
Sandia National Laboratories
C.R. Trott, D. Sunderland, N. Ellingwood, D. Ibanez,
S. Bova, J. Miles, D. Hollman, D. Lanbreche, V. Dang

Sandia
National
Laboratories

C++ Performance Portability or Bust
• Typical Industry estimate for Developer Productivity:

• Optimistic estimate: 10% of an application needs to get rewritten for adoption

of a new Shared Memory Parallel Programming Model

• Typical Apps: 300k — 600k Lines

• Typical App Port => 2-3 Man-Years

• Large Scientific Libraries

• E3SM: 1,000k Lines x 10% => 5 Man-Years

• Trilinos: 4,000k Lines x 10% => 20 Man-Years

• Example: Change from NVIDIA Pascal to Volta architecture broke
synchronization

• 3 code places in Kokkos needed fixing => 2 man-months work

• Trilinos implemented as native CUDA would have had 400 places

Kokkos Provides: Vendor-Independent Isolation Layer

Applications

SNL SPARC
CFD Vehicle Reentry

t =0

.o

w Al

• C.

• Ni

• Fe

Libraries

SNL LAMMPS UT Uintah
Molecular Dynamics Combustion

LLNL Sierra
IBM Power9 / NVIDIA Volta LANL/SNL Trinity

Intel Haswell / Intel KNL

Frameworks

ANL Aurora2l
Intel unannounced Novel Architecture

SNL NALU
CFD Wind Turbine

SNL ASTRA
ARM Architecture

Upcoming: Asynchronous Dispatch with
Dependencies

• C++ standard is moving towards more asynchronicity

• Executors proposal for supporting heterogeneous computing

• Dispatch of parallel work returns new kind of future

• Dispatch consumes future for dependency ordering

• Aligning Kokkos with this development means:

• Introduction of Execution space instances

DefaultExecutionSpace spaces[2];
partition(DefaultExecutionSpace()„ 2, spaces)
// f1 and f2 are executed cimultaneously
parallel_for(RangePolicy<>(spaces[0], 0,
parallel_for(RangePolicy<>(spaces[1], 0,
// wait for all work to finish
fence();

N), f1);
N), f2);

• Patterns return futures and Execution Policies consume them

auto fut_1 = parallel_for(
RangePolicy<>("Functl", 0, N), f1);

auto fut_2a = parallel_for(
RangePolicy<>("Funct2a", fut_1,0, N), f2a);

auto fut_2b = parallel_for(
RangePolicy<>("Funct2b", fut_1, N), f2b);

auto fut_3 = parallel_for(
RangePolicy<>("Funct3", all(fut_2a,fut2_b)„

fence(fut_3);
N), f3);

Fundamental Capabilities

Parallel Loops

Parallel Reduction

Tightly Nested

Loops (exp)

Non-Tightly

Nested Loops

Task Dag

Data Allocation

Data Transfer

Exec Spaces

parallel_for(N, KOKKOS_LAMBDA (int i) { ...BODY... });

parallel_reduce(RangePolicy<ExecSpace>(0,N), KOKKOS_LAMBDA (int i, double& upd) {

...BODY...

upd +=

}, result);

parallel_for(MDRangePolicy<Rank<3> > ({0,0,0},{N1,N2,N3},{T1,T2,T3},

KOKKOS_LAMBDA (int i, int j, int k) {...BODY...});

parallel_for(TeamPolicy<Schedule<Dynamic>>(N, TS), KOKKOS_LAMBDA (Team team) {

... COMMON CODE 1 ...

parallel_for(TeamThreadRange(team, M(N)), [&] (int j) { ... INNER BODY... });

... COMMON CODE 2 ...

});

task_spawn(TaskTeam(scheduler , priority), KOKKOS_LAMBDA (Team team) { ... BODY });

View<double", Layout, MemSpace> a("A",N,M);

deep_copy(a,b);

Serial, Threads, OpenMP, Cuda, ROCm (experimental)

Upcoming: Kokkos Remote Spaces
• PGAS Models may become more viable for HPC with both changes in network

architectures and the emergence of "super-node" architectures

• Example DGX2 vioo vloo vloo vloo
• First SuperNode

• 300GB/s per GPU

V100

V100

• Idea: Add new memory spaces which return data handles with shmem semantics to
Kokkos View

• View<double**[3], LayoutLeft, NVShmemSpace> a("A",N,M);

• Operator a(i,j,k) returns:
template<>
struct NVShmemElement<double>
NVShmemElement(int pe_, double* ptr_):pe(pe_),ptr(ptr_)
int pe; double* ptr;
void operator = (double val) shmem_double_p(ptr,val,pe); }

};

• Test Problem: CG-Solve

• Using the miniFE problem NA3

• Compare to optimized CUDA

• MPI version is using overlapping

• DGX2 4 GPU workstation

• 3 Variants

• Full use of SHMEM

• lnline functions by ptr mapping

• Explicit by-rank indexing

6000

5000

Si 4000

_c
ttj 3000
o

- 2000

1000

0

CGSolve Performance

1001'3 2001'3 400^3

_ MPI SHMEM SHMEM-Inline SHMEM-Index

Development Roadmap

Q2 FY19: CUDA stream support as precursor for instances

• User is responsible for creating streams

Q3 FY19: Initial ExecSpace Instances

• Cuda fully supported, OpenMP will serialize,

Q4 FY19: Initial RemoteSpaces for PGAS
Q4 FY19: Working AMD GPU support for Apps (compilers are main issue)
H1FY20: Initial RemoteSpaces for Resilience
H1FY20: Initial Dependency support for parallel dispatch
H1FY20: Initial Support for ANL Aurora Architecture

I0

01

SA IV
V -4 4

National Nuclear Security Administration

SAND2019-XXXX C

U.S. DEPARTMENT OF

ENERGY
Sandia National Laboratories is a multimission laboratory managed and operated by

National Technology and Engineering Solutions of Sandia, LLC., a wholly owned
subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's

National Nuclear Security Administration under contract DE-NA-0003525.

ST 2.3.1.04 SNL ATDM PMR

SAND2019-0170D

