku-band

might be as follows:
General image analysis —25 dBsm/m?
Coherent Change Detection (CCD)® —35 dBsm/m?
Oil-spill mapping’ —50 dBsm/m?, or better

These values should be considered indicative, and not hard rules. We recognize that the noise
level needs to be far enough below the scene’s clutter or target level so that we can properly
exploit the image, which often includes assessing characteristics of shadow areas (areas of no
return). This, of course, is dependent on the actual scene being imaged. Average clutter levels
for various scene types has been cataloged by Long,® and Ulaby and Dobson,” among others.

Furthermore, the average clutter level often even sets the effective noise floor via multiplicative
noise. Multiplicative noise is manifested by signal channel nonlinearities, which impact sidelobe
responses and cause energy to spill away from the desired pixel location. This limits how “dark”
small shadow regions can be relative to the surrounding clutter. Since this offending noise
energy is proportional to signal level, it is termed “multiplicative.” Even high-quality SAR
systems may exhibit a Multiplicative Noise Ratio (MNR) of perhaps —20 dB or so, meaning an
average noise floor due to this phenomenon of perhaps no lower than 20 dB below the average
clutter level.

From Raynal, et al.,'” we are given that at Ku-band a reasonable upper bound for cultural clutter

discretes is perhaps 45 dBsm, although we can certainly conjure brighter targets. We note that
even a 60 dBsm target is not a particularly unimaginably large reflector, achieved with a 2.5-m
diameter circular flat plate, or a 3-m trihedral.!" Neither of these dimensions is unreasonable for
man-made structures and objects.

=11 =



Equally important is the distribution of RCS values between these two limits. This entails an
understanding of the nature of clutter in the scene. We note that a scene of uniform distributed
clutter, by virtue of the Central Limit Theorem, processed with linear calculations into a SAR
image, will manifest as complex Gaussian distributed output values. The magnitude of these will
be Rayleigh-distributed (see Appendix A), with mean-squared value proportional to mean RCS
of the pixel, which itself is proportional to the normalized clutter reflectivity, o, .

Looking ahead a little, the HVS needs about 100 intermediate gray levels over its dynamic range
to interpret the image as having smoothly varying shades.'> We might interpret this as
suggesting that the bulk of the distributed clutter span at least 100 magnitude pixel values
(counts). This would place the RMS clutter level no lower than a magnitude pixel value of
perhaps 30 counts or so.

We summarize this discussion with some mathematics. We accordingly define

0y = normalized clutter reflectivity with units m*/m?,

oy = noise-equivalent reflectivity with units m?/m?,
p, = slant-range resolution of the radar with units m,
p, = azimuth (cross-range) resolution of the radar with units m, and

w = local grazing angle. (1)

Normalized reflectivity values are commonly expressed in units of dBsm/m* which is 10log), ()

of the reflectivity values with the units cited in Eq. (1).

A pixel dominated by clutter will have a mean RCS value of

PrPa%0
O clutter = — . (2)
cosy
A pixel dominated by noise will exhibit a mean RCS value of
PrPaON
Onoise = — : 3)
cosy
Note that both 0, and 0,,,, are mean-squared values of a Rayleigh-distributed random
variables. We define the ratio of 0, t0 Opise aS
o o
CNR =—<lutter — 20 _ Clytter to Noise Ratio (CNR). (4)

o

noise On

This is analogous to Signal-to-Noise Ratio (SNR), except that the “signal” in this case is the
clutter field. This, of course, ignores the contribution of MNR.

_12 -



For the clutter to be observable, and exploitable, in the SAR image, we need a substantially
positive CNR. While any specific number might be subject to some debate, we opine that 10 dB
is not an unreasonable minimum CNR for shadows to be exploited, and for reasonably
acceptable CCD. That is, we would like the noise level to be at least 10 dB below the lowest
clutter reflectivity we wish to exploit. We note that two integer bits is about 12 dB. We are also
mindful that an upper limit on CNR is likely due to multiplicative noise, and might be perhaps
20-25 dB for typical high-quality SAR images of largely uniform clutter scenes.

Of course, a SAR scene is often composed of more than simply uniform clutter, quite often
containing patches of locally uniform clutter with varying reflectivity characteristics, and can be
expected to also contain clutter discretes, as previously discussed. Nevertheless, a Rayleigh
characteristic to the pixel magnitude remains a reasonably good approximation, albeit perhaps
with some extra energy in the tail of the distribution due to clutter discretes.

W now examine a representative SAR image, illustrated in Figure 1.

Figure 1. Example SAR image.

=13 =



Table 1. Image parameters for Figure 1.

Center frequency 16.7 GHz
Slant-range resolution 0.1016 m
Cross-range resolution 0.1016 m
Noise Floor oy -30 dBsm/m’
Nominal Slant-Range 6.858 km
Grazing angle at aperture center 30.3545 deg

Figure 1 renders a SAR image of a Sandia National Laboratories test facility in Albuquerque,
New Mexico, USA. The data was collected on 30 March 2001 by a Sandia Ku-band testbed
system. Some image parameters are given in Table 1.

We note that the image of Figure 1 shows a fenced compound of buildings surrounded by natural
clutter typical of the high Chihuahuan desert common in New Mexico. We observe parked
vehicles as well as sparse vegetation. We further note that the bulk of the pixels are of
distributed clutter rather than specular reflectors (clutter discretes).

While pixel values in Figure 1 have been manipulated to display the subtle clutter features, the
histogram of the underlying 16-bit magnitude data is illustrated in the plots of Figure 2. We
observe in the top plot that pixel values are preponderantly at the very lower end of the
magnitudes. The middle plot shows a tail of higher pixel magnitudes corresponding to clutter
discretes, including two pixels that saturate at the 65535 maximum value. The bottom plot
details the Rayleigh characteristic of the natural clutter pixel magnitudes. Noise for this image
has an RMS magnitude pixel value of about 12.7. Figure 3 renders the histogram in terms of
RCS values with units of dBsm. This calibration can be calculated from system parameters. ">

In the histogram rendered in Figure 3, the shape has been distorted due to pixel RCS in units of
dBsm being a logarithmic function of pixel magnitude. With pixel statistics available via the
histograms of Figure 2 and Figure 3, we make the further observations for this specific image as
follows,

e The noise level is sufficiently represented in the magnitude image pixel data, with an
RMS value of about 12.7, corresponding to a noise equivalent reflectivity of —30
dBsm/m?, and to an average RCS of about —50 dBsm. Noise contribution is
overwhelmed by the clutter, as is expected in the image by noting that collective shadow
area is considerably less than collective natural clutter area.

- 14 -



4 : T T T T T T
3 - -
2 - -
1 - -
D 1 i 1 i 1 1
0 1 2 3 4 5 6
x10*
G [
10*

1] 100 200 300 400 500
pixel data magnitude value

Figure 2. Histograms of magnitude pixel data. Pixel magnitude values range from 0 to 65535.
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Figure 3. Histogram of magnitude pixel data converted to RCS values.

The natural clutter has a median reflectivity of about —17 dBsm/m?, resulting in a median
RCS of about —37 dBsm in the image, suggesting an average CNR of about 13 dB. The
median pixel magnitude value is 58 counts. The median statistic was used to minimize
the influence of outliers; especially bright discrete reflectors. Its relationship to other
Rayleigh statistics is discussed in Appendix A.

The maximum discrete clutter RCS in this image saturates the magnitude image pixel
data at a value of 65535 counts corresponding to 24.22 dBsm. We do note that the
imaging geometry for this image is an oblique angle with respect to the cultural features,
which would minimize any high-RCS flashes from man-made objects.*

Although 16 bits of magnitude would allow up to 96 dB of dynamic range, the noise level
in this image limits the rendered effective dynamic range to about 74 dB. This suggests
that scaling the floating-point data prior to integer conversion to push the noise level to
lower pixel values could increase the rendered dynamic range by up to perhaps 20 dB.

All things considered, this image has been fit rather nicely within the 16 bits of dynamic range
afforded to it. We might have benefitted slightly by scaling the magnitudes by %, thereby
yielding an extra 6 dB of dynamic range, but it would have mattered to no more than two pixels
in the entire image.

t A common ‘trick’ in setting up SAR data collections is to not use imaging geometries corresponding to cardinal
directions. Man-made structures are often oriented in North-South and East-West directions, so imaging at non-
cardinal angle geometries will minimize bright flashes from dihedrals formed by the sides of these structures.

- 16 -



2.1 Design Example — Rural Scene

Consider a Ku-band VV polarization SAR image of a rural scene with the following parameters.

Resolution (range and azimuth) 0.3m

Grazing angle 30 deg.

Mean noise-equivalent reflectivity 35 dBsm/m?

Mean clutter reflectivity —17 dBsm/m?

Maximum desired clutter discrete ~ +45 dBsm

Image format 16 bits unsigned magnitude, 16 bits phase
Companding none, assume linear magnitude

The question is “How do we best represent this image within the allotted bits?” which we
interpret to mean “What scale factor should we use to relate pixel value to RCS?”

From these parameters, we calculate (rounded to the nearest dB)

Mean noise RCS —45 dBsm
Mean clutter RCS —27 dBsm

Although the difference between the noise level and the maximum clutter discrete is 90 dB, well
within the available 96 dB afforded by 16 bits of linear magnitude, if the RMS noise level were
placed at 1 count, the mean clutter level would be only 18 dB above the quantization level,
which might make the clutter excessively quantized. A better clutter level might be 30 dB above
the quantization level, which gives better rendering of small clutter variations. This would place
the quantization level (the RCS represented by a magnitude of “1” count) at —57 dBsm.
Corresponding relationships would be

Quantization level 1 count 0 dBg® ~57 dBsm
Mean noise RCS 4 counts 12 dBq —45 dBsm
Mean clutter RCS 32 counts 30 dBq —27 dBsm
Maximum clutter discrete RCS 65535 counts 96 dBq +39 dBsm

We note that with this scaling, we are only 6 dB shy of our desired maximum clutter discrete
value, suggesting slightly more frequent saturation than desired. However, because the maximum
clutter discrete RCS is so far out on the tails of the clutter PDF, this is not expected to be
particularly troublesome.

$ We define “dBq” as dB with repect to the quantization level.
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We also note that with this clutter level, the MNR will likely keep the actual noise floor greater
than 0 dBq, even if the front-end receiver noise drops.

With these relationships, we may accordingly calculate a calibration scale factor to convert any
pixel magnitude value to RCS as

o =
Sf = R—gs ~2x107® = RCS calibration scale factor, (5)

p

where

Opcs = reference RCS in units m?, and

p = pixel magnitude value in counts corresponding to Op(g . (6)

In units of dBsm, the calibration calculation for an arbitrary pixel magnitude value becomes
2
Orcs,apsm = 101logyg (P Sf)- (7)

Of course, this may also be written as

Ores.apsm = 2010g; (p)+101log;o (Sf). (8)

Comments

We note that the mean noise RCS in our example is 12 dB above the desired minimum noise
level of 0 dBq. This suggests that if we had brighter clutter, say from an urban scene, then we

might increase the scale factor by up to 12 dB, to a maximum of perhaps Sf = 3.16x 107 , and

still maintain the desired minimum noise level. Evidence suggests that even a high urban clutter
scene might have a mean clutter reflectivity of perhaps -9 dBsm/m? at Ku-band for VV
polarization.'® This represents only an 8 dB increase over our design example. Were we to
know that we were imaging such an urban scene, all other parameters unchanged, we might

select a scale factor of perhaps Sf =1.26x 107 to better accommodate it. Note that this is about
scaling the “image” data, and not the RF gain for raw data collection.

Of course, all of this is predicated on that we are assuming an image format with pixels limited
to 16 bits of unsigned magnitude with no companding. Were we to employ companding, or even
a floating-point number representation, then the problem of squeezing our image with its
dynamic range constraints into a finite number of bits is considerably eased. We do note also
that the IEEE does maintain a specification for “half-precision” floating-point numbers using
only 16 bits.'*

- 18-



2.2 Design Example — Ocean QOil Slick Detection

Consider a Ku-band VV polarization SAR image of an ocean scene with the following
parameters.

Resolution (range and azimuth) 3m

Grazing angle 10 deg.

Mean noise-equivalent reflectivity ~—50 dBsm/m?

Mean sea clutter reflectivity —40 dBsm/m? (sea-state 1)'°

Maximum desired clutter discrete ~ +45 dBsm

Image format 16 bits unsigned magnitude, 16 bits phase

Companding none, assume linear magnitude
The amount of backscatter reduction due to an oil slick depends on a number of factors,
including operating frequency, grazing angle, and polarization. The contrast appears best for VV
polarization at about 30 degree grazing angle, decreasing somewhat for shallower grazing

angles.” A survey of literature suggests that contrast might be from 5 to 15 dB, depending on the
factors cited.'®!” Clutter discretes are essentially maritime vessels in the scene.

The question is still “How do we best represent this image within the allotted bits?”” which we
interpret to mean “What scale factor should we use to relate pixel value to RCS?”

From these parameters, we calculate (rounded to the nearest dB)

Mean noise RCS —40 dBsm
Mean sea clutter RCS -30 dBsm

The difference between the noise level and the maximum clutter discrete is 85 dB, well within
the available 96 dB afforded by 16 bits of linear magnitude, if the RMS noise level were placed
at 1 count. Let us again place the desired/expected clutter level at 30 dB above the quantization
level, which gives better rendering of small clutter variations we seek to map oil slicks.
Corresponding relationships would be

Quantization level 1 count 0 dBq —60 dBsm
Mean noise RCS 4 counts 20 dBq —40 dBsm
Mean clutter RCS 32 counts 30 dBq —30 dBsm
Maximum clutter discrete RCS 65535 counts 96 dBq +36 dBsm

We accept that many maritime vessels are likely to saturate. With these relationships, we may
accordingly calculate the calibration scale factor to convert any pixel magnitude value to RCS as

Sf:O’RCS/p2 ~1.0x107°. 9)

-19-



“It is better to be looked over than overlooked.”
-- Mae West
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3 Image Display — Gray Scale

While optimizing the display of ‘any’ image could consume a lifetime of scientific study, we beg
the reader’s indulgence to express herein some basic observations and to propose “something
that works.”

The intent now is to accept a SAR image with typical characteristics as noted in the previous
section, and to render it in a manner to convey information to the human observer. We opine
that there is probably a balance between maximizing the information transfer, with information
defined as a rigorous mathematical calculation, and maintaining some sort of “natural” look to
the image. This “natural” aspect is important because it plays to the expectations of an observer,
and brings to bear his toolkit of experiences and synergism with other sensors.

Recall that commonly quoted numbers suggest the HVS can only perceive about 30-40 dB of
dynamic range. This amounts to 5-7 bits of dynamic range, as previously defined. We also note
that a typical display accepts 8-bit magnitude data, with a “perfect” display rendering gray scale
luminous flux that increases as the square of the pixel value. So, doubling the applied pixel
magnitude value will quadruple the intensity of the image, with 8 bits corresponding to 48 dB of
dynamic range. We further note that real displays may exhibit technology-dependent
performance limits, and might compress this dynamic range somewhat. We will ignore this
particular complication in this report.

The question for us becomes “How do we map the, say, 16 bits of SAR image pixel magnitudes
to the 8 bits available in a display?”

Furthermore, we wish to do so in a manner where we are able to discern the natural distributed
clutter detail (in the pixel values 1:200, or so, of Figure 1) while maintaining awareness of the
brighter discrete RCS values.

We expect this to require a nonlinear scaling of pixel values to adjust the histogram of pixel
values. In image processing terms, we expect this to require “Gamma corrections” and some
degree of “histogram stretching.””"

Several mappings are now presented. We define for all of these

p = 16-bit SAR image pixel magnitude value in linear magnitude, and
P = 8-bit “adjusted” pixel value applied to the display device. (10)

For these various mappings we offer both a resulting image as well as the modified histogram.
We are well aware of the irony of exemplifying a display monitor with a printed image, but offer
that the printed images do convey at least some of the characteristics we wish to illustrate.

** “Gamma correction” commonly referes to a non-linear scaling of pixel values usually (but not always) according
to some power law, whereas “histogram stretching” more often refers to a linear scaling of pixel values.
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3.1 Histogram-Stretched Image

The simplest function to convert 16-bit images to 8-bit images is to simply scale pixel values and
crop to the desired range. This is histogram stretching without any gamma correction. For the
image of Figure 1, we choose the function

P=255up, (11)

where we might choose scale factor

1

"3 median(p) (12)

Of course, the output value P is quantized and limited to the range [0:255]. The resulting image
is given in Figure 4, and its histogram is illustrated in Figure 5.

3.2 Quarter-Power Image

Noting that a straightforward mapping that halves the number of required bits is a square-root
function, we define the Quarter-Power image as

P=2558p . (13)

The scale factor £ adjusts the brightness of the display. Anecdotal evidence suggests that useful
values are in the range

! <p< 1 .
5 median(\/; ) 3 median(\/; )

As before, output value P is quantized and limited to the range [0:255]. The resulting image is

given in Figure 6, and its histogram is illustrated in Figure 7. The “spikes” result from multiple
input pixel values combined into a single display pixel value. Note that the histogram has been
substantially stretched, allowing natural clutter to be discerned in greater detail.

(14)

-1
The image in Figure 1 was rendered with g = [3 median(\/; )} ‘
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Figure 4. Histogram-stretched image with u = [8 median ( p)]71 .

150 200 250

display pixel value

Figure 5. Histogram of display pixel values P with x = [8 median ( p)]_1 .
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Figure 6. Quarter-power image with f = |:3 median (\/; ):I_l .

104

0 50 100 150 200 250

display pixel value

-1
Figure 7. Histogram of display pixel values P with = [3 median (\/; )] )
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3.3 Logarithmic Image

Another function that compresses larger values more than smaller values is the logarithm
function. Consequently, our mapping might be

P=255alog,(p) , (15)

where we might choose scale factor
a&=—",. (16)

As before, the output value P is quantized and limited to the range [0:255]. The resulting image
is given in Figure 8, and its histogram is illustrated in Figure 9. While this particular scale factor
results in no clipping of large input pixel values, we also note the higher density of mid-scale
output values. This might make the image appear somewhat more washed out (smaller apparent
display dynamic range).

3.4 Arctangent Image

Another function that compresses larger values more than smaller values is the arctangent
function. Consequently, our mapping might be

P =255(2/ ) atan (’%’j : (17)

where we might choose scale factor

n =400. (18)
As before, the output value P is quantized and limited to the range [0:255]. The resulting image
is given in Figure 10, and its histogram is illustrated in Figure 11. Note that this rendering is

much like the quarter-power image except that highest discrete clutter values are not hard-limited
at value 255. Rather, they are tapered towards 255.
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Figure 8. Logarithmic image with o = 1/16.
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Figure 9. Histogram of display pixel values P with o = 1/ 16.
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Figure 10. Arctangent image with 7 = 400.
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display pixel value

Figure 11. Histogram of display pixel values P with 7 = 400 .
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4 Image Display — Color

The utility of color in displaying conventional SAR images is subject of some debate. Clearly, a
single SAR image results from a single band of microwave frequencies, so is essentially
monochromatic in nature. The paradigm of color representing different passbands of spectral
content, as in Electro-Optic (EO) imagery, or Hyper-Spectral (HS) imagery, does not apply to an
individual SAR image. Furthermore, any use of color must come with an awareness of the
limitations on color cognition in color-blind human observers. Nevertheless, in some
communities, the idea of colors being mapped to intensity does find some utility.

With no intent on being rigorous or complete, we do offer here some examples of colorized SAR
images, and comment accordingly.

4.1 Single-Color Image Display

For color vision, the human eye is most sensitive to green colors, nominally at a wavelength of
555 nm. Consequently, sometimes SAR images are rendered in a green intensity-based scale.
Figure 12 shows the same quarter-power histogram mapping as in Section 3.2, except that the
intensity is rendered in the color green instead of gray.

We leave to the reader any subjective assessment of the relative merits.

Figure 12. Quarter-power image rendered in green.
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4.2 Multi-Color Image Display

In spite of our familiarity with color in our everyday lives, an objective study of color and color
perception is incredibly complicated, and far too complex to treat in this report with any sense of
completeness. Nevertheless, we offer some ‘basics’ and attempt to relate them to display of
SAR images.

The HVS, color-blindness notwithstanding, is generally able to perceive a combination of optical
wavelengths corresponding to colors red, green, and blue; about 7-10 million different colors.

Colors may be represented in several different manners. One popular representation is the
chromaticity diagram shown in Figure 13. Note that “white” has coordinates (1/3, 1/3) in this
representation. We further identify “hue” as an indication of the direction of a color from white,
and “saturation” as the essentially the distance to the color from white. A third dimension to this
representation, but not overtly displayed, is intensity. For example, shades of gray are just
intensity variations of the color “white.”

0.9+ Spectral location of
observable colors

L L
W =)}
' i1

o
S
1

0,3 4

Composante chromatique y

00 01 402 03 04 05 06 07 08
380 nm Composante chromatique x

Figure 13. The CIE 1931 color space chromaticity diagram. (Courtesy Wikimedia Commons)

While Figure 13 illustrates the gamut of colors that can be perceived by the HVS, the gamut of
colors that can be represented on a display device is a subset of these. For example, a display
that can generate pure colors R, G, and B in Figure 14, can combine those colors to create any
other color within the triangle defined by them. This is the gamut of the display. Colors outside
of this triangle are “outside the gamut” of the display. This display gamut, along with intensity,
defines a 3-dimensional color volume that can be represented by a display.

-29.



0.9+ Spectral location of
- observable colors

1L

e
[
L

620 nm
% 700 nm

Composante chromatique y

00 01 402 03 04 05 06 07 08
380 nm Composante chromatique x

Figure 14. Chromaticity diagram of Figure 13 with notional display gamut superimposed.

The display gamut (including intensity) restricts the set of colors that can be used to render a
SAR image. Different colors/intensities can be assigned to different pixel values. If smoothly
varying colors/intensities are desired, then pixel values will be assigned to positions along a
curve in the 3-dimensional color volume. In some sense, the longer the length of this curve, the
more colors/intensities are used, and the greater is the dynamic range of the pixel data that can be
discerned. In addition, subtle image features are more apparent with higher color gradients.

We define a specific relationship of colors/intensities to what would be otherwise gray-scale
pixel values, as a “colormap.” For a typical display monitor, the colormap is a function of how
much red, green, and blue are associated with a pixel value. We opine that the utility of any
particular colormap will depend on the application and/or intent of the observer. A particular
colormap with utility to one application might offer no advantage to another colormap for a
different application. Colormap selection has been explored by several researchers. '3:1%:20

We conjecture that useful colormaps for SAR images still begin with black and end with white,
but now perhaps arc their way through the color/intensity volume. The choice of a particular
colormap might be influenced by any number of factors, including the display gamut, photocopy
reproduction limitations, and the gamut available to the observer (e.g. color-blindness).

We now present several examples of the SAR image of the previous examples, with a common

quarter-power histogram mapping as discussed in Section 3.2, now with scale factor
-1
p= [5 median(\/; )} , but now also employing various colormaps.
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Figure 15. Reference gray-scale image. The underlying distribution of display pixel values is a quarter-power

image with g = [5 median(\/;)]_l
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Figure 16. Matlab™ colormap “hot.” This colormap is a standard “off-the-shelf” colormap from the

Matlab™ computational language. It increases the gradient of the red color for lower pixel values, thereby
revealing detail in the natural clutter.
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Figure 17. This colormap begins with the Matlab™ colormap “hot” and trades the red and green intensities.
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Figure 18. This colormap was created by W. H. Hensley and is loosely based on the "Scientific American"
colormap from the Khoros™ integrated software development tool. This map bears some similarity to the
Matlab™ “parula” colormap, although significant differences still exist between them.
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5 Miscellaneous Topics

We now address some miscellaneous topics.

5.1 Mosaicked Images (including Stripmaps)

In earlier sections we investigated a single spotlight SAR image, created from a single synthetic
aperture. Oftentimes, multiple SAR images are mosaicked together to form larger composite
images. This includes SAR stripmap images composed of mosaicked patches, and ScanSAR
images composed of mosaicked stripmap SAR images.

To avoid obvious seams in the mosaicked result, particularly in regions of distributed natural
clutter, individual SAR image patches need to exhibit the same relationship between pixel
reflectivity and displayed color/intensity. If a displayed rendering is data dependent, then it
needs to adapt to perhaps one representative image, perhaps the first in a sequence, and then the
mapping function needs to be held constant for all subsequent images of the larger mosaic.

5.2 Image Phase

Although SAR images are naturally complex-valued, typically only the magnitude information is
displayed (after suitable mapping). One might ask “What about the phase?”

Pixel phase for a single SAR image is typically uniformly distributed over all angles. For
example, this histogram for the SAR image of Figure 1 is displayed in Figure 19. Note the
essentially uniform distribution of phase values.

phase - radians

Figure 19. Histogram of pixel phase for image of Figure 1.
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“The aim of art is to represent not the outward appearance of things,
but their inward significance.”
-- Aristotle
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6 Conclusions

We repeat some key points.

The SAR “image” file format can be a dynamic range choke-point. Proper scaling of the
image data is required to maximize the dynamic range that can be represented, especially
for integer-based pixel values.

Most SAR images have a magnitude histogram that is approximately Rayleigh
distributed, albeit with stronger “tails” to accommodate clutter discretes.

SAR images often have dynamic ranges in the many of tens of dB, and may even
manifest well over 100 dB.

The Human Visual System is typically limited to discerning 30-40 dB of intensity
dynamic range in a single image. Consequently, SAR image data will typically need
some sort of dynamic range compression to be exploited by a human observer, especially
for gray-scale and monochromatic image display. Several functions are identified to help
achieve this.

Colors can be employed to help display an extended dynamic range of the underlying

image. Higher color gradients can be used to enhance the observability of subtle clutter
features in the SAR image.
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“There are things known and there are things unknown,
and in between are the doors of perception.”
-- Aldous Huxley
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Appendix A — The Rayleigh Distribution

Here we examine characteristics of the Rayleigh distribution.

Consider a complex random variable, composed of independent real and imaginary components,
each an independent zero-mean Gaussian (Normal) distribution, albeit with identical variance.

That is, let

Z=X+j7,

where X and Y distributions are each described with Probability Density Function (PDF)

2
X

1

fy(x)= \/—6_2@‘r2 , and
2 2
o .
=
Jy (y) :ﬁe ;
o
where

2 .
0~ = variance common to components X and Y.

The magnitude of Z is calculated as
R=|Z|=NX*+Y*,

and is Rayleigh distributed with PDF

2
r

fa (r) :Lze_?,
o

The Cumulative Density Function (CDF) is identified as

2
r

Fp(r)=1-¢ 20"

The statistics of the Rayleigh distribution are as follows.
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Table 2. Statistics of Rayleigh distribution.
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Figure 20. Rayleigh PDF, with statistics identified.
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Appendix B — Comments on SICD Image Format

The National Geospatial-Intelligence Agency (NGA) has created and adopted a standard format
for SAR images known as the Sensor Independent Complex Data (SICD) format. We briefly
examine here some aspects of the SICD format applicable to the topic of this report. Details can
be found in the SICD documentation by NGA.?!

Pixel Formats

The current SICD format allows for three distinct pixel formats, given in Table 3.

Table 3. SICD Pixel Types.

Pixel Type Format description

RE32F _IM32F Each pixel is stored as a pair of numbers that
represent the real and imaginary components.
Each component is stored in a 32-bit IEEE
binary32 floating point format (4 bytes per
component, 8 bytes per pixel).

RE161_IM16l Each pixel is stored as a pair of numbers that
represent the real and imaginary components.
Each component is stored in a 16-bit signed
integer in 2’s complement format (2 bytes per
component, 4 bytes per pixel).

AMPS8I|_PHSS8I Each pixel is stored as a pair of numbers that
represent the amplitude and phase
components. Each component is stored in an
8-bit unsigned integer (1 byte per component,
2 bytes per pixel).

The pixel type RE32F_IM32F, by virtue of it being floating point numbers, offers the largest
dynamic range.

Note that the pixel type RE161_IM161 uses signed integers, meaning that the dynamic range is
limited to 15 bits, instead of 16 bits, accounting for the sign-bit.

In addition, for a pixel type AMP8I_PHS8I, the stored pixel value might optionally be used as an
index into a lookup table to determine the actual pixel magnitude value. If used, this amplitude
lookup table is stored in an SICD parameter identified as AmpTable. This allows for
companding of magnitude data to enhance dynamic range of the stored data.**

_41] -



Radiometric Calibration

The current SICD format allows several optional mechanisms to describe the correspondence of
pixel values to radiometric parameters. The relationship is generally expressed as a 2-
dimensional polynomial dependent on image row and column indices. i.e. allowing for spatial
variance. The SICD parameters are described in Table 4.

Table 4. SICD Radiometric Correction Parameters.

Parameter

Description

RCSSFPoly

Polynomial coefficients that yield a scale
factor to convert pixel power to RCS (m?) as a
function of image row coordinate (variable 1)
and column coordinate (variable 2).

SigmaZeroSFPoly

Polynomial coefficients that yield a scale
factor to convert pixel power to clutter
parameter Sigma-Zero (ov) as a function of
image row coordinate (variable 1) and column
coordinate (variable 2).

BetaZeroSFPoly

Polynomial coefficients that yield a scale
factor to convert pixel power to radar
brightness or Beta-Zero (/o) as a function of
image row coordinate (variable 1) and column
coordinate (variable 2).

GammaZeroSFPoly

Polynomial coefficients that yield a scale
factor to convert pixel power to clutter
parameter Gamma-Zero () as a function of
image row coordinate (variable 1) and column
coordinate (variable 2).

Each of these describes the nature of a 2-dimensional polynomial, where coefficients are
specified for specific exponent combinations, with the overall orders of the polynomial specified
as attributes. The spatially-variant relationship allows for images that are not corrected for
variations in antenna beam patterns and range loss. These various parameters are not entirely
independent of each other; related via imaging geometry and resolution, etc.
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Noise Floor

The current SICD format requires an indication of the noise level in the pixels of the image,
expressed as a 2-dimensional polynomial dependent on image row and column indices. i.e.
allowing for spatial variance. The SICD parameters describing noise are given in Table 5.

Table 5. SICD Noise Description Parameters.

Parameter

Description

NoiselLevelType

Parameter to indicate that the noise power
polynomial yields either absolute power level
or power level relative to the Scene Center
Point (SCP) pixel location.

NoisePoly

Polynomial coefficients that yield thermal
noise power (in dB) in a pixel as a function of
image row coordinate (variable 1) and column
coordinate (variable 2).

NoisePoly describes the nature of a 2-dimensional polynomial, where coefficients are specified
for specific exponent combinations. The spatially variant relationship allows for images that
might have been corrected for variations in antenna beam patterns and range loss.
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“Change the way you look at things and the things you look at change.’
— Wayne W. Dyer

_44 -



References

14

20

21

Ana Radonji¢, Sarah R. Allred, Alan L. Gilchrist, David H. Brainard, “The Dynamic Range of Human Lightness
Perception,” Current Biology, Vol. 21, pp. 1931-1936, November 22, 2011.

Timo Kunkel, Erik Reinhard, “A Reassessment of the Simultaneous Dynamic Range of the Human Visual
System,” Proceedings of the 7th Symposium on Applied Perception in Graphics and Visualization, APGV '10, pp.
17-24, Los Angeles, California, 23-24 July 2010.

Armin W. Doerry, SAR Image Complex Pixel Representations, Sandia National Laboratories Report SAND2015-
2309, Unlimited Release, March 2015.

A. W. Doerry, “Representing SAR complex image pixels,” SPIE 2016 Defense & Security Symposium, Radar
Sensor Technology XX, Vol. 9829, Baltimore, MD, 17-21 April 2016.

Armin W. Doerry, Performance Limits for Synthetic Aperture Radar — second edition, Sandia National
Laboratories Report SAND2006-0821, Unlimited Release, February 2006.

Armin W. Doerry, Collecting and Processing Data for High Quality CCD Images, Sandia National Laboratories
Report SAND2007-1545, Unlimited Release, March 2007.

G. L. Hover, G. A. Mastin, R. M. Axline, J. D. Bradley, Evaluation of Synthetic Aperture Radar for Oil-Spill
Response, U.S. Coast Guard Final Report CG-D-02-94, Unclassified, October 1993.

Maurice W. Long, Radar Reflectivity of Land and Sea, 2" edition, ISBN 0-89006-130-0, Artech House Inc.,
1983.

Fawwaz T. Ulaby, M. Craig Dobson, Handbook of Radar Scattering Statistics for Terrain, ISBN 0-89006-336-2,
Artech House Inc., 1989.

Ann Marie Raynal, Douglas L. Bickel, Dale F. Dubbert, Tobias J. Verge, Bryan L. Burns, Ralf Dunkel, Armin W.
Doerry, “Radar cross section statistics of cultural clutter at Ku-band,” SPIE 2012 Defense, Security & Sensing
Symposium, Radar Sensor Technology XVI, Vol. 8361, Baltimore MD, 23-27 April 2012.

Armin W. Doerry, Reflectors for SAR Performance Testing — second edition, Sandia National Laboratories
Report SAND2014-0882, Unlimited Release, Supersedes SAND2008-0396, February 2014.

Rafael C. Gonzalez, Paul Wintz, Digital Image Processing — second edition, ISBN 0-201-11026-1, Addison-
Wesley Publishing Company, Inc., 1987.

A. W. Doerry, “Radiometric calibration of range-Doppler radar data,” SPIE 2019 Defense & Commercial Sensing
Symposium, Radar Sensor Technology XXIII, Vol. 11003, Baltimore, MD, 14-18 April 2019.

IEEE Standard for Floating-Point Arithmetic, IEEE Std 754™-2008, IEEE Computer Society, 29 August 2008.
Fred E. Nathanson, RADAR Design Principles — second edition, ISBN 0-07-046052-3, McGraw-Hill, Inc., 1991.

K. Krishen, “Detection of oil spills using a 13.3-GHz radar scatterometer,” Journal of Geophysical Research,
Vol. 78, No. 12, pp. 1952-1963, 20 April 1973.

J. W. Johnson, W. F. Croswell, “Characteristics of 13.9 GHz radar scattering from oil films on the sea surface,”
Radio Science, Vol. 17, No. 3, pp. 611-617, May-June 1982.

Bernice E. Rogowitz, Lloyd A. Treinish, “Data visualization: the end of the rainbow,” IEEE Spectrum,
December 1998.

Alan D. Kalvin, Bernice E. Rogowitz, Adar Pelah, Aron Cohen, “Building perceptual color maps for visualizing
interval data,” SPIE 2000 Electronic Imaging, Human Vision and Electronic Imaging V, Vol. 3959, San Jose,
CA, USA, 2 June 2000.

Matthias Geissbuehler, Theo Lasser, “How to display data by color schemes compatible with red-green color
perception deficiencies,” Optics Express, Vol. 21, Issue 8, pp. 9862-9874, 2013.

“SENSOR INDEPENDENT COMPLEX DATA (SICD),” Volume 1, Design & Implementation Description
Document, NGA STANDARDIZATION DOCUMENT, NGA.STND.0024-1 1.1, Version 1.1, 30 September
2014.

_45 -



Distribution

Unlimited Release

Hardcopy Internal

1 A. W. Doerry 5349  MS 0519
1 L. Klein 5349  MS 0519
1 M. R. Lewis 5349  MS 0519
1 S. P. Castillo 5340  MS 0532

Email—External

Brandeis Marquette Brandeis.Marquette@ga-asi.com General Atomics ASI
Jean Valentine Jean.Valentine(@ga-asi.com General Atomics ASI
John Fanelle John.Fanelle@ga-asi.com General Atomics ASI

Email—Internal

Technical Library 9536 libref@sandia.gov

- 46 -



-47 -



Sandia
National
Laboratories

Sandia National Laboratories
is a multimission laboratory
managed and operated by
National Technology &
Engineering Solutions of
Sandia LLC, a wholly owned
subsidiary of Honeywell
International Inc. for the U.S.
Department of Energy’s
National Nuclear Security
Administration under contract
DE-NA0003525.




