
SANDIA REPORT
SAND2017-8569
Unlimited Release
Printed August 2017

DAGSENS: Directed Acyclic Graph
Based Direct and Adjoint Transient
Sensitivity Analysis for Event-Driven
Objective Functions

Karthik V. Aadithya, Eric Keiter, and Ting Mei

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntisledworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2

SAND2017-8569
Unlimited Release

Printed August 2017

DAGSENS: Directed Acyclic Graph Based Direct and Adjoint
Transient Sensitivity Analysis for Event-Driven Objective

Functions

Karthik V. Aadithyai, Eric Keiter, and Ting Mei
Electrical Models and Simulation
Sandia National Laboratories

P.O. Box 5800
Albuquerque, NM 87185-1177

1Corresponding author. Email: kvaadit@sandia . gov

3

Abstract

We present DAGSENS, a new theory for parametric transient sensitivity analysis of Differential Al-
gebraic Equation systems (DAEs), such as SPICE-level circuits. The key ideas behind DAGSENS
are, (1) to represent the entire sequence of computations, starting from DAE parameters, all the
way up to the objective function whose sensitivity is needed, as a Directed Acyclic Graph (DAG)
called the "sensitivity DAG", and (2) to compute the required sensitivites efficiently (with time com-
plexity linear in the size of the sensitivity DAG) by leveraging dynamic programming techniques
to traverse the DAG. DAGSENS is simple, elegant, and easy-to-understand compared to existing
sensitivity analysis approaches; for example, in DAGSENS, one can switch between direct and ad-
joint transient sensitivities just by changing the direction of DAG traversal (i.e., topological order vs.
reverse topological order). Also, DAGSENS is significantly more powerful than existing sensitivity
analysis approaches because it allows one to compute the sensitivities of a much more general
class of objective functions, including those defined based on "events" that occur during a transient
simulation (e.g., a node voltage crossing a particular threshold, a phase-locked loop (PLL) achiev-
ing lock, a signal reaching its maximum/minimum value during a transient run, etc.). In this paper,
we apply DAGSENS to compute the sensitivities of important event-driven performance metrics
in several real-world electronic and biological applications, including high-speed communication
(featuring sub-systems such as I/0 links and PLLs), statistical cell library characterization, and
gene expression in Drosophila embryos.

4

Contents

1. Introduction 9

2. Core Techniques and Algorithms for DAG-based Event-driven Sensitivity Analysis 12

2.1 DAE models of dynamical systems 12

2.2 Transient analysis of DAEs 12

2.3 Transient sensitivity analysis of DAEs 13

2.4 The sensitivity DAG 14

2.5 Objective functions and the sensitivity DAG 16

2.6 Sensitivity analysis = DAG path enumeration 18

2.7 Direct and Adjoint approaches to DAG path enumeration 19

2.8 Event-driven objective functions 22

2.9 Sensitivity analysis of event-driven objective functions 22

2.10 Augmenting the sensitivity DAG for event-driven objective functions 23

2.11 DAGSENS: The overall flow for event-driven objective functions 25

3. Results 26

3.1 High-speed communication sub-systems 26

3.1.1 A "maximum crosstalW' example 26

3.1.2 A PLL example 28

3.2 Statistical cell library characterization 30

3.3 Biological applications 31

5

4. Summary, Conclusions, and Future Work 36

6

List of Figures

2.1 The DAG structure underlying a transient simulation. 15

2.2 Adding a final point objective function to the sensitivity DAG. 17

2.3 Adding an integral objective function to the sensitivity DAG. 17

2.4 The DAG of Fig. 2.2, with edge-weights denoted by partial derivatives. 18

2.5 The key ideas behind efficient direct and adjoint DAG path enumeration in DAGSENS. 20

2.6 Adding (a) events, and (b) an event-driven objective, to the sensitivity DAG 24

3.1 (a) The circuit used to determine the magnitude of crosstalk induced by an aggres-
sor on a victim. (b, c) Transient simulation of the circuit in (a) without and with
pre/de-emphasis respectively, with the event corresponding to maximum crosstalk
in each case. (d through i) Sensitivities of the maximum crosstalk with respect to
each segment resistance (d, e), segment capacitance (f, g), and coupling capaci-
tance (h, i), without (d, f, h) and with (e, g, i) pre/de-emphasis. 27

3.2 (a) Block diagram of a PLL, with the underlying equations, (b, c) Transient simula-
tion of low-bandwidth (b) and high-bandwidth (c) PLLs on an input waveform that
abruptly changes frequency at t = 50ns. The high-bandwidth PLL regains lock more
quickly, but features a larger peak-to-peak swing in vctl around its ideal DC value. . 29

3.3 A CMOS NAND gate driving an RC load. 30

3.4 Transient simulation of the CMOS NAND gate of Fig. 3.3 for two different input
transitions, showing the 20% and 80% "transition complete" events, and the corre-
sponding "gate delay" objective function in each case. 31

3.5 A model for gene expression in a Drosophila embryo, featuring transcription, trans-
lation, and decay (part a), as well as diffusion across nuclei (part b) 32

3.6 Transient simulation of gene expression in a Drosophila embryo 33

3.7 Sensitivities of peak mRNA and protein concentrations, as well as the times at which
these peak concentrations occur, across nuclei, for the Drosophila embryo gene
expression system. 34

7

8

1. Introduction

This report is about a new, elegant, and powerful approach to computing transient sensitivities of
dynamical systems. Such sensitivities have several well-known uses in scientific and engineering
applications, including design optimization [1], uncertainty quantification [2], stability analysis [3],
and transient global error control [4].

Parametric transient sensitivities have long been used in integrated circuit design [5, 6]. To this
day, such sensitivities are being heavily used for a variety of circuit design applications, including
optimization and tuning [7], yield estimation [8], performance modelling [9], statistical cell library
characterization [10], etc. Indeed, as CMOS technology moves to progressively smaller feature
sizes (7 nm and below), and with the advent of near-threshold and sub-threshold computing, the
importance of parametric sensitivity analysis in variability-aware circuit design is likely to grow
even further, due to the increasingly significant role played by parameter variability in determining
circuit performance (speed, power consumption, bandwidth, etc.), as well as yield [8-10].

Parametric sensitivities are also important for analyzing and designing biological systems. Appli-
cations in this domain include identifying influential kinetic parameters and model order reduction
of chemical reaction networks [11], improving model accuracy and separating biological mecha-
nisms from mathematical artifacts [12,13], calculating the relative importance of different parallelly
executing processes in biological phenomena such as gene expression [14], understanding the
factors at work behind the robustness of biological systems to parameter variability [15,16], etc.

Broadly speaking, there are two main approaches to sensitivity analysis: "direct" and "adjoint".
Direct methods [6] involve computing the sensitivities of all intermediate quantities with respect
to system parameters (by repeatedly applying the chain rule of differentiation), until the sensitivity
of the desired "objective function" is eventually found. Thus, direct methods are relatively easy
to understand and implement, but scale poorly for problems with large numbers of parameters.
Adjoint methods [3,10, 17-20], on the other hand, work backwards; they compute the sensitivities
of the objective function with respect to all intermediate quantities, until the desired sensitivity of
the objective function with respect to the parameters is eventually found. Thus, adjoint methods
are somewhat harder to understand and implement, but unlike direct methods, they scale well to
problems with large numbers of parameters, as long as the dimensions of the objective functions
are relatively small. In other words, if one is only interested in calculating the sensitivities of a
small number of performance metrics with respect to a large number of parameters, then adjoint
methods allow one to take advantage of the small dimensionality of the performance space to sig-
nificantly speed up sensitivity analysis. Modern circuit simulation problems often fit this description;
in these cases, computing sensitivities is usually practical only using adjoint methods.

Despite their long history and continued importance, we believe that adjoint methods are not well

9

understood. This, we believe, is at least in part because existing descriptions in the literature
use hard-to-understand concepts and somewhat esoteric constructs such as adjoint circuits [5, 7],
integrating Differential-Algebraic Equations (DAEs) backwards in time [17, 18, 20], complicated
mathematics involving feeding 6-function inputs to DAEs [17], etc.

Moreover, previous works on sensitivity analysis have lacked generality with respect to the ob-
jective functions supported. Indeed, they have restricted themselves to the sensitivities of DAE
solution variables at specific points in time (i.e., "final point" objective functions, §2.5) [10, 19], or
integrals of the solution over time (i.e., "integral" objective functions, §2.5) [18,20], or simple combi-
nations thereof, such as the ratio of two integrals [17]. In practice, such simple objective functions
are often inadequate because real-world objectives of interest often do not fit either a "final point"
or an "integral" description. Circuit designers frequently need more advanced metrics, which we
describe as "event-driven" objectives. Such objectives are defined based on "events" that take
place during the course of a transient run. Examples include a signal crossing a user-specified
threshold, or possibly reaching a maximum/minimum value. A more complicated objective function
could be the amount of time taken by a phase-locked loop (PLL) to lock to a new input frequency.
The "achievement of lock" by a PLL is a transient event, and so the "time to lock" is an event-driven
objective function, whose sensitivities with respect to PLL parameters are of interest to designers.
These types of "event-driven" objectives are common in circuit analysis, but are outside the scope
of existing sensitivity analysis tools. Indeed, many popular circuit simulators already provide ways
to calculate such event-driven objectives (e.g., the . MEASURE feature found in HSPICE® [21] and
Xyce® [22]); we believe we are the first to address the problem of calculating the sensitivities of
such objectives.

In this report, we develop DAGSENS, a new theory for transient sensitivity analysis based on
Directed Acyclic Graphs (DAGs). In this approach, we construct a DAG where each intermedi-
ate quantity computed during a transient run is represented as a node, starting from the DAE
parameters, all the way up to the objective function (§2.4, §2.5). Once this DAG is constructed,
all required sensitivities can be obtained by traversing it, using efficient techniques based on dy-
namic programming (§2.7) [23, 24]. A key advantage is the simplicity and elegance of the DAG
approach, which we believe previous approaches lack; for example, in DAGSENS, to switch from
direct to adjoint sensitivity analysis, one simply changes the direction of DAG traversal from topo-
logical order to reverse topological order (§2.7), much like forward and reverse mode automatic
differentiation [25,26]. Moreover, DAGSENS works seamlessly for all integration methods, without
the need for adjoint circuits, or complicated backwards-in-time integration formulas, or 8-function
inputs to DAEs, etc. We believe that, due to its ease of understandability, DAGSENS can make
the benefits of sensitivity analysis accessible to a wider audience, including device engineers, cir-
cuit designers, and students. Also, DAGSENS is more powerful than existing sensitivity analysis
approaches, because it is capable of handling more general objective functions. For example, we
define and develop the notion of event-driven objectives described above, and show how to use
DAGSENS to compute direct and adjoint transient sensitivities for such objective functions (§2.8
through §2.11).

The rest of this report is organized as follows. In Chapter 2, we provide some technical back-
ground (on DAEs, transient analysis, transient sensitivity analysis, etc.), and then delve into the
key ideas and core concepts underlying DAGSENS. In Chapter 3, we apply DAGSENS to compute
event-driven sensitivities in several representative real-world electronic and biological applications,
including high-speed communication (§3.1), statistical cell library characterization (§3.2), and gene

10

expression in Drosophila embryos (§3.3). In Chapter 4, we conclude and provide directions for fu-
ture work that we intend to pursue.

1 1

2. Core Techniques and
Algorithms for DAG-based
Event-driven Sensitivity
Analysis

2.1 DAE models of dynamical systems

Throughout this report, we assume that the system we wish to analyze is a DAE of the form:

dt
—
d

+ f(Y(t),77(t),75) = 0, (2.1)

where is the system's state vector (e.g., a list of voltages and currents), /5 is a vector of parame-
ters with respect to which we wish to compute sensitivities (transistor widths and lengths, parasitic
resistances and capacitances, etc.), 77, is a vector of inputs to the system, and t denotes time. We
note that Eq. (2.1) is capable of modelling virtually any electronic circuit at the SPICE level, and
many biological systems as well [27-29].

2.2 Transient analysis of DAEs

Given an initial condition Z(to) = Yo, and time-varying inputs17(t) to the DAE of Eq. (2.1), transient
analysis refers to the problem of solving for the time-varying DAE state (t) over a time-interval
[to, tf]. This is accomplished by discretizing time into a sequence {to, t1, ..., tN-1} (where
tN_1 = tf), and then approximating the respective DAE states {4, YN_1} by solving a
sequence of "Linear Multi-Step" (LMS) equations of the form [27, 28, 30, 31]:

(a CY.- 1Y) + 13i(-j) f (4-j, 77
j=0

ti_), iy)) = 0. (2.2)

Thus, at each step i (where 1 < i < N - 1), one solves Eq. (2.2) (using techniques like Newton-
Raphson iteration, homotopy, etc.) to determine 4, based on rn, previously calculated x values
(from earlier steps). Table 2.1 lists the a and ,3 coefficients used in Eq. (2.2) by several common

12

Method 774 Coefficient j = 2 j 1 j = 0

FE 1 az(-3)
1 1
- _ 1 - _ 1

13, (- 1

BE 1 az(-3)
1 1
- _ 1 - _ 1

13, (- 0 1

TRAP 1 az(-3)
1 1
_ 1 - _ 1

13, (- 0.5 0.5

GEAR2 2 az (-3)

1 1 1

ti-1 -ti-2
1

ti -ti_i

1

ti -ti -1
1

ti -4-2 ti -1 -ti -2

±
ti -4-2

13,(—i) 0 0 1

Table 2.1. Coefficients used in Eq. (2.2) by several common LMS
methods.

LMS methods, including Forward Euler (FE), Backward Euler (BE), Trapezoidal (TRAP), and second-
order Gear (GEAR2) [27, 30, 32, 33].

2.3 Transient sensitivity analysis of DAEs

Suppose we have a DAE in the form of Eq. (2.1), with nominal parameters /5*, and transient
solution Y*(t) over the interval [to, tf] (using the convention that starred quantities denote nominal
values, i.e., those evaluated at yr). The question behind transient sensitivity analysis is: if we
perturb the parameters slightly, how will the transient solution change? More precisely, suppose
we change the parameters from /5* to /5* + A/5, and as a result, the transient solution changes
from Y*(t) to Y*(t) + (t). The question is: what is the relationship between AY(t) and A/Y, in the
limit as Aii—> 6? The answer is obtained by doing a perturbation analysis of Eq. (2.1) [17-19]:

AY(t) = Sx(t) Afl, where (2.3)

[d (Px(t)Sx(t) + 4p(t))1 [Jfx(t)sx(t) p(t)1 = op-H(1/5-1.dt

The J terms in Eq. (2.4) denote nominal time-varying Jacobians,

''(t) _ aq *

X*(t), p *

, Jqp(t) = —
01Y

13

E*(t), 15**

(2.4)

(t) =
f x

A
0
f

E*(t),17(t),15*

A of, and ./11.
P 1:7
(t) = -

E*(t), 77(t), 15*

(2.5)

Since AY(t) is obtained by multiplying Sx(t) with A/Y(Eq. 2.3), Sx(t) is called the sensitivity of (t)
with respect to /1, evaluated at jj'*. And Eq. (2.4), a matrix-valued DAE that tracks the evolution of
the x matrix Sx(t) over time, is called the "sensitivity DAE".

Note that the sensitivity DAE does not directly give us Sx(t). Rather, it needs to be solved for
Sx(t) [6]. The "direct" approach for this involves two rounds of transient analysis (although, in
practice, they are combined into one to save memory). In the first round, the original DAE (Eq. 2.1)
is solved using LMS techniques (§2.2). This yields a sequence of time-points {t,} (where 0 < i <
N — 1 and tN_1 = tf), as well as a corresponding sequence of DAE states {i*(i)} (§2.2). These,
in turn, are used to compute Jacobian sequences: {,Pg',x(i)}, {./I,x(i)}, and {.S(i)}.

In the second round, the sensitivity DAE (Eq. 2.4) is solved using the same LMS techniques, and
the same sequence of LMS methods (FE, BE, etc.) used for the first round. The LMS equations
that are solved (similar to Eq. 2.2) are:

j = 0

R;(i - Asx(i - + 4p(i - ..))1

+ [,-11;x(i -j) + JI;p(i — j)] = 04,1x (2.6)

where the a and /3 coefficients, as before, are found in Table 2.1. Solving the equations above
yields the required sensitivities Sx(i), for 0 < i < N , discretized over [to, tf]. Note that the initial
condition Sx(0) (i.e., the sensitivity of the initial DAE state Y*(0)) is needed to start the chain of
solves above; this is usually found by DC (steady-state) sensitivity analysis [27].

2.4 The sensitivity DAG

Each step of the transient analysis of §2.2 builds on previously computed DAE states, to solve for a
new DAE state. This sequence of computations fits naturally into a DAG structure (Fig. 2.1), much
like DAGs used in automatic differentiation [26], or Boolean function representation [34].

The nodes of the "sensitivity DAG" in Fig. 2.1 represent the quantities that are computed during
the transient simulation, and are labelled as such. The edges represent dependencies amongst
these quantities. For example, Fig. 2.1 assumes that the initial condition Y*(0) is computed from /5*
(e.g., via DC analysis [27, 28]); so, there is an edge from the /5* node to the i*(0) node. Similarly,
(1) is assumed to be computed from Y(0) and jj''' by solving Eq. (2.2), using an LMS method

with memory mi = 1, such as FE, BE, or TRAP (Table 2.1). So, there are edges leading from both
#* and Y*(0) to *(1). Finally, *(2) is assumed to be computed via an LMS method like GEAR2
that has memory m2 = 2 (Table 2.1). Therefore, when Eq. (2.2) is solved to determine *(2), both

14

-*(0), P(2))

w(5*, Y*(2))

Figure 2.1. The DAG structure underlying a transient simulation.

Y*(0) and Y*(1), as well as yr , are used in the computation. So, there are edges from all these
three nodes to Z*(2).

While Fig. 2.1 stops at Y*(2) for lack of space, the ideas behind the DAG construction can be
extended to the entire length of the transient simulation. In general, if the simulation has N points,
with indices 0 < i < N - 1, the corresponding sensitivity DAG will have N + 1 nodes (one for /5*,
and one for each Y*(i)). The Y*(0) node will have exactly one incoming edge (from pl. For all
other Z*(i), the number of incoming edges will be 1 + mz, where m, is the memory of the LMS
method used to compute Y*(i) via Eq. (2.2). One of these edges will originate at p'*, while the
others will originate at the 'Mt nodes prior to Y*(i), i.e., the nodes Y*(i - j) for 1 < j < mz.

Also, each edge of the sensitivity DAG has a weight (Fig. 2.1). The weight of an edge from node u
to node v, denoted w(u, v), is equal to the partial derivative (or sensitivity) of v with respect to u; it
measures how much a small perturbation in u will affect the value of V. The weight w(15*, Y*(0)) is
obtained by doing a DC perturbation analysis of Eq. (2.1) [27], while all other weights are obtained
by doing a perturbation analysis of Eq. (2.2):

O(0)
1j,;p(0),w(IT*, i*(0)) = - fx

(0)

IL(p*, Y*(i)) = t p_*(:) = -Hi(0)4x(i) + 13i(0)J'fk.x(i)

[t (c'i(-i)4p(i - j) + 13i(- j),}1p(i - i)) ,
i=o

Yl<i<N- 1, and

15

-1

(2.7)

(2.8)

0i*(i)
w(S*(i — j), Z*(i)) — ax — j)

= [ai(0)4x(i) i3i(0)J'.fc(i)
-1

j) + -

Yl<i<N-1,1<j<m2 (2.9)

2.5 Objective functions and the sensitivity
DAG

In many applications, we are not directly interested in the sensitivities of i*(t), but would like
to compute the sensitivities of important transient performance metrics (i.e., "objective functions")
derived from Y*(t) (and denoted 01. Below, we discuss two kinds of objective functions commonly
found in the sensitivity analysis literature ("final point" and "integral" objectives), and show how to
add these to the sensitivity DAG.

Final point objectives. These take the form [10, 19]:

= - 1), p'*), (2.10)

where Y*(N - 1) is the final point in the transient simulation. Note that, if .) needs to be
evaluated at multiple time-points, then each needs to be considered a separate objective, which
will increase the dimension of the objective function. The sensitivity So of a final point objective
function, evaluated at ii*, is given by:

= Ji*ix(N - 1)Sx(N - 1) + Ji*ip(N - 1), (2.11)

where the Jacobian symbols have their usual meanings.

To add such an objective function to the sensitivity DAG, we add a new node with two incoming
edges: one from g* with weight Jt*ip(N - 1), and one from Y*(N - 1) with weight JrL(N - 1) (as
shown in Fig. 2.2 for N = 3).

lntegral objectives. These take the form [18, 20]:

Therefore, we have:

tf
= h(t, *(t), p*) dt. (2.12)

t=to

16

w(Y*(0), Y*(2))

JL(N —1)

J;;,(N — 1

Figure 2.2. Adding a final point objective function to the sensitiv-
ity DAG.

= f
tf
(4x(t)Sx(t) + J4(t)) dt.

t=to

In practice, the integral in Eq. (2.13) is approximated by a summation:

i=0

PL(i)sx(i) + 4p(i)) (ti+1 - ti)]

w(Y*(0), (75*)

w(g*, c:*)

Figure 2.3. Adding an integral objective function to the sensitivity
DAG.

(2.13)

(2.14)

To add such an objective function to the sensitivity DAG, we add a new node with N incoming
edges: one from ri* , and the rest from i*(i), where 0 < i < N — 2 (i.e., from every point in the
transient simulation except the last, as illustrated in Fig. 2.3 for N = 3). The weights of these
edges are:

17

N-2

It)(15.*1 = >2, Wip(i)(t2+1 ti)) , and
i=c)

w(x*(i), c3*) = 4,x(i)(ti±i — ti), V 0 < i < N — 2.

(2.15)

(2.16)

With the introduction of a node representing the objective function, the sensitivity DAG is "com-
plete": it now accurately represents all the intermediate computations involved in calculating the
objective function starting from the DAE parameters. Moreover, the partial sensitivities of these
computations are also available from the DAG's edge-weights. Thus, we now have all the informa-
tion needed to do an end-to-end sensitivity analysis.

2.6 Sensitivity analysis = DAG path
enumeration

00*
015**

Figure 2.4. The DAG of Fig. 2.2, with edge-weights denoted by
partial derivatives.

Our goal is to compute the sensitivity of the objective function with respect to the DAE parameters
/5", evaluated at /5*. Let us take a closer look at this computation, through an example. Fig. 2.4
shows the sensitivity DAG for a 3-step transient simulation and a final point objective function. This
is the same DAG from Fig. 2.2, except that we changed the edge-weight notation to make it clear
that the edge-weights are, in fact, partial derivatives. Now, we repeatedly apply the chain rule of
differentiation to find the sensitivity of the objective function:

18

Sensitivity dc5
we need di5

ac-b.* di(2)

p
dp-* 015* + OY*(2) dg*

.*
Chain Rule Chain Rule

0,73:* OZ*(2) OP(2) dY*(1) OP(2) dI*(0)
=

Og*
+

OY*(2) Op'
+
OP(1) dg*

+
OY*(0) dg*

Chain Rule Chain Rule

=
Op Ox*(2) Op* ax*(1) Op'

+
OP(0) dg*

+
OP(0) Op')

0q3'" (0i12) 0I12) (0Y*(1) OP(1) dY*(0) Oil2) OY*(0)

Chain Rule

=
Op Ox*(2) Op* ax*(1) Op' *
 (0i12) OP(2) (OV(1) OP(1) 0Z*(0)) OZ*(2) OY*(0))

+ Ox_
(0) Op*

+
Ox*(0) Op*

[(V,* OP(2) OP(2) OY*(1)
[071* Oi*(2) Op'

+
OV(2) Ox*(1) Op'

Path: 75**—> <75* Path:1r—> *(2)—> .!;* Path: ii*—Y*(1)—>P(2)—

ac-b* OY*(2) OZ*(1) OY*(0) OY*(2) OP(0)
OP(2) Oi*(1) Oil()) ir OY*(2) OP(0) Og*

Path: /5'—>1*(0) P'(1)—> Y*(2)—> q-5 * Path: /5'—> Y*(0)—> Y*(2)—r (5*

7 7 is a path from
p to (6* in the sensitivity DAG

(Product of edge-weights of in reverse).

The derivation above shows that the sensitivity is a sum of terms, where each term corresponds
to a unique path from p'* to (6* in the sensitivity DAG; more precisely, each term is a "product of
edge-weights in reverse" of some path from 15* to 0*. Thus, we have a key insight: solving the
sensitivity analysis problem is the same as enumerating paths in the sensitivity DAG.

Taking a cue from this, we define the "weight of a path" in the sensitivity DAG to be the product
of weights of all the edges along the path, in reverse. Also, given any two nodes u and v in the
DAG, we define 0-(u, v) to be the sum of the weights of all the paths in the DAG that start at u and
end at v. Thus, solving the sensitivity analysis problem is the same as computing 0-(15.*, 0*) in the
sensitivity DAG.

2.7 Direct and Adjoint approaches to DAG
path enumeration

We just reduced sensitivity analysis to the problem of adding up the weights of all paths from fi* to
0* in the sensitivity DAG. The brute-force approach to this, however, is computationally infeasible
because the number of such paths grows exponentially as the size of the DAG [23, 24]. Therefore,
we use dynamic programming techniques to efficiently enumerate DAG paths, and hence solve

19

the sensitivity analysis problem in linear time in the size of the DAG [23, 24].

a(g*,

(W(7-1, 0*) a(g*/

u (u, C-6*)
is an edge in the

sensitivity DAG

u))

Direct sensitivity analysis: Optimal sub-structure for dynamic programming

(b)

a(r, cb.) =
E (0-(z),

v I (Pr, v)
is an edge in the

sensitivity DAG

v))

Adjoint sensitivity analysis: Optimal sub-structure for dynamic programming

Figure 2.5. The key ideas behind efficient direct and adjoint DAG
path enumeration in DAGSENS.

Fig. 2.5 illustrates the key idea that we exploit, which is that the problem of computing 0-W*, can
be repeatedly broken down into smaller, simpler, sub-problems. There are 2 ways to do this: (1)
the "direct" approach (Fig. 2.5a), where we keep the source ii* constant, and express a(ii*, q5.*) in
terms of a(fl*, u), where u is one step closer to /Y* than 0*, or (2) the "adjoint" approach (Fig. 2.5b),
where we keep the destination 0* constant, and express a(j5*, 0*) in terms of a(v, 0*), where v
is one step closer to 0* than p'*. Both approaches give us optimal sub-structures for dynamic
programming, as formalised in Algorithms 1 and 2 respectively.

Algorithms 1 and 2 both compute a topological ordering, i.e., a permutation of the DAG nodes
such that if (u, v) is a DAG edge, then u occurs before v in the permutation [23, 24]. But while
Algorithm 1 traverses the nodes in topological order, Algorithm 2 traverses them in reverse topo-
logical order. At every such node u (v), Algorithm 1 (2) computes ()(p*, u) (0-(v, (6*)), making use
of the optimal sub-structure logic in Fig. 2.5a (2.5b). This continues until, finally, the 0* (JP) node
is reached, at which time the computed a(75*, 0*) is returned as the required sensitivity. Thus,
while Algorithm 1 involves computing the sensitivity of each intermediate DAG node with respect
to the DAE parameters, Algorithm 2 involves computing the sensitivity of the objective function
with respect to each intermediate DAG node. So, the former (latter) implements direct (adjoint)
sensitivity analysis in DAGSENS [3,10,17-20].

20

Algorithm 1: Direct transient sensitivity analysis in DAGSENS

input: The sensitivity DAG G, with nodes ri* and ..* representing the DAE parameters and
the objective function respectively

Output: The sensitivity a(ii*, 0*), calculated via dynamic programming using the "direct"
optimal sub-structure (Fig. 2.5a)

1 0-(g*, T7*) = Ir107,1 // identity matrix
2 order = topological_sort(G)
3 for u in order do
4

5

6

a(.75*, u) = OHilxr
for v such that (v, u) is an edge in G do

L a(15.*, u) += w(v,u) a(15.*, v)

7 return 6(75*, ...*)

Algorithm 2: Adjoint transient sensitivity analysis in DAGSENS

input: The sensitivity DAG G, with nodes ri* and ..* representing the DAE parameters and
the objective function respectively

Output: The sensitivity a(ii*, 0*), calculated via dynamic programming using the "adjoint"
optimal sub-structure (Fig. 2.5b)

1 a(q5*, ...k) =11c-b"lc-b* / / identity matrix

2 order = reyersed(topological_sort(G))
3 for v in order do
4 ci(v, --q;*) = Olcb*Ixm

5

6

for u such that (v, u) is an edge in G do

L a(v, ..*) += a(u, ..*-) w(v,u)

7 return a(g*, ..*)

21

Finally, Line 6 of Algorithm 2 involves pre-multiplying the edge-weight w(v, u) by the matrix cr(u, (75*).
Since most edge-weights are of the form B-1C (Eqs. 2.7, 2.8, and 2.9), this is a computation of the
form AB-1C, which can be done either as A(B-1C), or as (AB-1)C = ((BT)-1AT)TC (where
matrix/matrix solves are sparse in many applications of interest). If the number of rows of A is
much smaller than the number of columns of C (i.e., the dimension of the objective function is
much smaller than that of the DAE parameter space), the latter is likely to be much more efficient
than the former, which we exploit heavily in DAGSENS.

2.8 Event-driven objective functions
As mentioned in Chapter 1, we would like to define "events" that happen during a transient simu-
lation (e.g., a node voltage crossing a particular threshold, a PLL in a circuit achieving lock, etc.),
and then compute sensitivities of objectives that are based on these events. For our purposes, an
"event" ev is specified by the condition:

gev(T'e'v, Y*(4v), JP') = 0, (2.17)

where Te*v is the time at which the event occurs during a transient simulation. In practice, we may
need additional constraints to uniquely identify the event (such as limits on Te*v, or a specification
such as "the third time Eq. (2.17) is satisfied", etc.). But for sensitivity analysis, we can ignore
these additional specifications because we only do perturbation analysis of Eq. (2.17) in a small
neighbourbood around '7- 1,. Also, we note that events corresponding to a signal reaching its maxi-
mum/minimum value are specified by adding a new DAE state variable representing the derivative
of the signal in question, and by equating this variable to zero via Eq. (2.17) (see Chapter 3 for
examples).

Given a sequence of M events 1 < ev < M, our event-driven objective function takes the form:

0 = -fio-r, 4, ... , T.,;„, Y*(4), Y*(4), ... , (T.W, g*). (2.18)

Thus, event-driven objective functions depend on the times of occurrence of a set of events, as well
as the DAE states at these times, both of which change when the DAE parameters are perturbed.

2.9 Sensitivity analysis of event-driven
objective functions

Let us denote by S„v and S„v, where 1 < ev < M, the sensitivities of our event times, and DAE
states at these times, respectively. Note that Sx,,, Sx(Tev); while Sx(7..1) only takes into account
the sensitivity of the DAE state Y , Sxev takes into account the sensitivities of both the DAE state Y
and the event time Tev. With this distinction in mind, perturbation analysis of Eq. (2.17) yields:

22

J* Sx(4v) Jg*
S T„ = g evx eV]) and

(40 +
Sxev = (T'ek. v) + 1*(4v) STev

where

*

x (4v) =
dt
—i*(t) , V 1 < ev < M,

Tev

(2.19)

(2.20)

(2.21)

and where Jacobian terms have their usual meanings, and are all evaluated at (4v, Y*(4v), /77).
Therefore, we first need to solve for the event, i.e., find TeV and Y*(4,,), before we can compute
STev and Sxev. We do this by finding a time-point tz of the transient simulation where the gev(., .)
function undergoes a sign change between tz and t2+1. We then use a modified LMS strategy to
solve for the event, by solving:

(cvev(O,Te'v) 4V*(4v), 11*) 13ev(O, 4v) f(Y*(4v), 17(4v), P *))
mev

+ E (aev(4v) CY*(i - j +1), 17*)
i=1

i3ev(-j, T;tt) f(Y*(i - j + t-7(ti-j+1), #*)) = 6, and (2.22)

gev(re*v, P(re*v), g*) = 0. (2.23)

These equations are similar to Eq. (2.2). But here, we treat both the next time-point Te*v and
the next DAE state i*(4v) as unknowns. So, the a and i3 coefficients become functions of the

unknowns as well. Also, we use LMS approximations to calculate the (4v) term in Eqs. (2.19)
and (2.20).

Finally, the sensitivity of our event-driven objective function is given by:

= J4+
ev=1

(-̀rh,TevSTev fik-tx(Tev)Sxev)

2.10 Augmenting the sensitivity DAG for
event-driven objective functions

(2.24)

Fig. 2.6 shows how to add an event-driven objective function to the sensitivity DAG. For each event
1 < ev < M, we add three new nodes (Fig. 2.6a): a partial Y*(Te*v) node whose sensitivity equals
Sx(Te*v) (which is created just like any other node in the transient simulation, following §2.4), and
nodes corresponding to 4v and P(-re*v), which are created according to Eqs. (2.19) and (2.20)
respectively. The edges associated with these nodes, and their weights, are shown in Fig. 2.6 (a).

23

(a)

—fr*(•)
X 2

Nodes
already
present

T*

Jg* ev x x Te*v) + t/g*ev
*

J;ev (Te*,.,) + J ;ev,

*
Tev

7,*

I I x

New nodes added

Weights calculated
using Eq. (9)

Weight calculated
/ using Eq. (8)

Figure 2.6. Adding (a) events, and (b) an event-driven objective,
to the sensitivity DAG.

24

Finally, we add a new node ''' to capture the event-driven objective function. As shown in
Fig. 2.6 (b), this node has incoming edges from ii*, as well as from all the ye*v and V(re*v) nodes
above. The weights of these edges, as shown in the figure, follow Eq. (2.24).

2.11 DAGSENS: The overall flow for
event-driven objective functions

Based on the preceding sections, Algorithm 3 outlines the overall flow that DAGSENS uses for
computing direct and adjoint sensitivities of event-driven objective functions.

Algorithm 3: Event-driven sensitivity analysis in DAGSENS

input: A DAE D in the form of Eq. (2.1), nominal DAE parameters p'*, DAE inputs /7(0 over
an interval [to, t f], events 1 < ev < M in the form of Eq. (2.17), and an event-driven
objective function 0 in the form of Eq. (2.18)

Output: The sensitivity of the objective function with respect to the DAE parameters,
evaluated at ir

1 Do a transient analysis of D, using parameters p'*, with inputs fi(t), over the time-interval
[to, tf].

2 Record Jacobians ,I,(t), ,I I,(t), ,I;,(t), and ,S(t) from the transient simulation.

3 Build a sensitivity DAG G, using information from the transient run and the Jacobians above,
via Eqs. (2.7), (2.8), and (2.9).

4 for 1 < ev < M do
5 Solve for event ev, i.e., find '7- 1 and Y*(1-'1,), by constructing and solving Eqs. (2.22) and

(2.23).

6 Augment the sensitivity DAG with nodes corresponding to ev, as outlined in §2.10.

7 Augment the sensitivity DAG with a ,73.* node, as outlined in §2.10.

8 Traverse the sensitivity DAG using either Algorithm 1 (for direct sensitivities), or Algorithm 2
(for adjoint sensitivities).

9 Return the sensitivities computed above.

25

3. Results

We have developed a Python implementation of DAGSENS, which we now apply to compute
event-driven sensitivities in some electronic and biological applications, including high-speed com-
munication, statistical cell library characterization, and gene expression in Drosophila embryos.

3.1 High-speed communication
sub-systems

3.1.1 A "maximum crosstalk" example

In modern high-speed I/0 links, "crosstalk" between parallel channels (e.g., in a CPU/DRAM in-
terface) often adversely impacts bandwidth [35-37]. When two signal-carrying lines lie physically
close together on-chip, the bits transported in one of the lines (the aggressor) often interfere with
those in the other line (the victim), via cross-coupled capacitances [35-37]. Fig. 3.1 (a) shows
the circuit that we designed to tease out the impact of such crosstalk. The aggressor and victim
are both modelled as RC chains driving capacitive loads. The circuit has two sub-circuits: the
right one where crosstalk is modelled via cross-coupled capacitances, and the left one without
crosstalk. The difference between the victim's outputs in these two sub-circuits is a measure of
crosstalk (Fig. 3.1a).

Our "event" of interest is when the crosstalk reaches its maximum value during a transient run. And
our event-driven objective function 0 is the value of this maximum crosstalk. Parts (b) and (c) of
Fig. 3.1 depict these events during a transient simulation, where the aggressor and victim transmit
their bits without and with pre/de-emphasis respectively. While pre/de-emphasis is a good strategy
for boosting bandwidth by improving signal integrity at the receiver, it can have the drawback of
increasing crosstalk [35-37].

Parts (d) to (i) of Fig. 3.1 show the results of applying DAGSENS to the system above, where
the sensitivities of the maximum crosstalk with respect to each segment resistance, segment ca-
pacitance, and coupling capacitance are plotted as bar charts. It is interesting to see (parts d, e)
that the maximum crosstalk is more sensitive to the first few segment resistances when pre/de-
emphasis is employed. Also, it is interesting that the sensitivities with respect to segment capaci-
tances rise in a convex manner (parts f, g), while those with respect to coupling capacitances rise
in a concave manner (parts h, i). Table 3.1 shows the precise impact of using pre/de-emphasis
on maximum crosstalk sensitivities with respect to various system and load parameters. Thus,

26

Aggresser N unft

I I I ICtuo

T
Ctua

T T

V-1 1 1 1
C'"I I

N units —pH

Subdrcult without crosstalk

Without Pre/De.Emphasis

- VInlagot — Real Voutrap. — R.I Vouttolc) — Crosstalk

— "'MO kortlagal ideal Voutivicl

(12117__

-• Max Crosstalk Event

Aggressor
Bit Pattern

4rn

Prer15.

Emphasis

(a)

4 0

Pre/De
Emphasis

tirU-

"imBk Pattem

 alos(.1

tir
Crosstalk

10 0
ri

30
me Ins)

14 N units • Aggressor

C, Coupling

BeW

N units • Warm

Subercuit with crosstalk

With Pre/De.Emphasis

- VlnlpPl — Real Vootla./ — Real V.I./ — Crosstak

— Vint.) --- ideal voutlakal --- ideal Yost..

=

:M - Crosstalk Event

10
'rime Ins)

so

Max Crosstalk Sensitivities

Without Pre/De-Emphasis With Pre/De-Emphasis

Sensitivity(Max CrOSstalic) Sensitivity(Max Crosstalk)

4.."

ri

(d)
0.05

E oua

4"

0.02

,N

Segment Resistance Index

0.00

Sensitivity(Max Crosstalk)

(f)

0.10

06

2 0.00

0 02

°" 5 10 15
0.00

20

Segment Capacitance Index

Sensitivity(Max Crosstalk)

(h) 0.35

0.30i0.2S

2 010 '1'0 25

4" 4'0.20
;gt 0.15

A n."
,5 015

A 010

.5

(e)

5 10 15 20

Segment Resistance Index

Sensitivity(Max Crosstalk)

(g)

5 10 15 10

Segment Capacitance index

Sensitivity(Max Crosstalk)

(i)

1
Coupling Capacitance Index

20

Coupling CZacirancesindex
5 10 15

Figure 3.1. (a) The circuit used to determine the magnitude of
crosstalk induced by an aggressor on a victim. (b, c) Transient
simulation of the circuit in (a) without and with pre/de-emphasis
respectively, with the event corresponding to maximum crosstalk
in each case. (d through i) Sensitivities of the maximum crosstalk
with respect to each segment resistance (d, e), segment capaci-
tance (f, g), and coupling capacitance (h, i), without (d, f, h) and
with (e, g, i) pre/de-emphasis.

Parameter

Without

Pre/De-

Emphasis

With

Pre/De-

Emphasis

% impact of

Pre/De-

Emphasis

95 (V) 0.1183 0.1372 15.98%

Total Rseg (Id2) 0.6611 0.5219 —21.06%

Sens(0)
Total Cseg (pF)

Total Ccross (pF)
0.7770

3.9643

0.7851

4.7049
1.04%

18.68%

Cload (pF) 4.0547 4.7960 18.28%

Table 3.1. The impact of using pre/de-emphasis on the sensitiv-
ities of maximum crosstalk (0), with respect to total segment re-
sistance, total segment capacitance, total cross capacitance, and
load capacitance.

27

event-driven DAGSENS can allow high-speed link engineers to obtain insights that would not be

possible with existing sensitivity analysis tools.

N tdir tadj Adj. speedup

1 2.50 s 2.09 s 1.19

5 5.39 s 4.21 s 1.28

10 9.03 s 6.83 s 1.32
20 16.47 s 12.13 s 1.36

50 38.98 s 27.74 s 1.41

100 1.32 mins 53.92 s 1.47

200 2.92 mins 1.77 mins 1.66

500 10.37 mins 4.41 mins 2.35

1000 1.33 hours 9.03 mins 8.81

2000 6.06 hours 18.27 mins 19.90

5000
Out of memory
after > 27 hours

46.11 mins > 35

10000 Did not try 1.55 hours N/A

Table 3.2. Adjoint sensitivity analysis carries powerful advan-
tages over direct sensitivity analysis when the dimension of the
objective function is much smaller than that of the DAE parameter
space.

Also, since our objective function has dimension 1, as opposed to the DAE parameter space that

has dimension O(3N), where N is the number of segments, this is also a good test case to illus-

trate the benefits of adjoint over direct sensitivity analysis. Table 3.2 shows the speedups achieved

by adjoint DAGSENS over direct DAGSENS for various N; as N increases, the speedups become

more impressive. We note that, at present, DAGSENS is a proof-of-concept code written in Python

rather than production code written in a language like C or C++. In particular, efficient garbage col-

lection and memory management techniques have not been implemented in DAGSENS yet, which

is why the program can run out of memory relatively easily. We plan to address these issues in

the future (Chapter 4), but we believe that the benefits of adjoint analysis over direct analysis are

still clear from Table 3.2.

3.1.2 A PLL example

PLLs are widely used in high-speed communication sub-systems for frequency synthesis, clock

and data recovery (CDR), etc. [35,38,39]. The lock time of a PLL, i.e., how quickly a PLL can lock

to a new input frequency, is critical in these applications. Since a PLL achieving lock is a transient

event, we can use DAGSENS to calculate the sensivities of a PLUs lock time with respect to its

parameters.

Fig. 3.2 (a) shows a high-level block-diagram for a PLL, and also the equations and parameters

associated with each component [38,39]. Parts (b) and (c) of Fig. 3.2 show transient simulations

of two PLLs, one with a low-bandwidth loop filter (b) and the other with a high-bandwidth loop

28

Phase Freque xy

Detector (PFD)

FPFD -KPFIFinVout

Loop Filter (RC)

Vctl

Voltage Controlled Oscillator (VCO)

PFD

= (Ara) +KVC0lictl)

Vout = C08(050Ut)

Vou

t; 1.0V

-1.ov
ea 0.44ns

g 0.03ns

(b) PLL simulation with loop filter bandwidth 0.11GHz
- Vin - Vout - VCO Vctl - Peak o-peak time delta between Vin and %/out]

1 I

I I I

IAA 13101 Nig I

11- Lock lost
I 11.1m._.1111 1111

50

T
R
A
N
 w
a
v
e
f
o
r
m
s
 o
f
in

te
re

st

1.0V

Lock lost

Vctl

!Swing
Lock regained

I Exploded view

Ti - ns) 60

.1- Lock regained

70 80

1 Vctl Swing 7

Lock lost -I.!
regained

I Exploded view
(c) PLL simulation wit oop filter bandwidth 0.45GHz
Vln - Vout - VC deka betw .nd Vou

1.111111
I 41- Lock lost
4- Lock regained

1.11111111111111111111111,111111111111
50 Tirne (ns) 60 70 80

Figure 3.2. (a) Block diagram of a PLL, with the underlying equa-
tions, (b, c) Transient simulation of low-bandwidth (b) and high-
bandwidth (c) PLLs on an input waveform that abruptly changes
frequency at t = 5Ons. The high-bandwidth PLL regains lock more
quickly, but features a larger peak-to-peak swing in 17,t1 around its
ideal DC value.

Low Bandwidth

(fc = 0.11GHz)
Loop Filter

H ig h Bandwidth
= 0.45GHz)
Loop Filter

Parameter
Lock Vct1 swing Lock Vct1 swing

time (ns) (mV) time (ns) (mV)

14.85 45.41 1.68 182.94

KPFD (V 1)
R (kS2)

Sens(cb) C (pF)

Kvco (V-1GHz)

fvco (GHz)

-1.95
1.47
2.06
-1.95
-5.12

45.76
-32.61
-45.65
0.35
-0.01

-0.17
0.27
0.37
-0.17
-0.21

188.67
-259.66
-363.53
5.72
0.93

Table 3.3. Sensitivities of PLL lock times and peak-to-peak Vct1
swings at lock, with respect to various macromodel parameters,
for low and high bandwidth loop filters.

29

filter (c). In each case, the input waveform abruptly switches its frequency at t = 5Ons, throwing
the PLLs off lock. The PLLs eventually regain lock, as can be seen from the red bars that graph
the time elapsed between the peaks of Vin (the PLL input) and the nearest peaks of vout (the
PLL output) in each case. Our event-driven objective functions are the respective PLL lock times,
defined as the time taken for the respective vctl waveforms to settle into a narrow range around
their final expected values, as well as the peak-to-peak swings in vctl at lock. If one used an ideal
loop filter, vctl would settle to a DC value, so the swing in vctl is a measure of non-ideality in the
PLI2s response. While we would like PLLs to lock quickly and have small vctl swings, there is
often a tradeoff between these: high (low) bandwidth PLLs lock quickly (slowly), but exhibit larger
(smaller) 17ctl swings, as shown in parts (b) and (c) of Fig. 3.2. Table 3.3 shows the sensitivities of
the event-driven objectives above (PLL lock times as well as 17ctl swings at lock), with respect to
the PLL macromodel parameters shown in Fig. 3.2 (a). From the table, it is clear that when a high
(low) bandwidth loop filter is used in the PLL, both the lock time and its sensitivities tend to be
lower (higher), whereas both the vctl swing at lock and its sensitivities tend to be higher (lower).

3.2 Statistical cell library characterization
As we approach 7 nm CMOS, statistical characterization of cell libraries for digital design, taking
into account the sensitivities of important performance metrics like speed and power consumption,
with respect to device parameters, is crucial [10,40,41]. We now use DAGSENS to calculate the
sensitivities of one such event-driven metric, namely, the 20% to 80% transition delay, of a 22 nm
CMOS NAND gate driving an RC load (Fig. 3.3), with respect to various NMOS, PMOS, and load
parameters.

A

VDD

Figure 3.3. A CMOS NAND gate driving an RC load.

30

C load

80%

0

NAND gate response for (A, B): (0, 0) -> (1, 1)

— Vin: A — Vin: B — Vout: C

(a)

20% transition
complete event

0.00 0.25

80% transition
complete event

01.
Delay objfunc

0.50 0.75

Time (ns)

1.00

NAND gate response for (A, B): (1, 1) -> (0, 0)

— vin: A — vin: B — Vout: C

(b)

a, 80% —

o

20% —

20%
transition
complete
event

.1.

80% transition
complete event

Delay objfunc

1.25 0.00 0.25 0.50 0.75

Time (ns)

Figure 3.4. Transient simulation of the CMOS NAND gate of
Fig. 3.3 for two different input transitions, showing the 20% and
80% "transition complete" events, and the corresponding "gate de-
lay" objective function in each case.

1.00 1.25

Fig. 3.4 shows 2 transitions of the NAND gate above (while there are 6 possible transitions that
switch the output, we show only 2 to save space, although we analyze the sensitivities of all 6 in
Table 3.4). Fig. 3.4 also shows the "20% complete" and "80% complete" events in each case, as
well as our event-driven gate delay objective function, i.e., the time elapsed between these two
events. Table 3.4 shows the event-driven sensitivities of the NAND gate delay to various NMOS
and PMOS parameters (including widths, lengths, threshold voltages, parasitic resistances and
capacitances, etc.), as well as load parameters. It is interesting to see that, in most (although not
all) cases, the gate delay is more sensitive to PMOS (NMOS) parameters during "pull up" ("pull
down") transitions, as one would intuitively expect.

3.3 Biological applications

We now apply DAGSENS to a biological example, i.e., gene expression via transcription, trans-
lation, decay, and diffusion in Drosophila embryos (Fig. 3.5) [14, 42]. The system consists of a
Drosophila gene that generates mRNA molecules via transcription, which in turn generate protein
molecules via translation. In parallel, the mRNA and protein molecules also decay. This is all
shown in Fig. 3.5 (a) [14,42]. Also, these reactions take place across multiple sites (called nuclei),
and whenever there is an mRNA/protein concentration difference between two adjacent nuclei,
mRNA/protein molecules flow across nuclei to balance the gap (Fig. 3.5b) [14,42]. In our example,
we have N = 52 nuclei, and each nucleus i (where 1 < i < N) has an mRNA concentration
[mRNA],, and a protein concentration [protein]Z. The system has a single exponentially decaying
external input u(t) that governs the rate of transcription. The differential-equation model for the
system is:

31

Input transition (A, B)

(Ps)

Sens(cb)
wrt PMOS
parameters

Sens(0)
wrt NMOS
parameters

Sens(0) wrt

load parameters

Gene

Parameter Pull down transitions Pull up transitions

(0, 0) (1, 1) (0, 1) (1, 1) (1, 0) (1, 1) (1, 1) -> (1, 0) (1, 1) -> (0, 1) (1, 1) -> (0, 0)

292.70 292.89 292.85 302.92 293.93 147.38

W (nm) 7.87 x 10-6 3.37 x 10-5 2.11 x 10-5 -4.96 -4.77 -2.37
L (nm) -2.36 x 10-5 -1.01 x 10-4 -6.32 x 10-5 14.87 14.31 7.12

Vth (V) 8.66 x 10-4 3.71 x 10-3 2.32 x 10-3 -904.66 -867.64 -431.64

Rd (kQ) 9.93 x 10-4 9.78 x 10-4 9.81 x 10-4 0.68 0.66 0.31
Rs (kQ) -3.75 x 10-6 -1.79 x 10-5 -1.11 x 10-5 2.88 2.76 1.38
Rds (GQ) -0.15 -0.15 -0.15 0.15 0.14 0.04
Cgd (fF) 572.50 560.58 562.92 625.30 620.19 326.68

(fF) 3.05 x 10-7 1.65 x 10-7 1.73 x 10-7 5.24 x 10-3 5.10 x 10-3 4.69 x 10-3
Cdb (fF) 542.01 544.03 545.59 576.72 573.06 283.58
Csa (fF) 5.42 x 10-14 5.72 x 10-14 5.14 x 10-14 4.96 x 10-7 4.94 x 10-7 5.04 x 10-7

W (nm) -6.79 -6.80 -6.82 1.32 x 10-3 2.77 x 10-4 -2.81 x 10-3
L (nm) 13.59 13.61 13.65 -2.65 x 10-3 -5.54 x 10-4 5.62 x 10-3

Vth (V) 813.20 814.42 816.31 -25.84 -0.02 -0.72
Rd (Id° 2.53 2.54 2.54 7.86 x 10-3 3.31 x 10-4 5.18 x 10-4

Rs (lcQ) 4.51 4.50 4.52 5.73 x 10-4 -2.04 x 10-4 -4.64 x 10-5
Rds (GQ) 0.03 0.03 0.03 -0.06 -0.08 -0.02
Cgd (fF) 321.58 311.81 310.31 510.84 333.66 174.65
Cgs (fF) 35.36 32.44 28.97 173.82 2.34 x 10-3 11.30
Cdb (fF) 298.82 295.27 301.73 462.18 286.53 141.53
Csa (fF) 27.84 23.28 28.97 173.82 6.84 x 10-5 -0.27

Rload (kO) 0.57 0.57 0.57 0.54 0.59 0.59

Cload (fF) 272.14 273.15 273.93 289.45 287.71 142.98

Table 3.4. NAND gate delay sensitivities with respect to various
NMOS, PMOS, and load parameters, for all input transitions that
switch the output.

Transcription

mRNA Protein

mRNA Gene

Decay

(a)

dy

 ► Nothing

mRNA diffusion proportional to conc. difference
41- 41-

000 nucleus i-1 4111EM nucleus i+1 000

protein diffusion proportional to conc. difference

(b)

Figure 3.5. A model for gene expression in a Drosophila embryo,
featuring transcription, translation, and decay (part a), as well as
diffusion across nuclei (part b).

32

d
—
t
[mRNA]i = gmRNA u(t) dmRNAUrnRNAli-1 - [mRNA],)

Transcription Diffusion from previous nucleus

▪ dmRNACI-11RNAli+1 — [mRNA],) - ArnRNA [mRNA],, and

Diffusion from next nucleus Decay

d
—[protein]i = aprotein [mRNA]i + dprotein([1protein],_i — [protein],)dt ...__,,,_..., ..._...„,.._—,

Translation Diffusion from previous nucleus

+ dprotein aprotein],+1 - [protein],) - Aprotein [Protein],,,..._„..._—, ..._„,..._—,
Diffusion from next nucleus Decay

(3.1)

(3.2)

with the understanding that the "diffusion from previous (next) nucleus" term is 0 for the first (last)
(i = 1 (N)) nucleus.

7.2

z
cc
E 2.7

0 0

3.2

2 1.4

0.0

Gene expression in Drosophila embryo: mRNA and protein concentrations

Each nucleus features a maximum [mRNA] event

5 10 15 20 25

(b)

Each nucleus features a maximum [protein] event

10 15

Time (minutes)

20

Figure 3.6. Transient simulation of gene expression in a
Drosophila embryo.

25

Fig. 3.6 shows a transient run of the system above; at each nucleus i, there comes a time when
[mRNA], reaches its maximum value (before mRNA decay begins to take its toll), and a (slightly
later) time when [protein], reaches its maximum value (before protein decay takes its toll). These
"maximum concentration" events are of interest in many gene expression systems, and so we
set the times of these events, and the corresponding maximum concentration values, to be our
event-driven objective functions.

33

9.0

Sens([mRNA] peak time) Sens([protein] peak time)
7.4

(a)

0.0 -I

11.6

1 10 20 30 40 50

Nuclei

0.0

(b)

1 10 20 30

Nuclei
40 50

Sens([mRNA] peak value) Sens([protein] peak value)

0.0 -

(c)

1 10 20 30

Nuclei

12.9

0.0

(d)

1 10 20 30 40 50

Nuclei

Sens. wrt gmRNA Sens. wrt dmRNA Sens. wrt AmRNA
Sens. wrt - protein Sens. wrt dprotein Sens. wrt Aprotein

Figure 3.7. Sensitivities of peak mRNA and protein concentra-
tions, as well as the times at which these peak concentrations
occur, across nuclei, for the Drosophila embryo gene expression
system.

34

Fig. 3.7 shows a plot of these event-driven sensitivities, across nuclei, with respect to various
system parameters. It is interesting to see that, while the peak mRNA and protein event times, as
well as the peak mRNA concentration value, are all most sensitive to the mRNA decay constant
AmRNA, the peak protein concentration value is most sensitive to the protein translation constant
aproten, for all the nuclei.

35

4. Summary, Conclusions,
and Future Work

To summarise, we have developed and demonstrated DAGSENS, a simple, elegant, and powerful
theory for transient sensitivity analysis based on directed acyclic graphs. We have also shown
how DAGSENS can be applied to carry out direct and adjoint transient sensitivity analysis of an
entirely new kind of objective function defined based on events that happen during a transient
simulation. We have demonstrated this on several real-world applications including high-speed
communication (with I/0 link and PLL examples), statistical cell library characterization, and gene
expression in biological systems.

In future, we would like to significantly improve the DAGSENS code-base, for better CPU and
memory performance; in particular, we would like to migrate DAGSENS from a proof-of-concept
Python implementation to a production-level C++ implementation in the open-source circuit sim-
ulator Xyce® [22]. We believe that this would also enable us to run DAGSENS on much larger
examples than we can at present.

36

References

[1] J. Nocedal and S. Wright. Numerical optimization. Springer-Verlag, New York, 2006.

[2] A. K. Alekseev, I. M. Navon, and M. E. Zelentsov. The estimation of functional uncertainty
using polynomial chaos and adjoint equations. lnternational Journal for Numerical Methods
in Fluids, 67(3):328-341, 2011.

[3] R. M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society,
78(11):2577-2591, 1997.

[4] Y. Cao and L. Petzold. A posteriori error estimation and global error control for ordinary differ-
ential equations by the adjoint method. SIAM Journal on Scientific Computing, 26(2):359-374,
2004.

[5] S. Director and R. Rohrer. The generalized adjoint network and network sensitivities. IEEE
Transactions on Circuit Theory, 16(3):318-323, 1969.

[6] D. E. Hocevar, P. Yang, T. N. Trick, and B. D. Epler. Transient sensitivity computation for
MOSFET circuits. IEEE Transactions on Electron Devices, 32(10):2165-2176, 1985.

[7] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, C. Visweswariah, and C. W. Wu. Jiffy-
Tune: Circuit optimization using time-domain sensitivities. IEEE Transactions on Computer-
Aided Design of lntegrated Circuits and Systems, 17(12):1292-1309, 1998.

[8]

[9]

C. Gu and J. Roychowdhury. An efficient, fully non-linear, variability-aware non-Monte-Carlo
yield estimation procedure with applications to SRAM cells and ring oscillators. In ASPDAC
'08: Proceedings of the 13th Asia and South Pacific Design Automation Conference, pages
754-761, 2008.

I. Stevanovic and . C. C. McAndrew. Quadratic backward propagation of variance for non-
linear statistical circuit modelling. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 28(9):1428-1432, 2009.

[10] B. Gu, K. Gullapalli, Y. Zhang, and S. Sundareswaran. Faster statistical cell characteriza-
tion using adjoint sensitivity analysis. In CICC '08: Proceedings of the 30th Annual Custom
lntegrated Circuits Conference, pages 229-232, 2008.

[11] T. Turányi. Sensitivity analysis in chemical kinetics. International Journal of Chemical Kinetics,
40(11):685-686, 2008.

[12] T. Ziehn and A. S. Tomlin. GUI—HDMR: A software tool for global sensitivity analysis of
complex models. Environmental Modelling & Software, 24(7):775-785, 2009.

37

[13] J. M. Dresch, X. Liu, D. N. Arnosti, and A. Ay. Thermodynamic modelling of transcription: Sen-
sitivity analysis differentiates biological mechanism from mathematical model-induced effects.
BMC Systems Biology, 4(1):142, 2010.

[14] G. D. McCarthy, R. A. Drewell, and J. M. Dresch. Global sensitivity analysis of a dynamic
model for gene expression in Drosophila embryos. PeerJ, 3:e1022, 2015.

[15] M. Morohashi, A. E. Winn, M. T. Borisuk, H. Bolouri, J. Doyle, and H. Kitano. Robustness as
a measure of plausibility in models of biochemical networks. Journal of Theoretical Biology,
216(1):19-30, 2002.

[16] T. Eissing, F. Allgöwer, and E. Bullinger. Robustness properties of apoptosis models with
respect to parameter variations and intrinsic noise. Systems Biology, 152(4):221-228, 2005.

[17] A. Meir and J. Roychowdhury. BLAST: Efficient computation of non-linear delay sensitivities
in electronic and biological networks using barycentric Lagrange enabled transient adjoint
analysis. In DAC '12: Proceedings of the 49th Annual Design Automation Conference, pages
301-310, 2012.

[18] Y. Cao, S. Li, L. Petzold, and R. Serban. Adjoint sensitivity analysis for differential-algebraic
equations: The adjoint DAE system and its numerical solution. SIAM Journal on Scientific
Computing, 24(3):1076-1089, 2003.

[19] F. Y. Liu and P. Feldmann. A time-unrolling method to compute sensitivity of dynamic systems.
In DAC '14: Proceedings of the 51st Annual Design Automation Conference, 2014.

[20] R. Bartlett. A derivation of forward and adjoint sensitivities for ODEs and DAEs. Technical
Report SAND2007-6699, Sandia National Laboratories, Albuquerque, NM, USA, 2008.

[21] Synopsys. HSPICE® user guide: Simulation and analysis, 2010.

[22] E. R. Keiter, K. V. Aadithya, T. Mei, T. V. Russo, R. L. Schiek, P. E. Sholander, H. K. Thornquist,
and J. C. Verley. Xyce® parallel electronic simulator (v6.6): User's guide. Technical Report
SAND2016-11716, Sandia National Laboratories, Albuquerque, NM, USA, 2016.

[23] J. Kleinberg and E. Tardos. Algorithm design. Pearson Education, 2006.

[24] C. E. Leiserson, R. L. Rivest, C. Stein, and T. H. Cormen. lntroduction to algorithms. The
MIT Press, 2001.

[25] A. Griewank and A. Walther. Evaluating derivatives: Principles and techniques of algorithmic
differentiation. SIAM, 2008.

[26] C. H. Bischof, P. D. Hovland, and B. Norris. On the implementation of automatic differentiation
tools. Higher-Order and Symbolic Computation, 21(3):311-331, 2008.

[27] J. Roychowdhury. Numerical simulation and modelling of electronic and biochemical systems.
Foundations and Trends in Electronic Design Automation, 3(2-3):97-303, 2009.

[28] L. W. Nagel. SPICE2: A computer program to simulate semiconductor circuits. PhD thesis,
UC Berkeley, 1975.

[29] L. Edelstein-Keshet. Mathematical models in biology. SIAM, 2005.

38

[30] A. L. Sangiovanni-Vincentelli. Computer Design Aids for VLSI Circuits, chapter Circuit Simu-
lation, pages 19-112. Springer, Netherlands, 1984.

[31] L. O. Chua and P. M. Lin. Computer-aided analysis of electronic circuits: Algorithms and
computational techniques. 1975.

[32] H. Shichman. Integration system of a non-linear transient network analysis program. IEEE
Transactions on Circuit Theory, 17(3):378-386, 1970.

[33] C. W. Gear. The numerical integration of ordinary differential equations. Mathematics of
Computation, 21(98):146-156, 1967.

[34] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-decision diagrams. ACM
Computing Surveys, 24(3):293-318, 1992.

[35] G. Balamurugan, B. Casper, J. E. Jaussi, M. Mansuri, F. O'Mahony, and J. Kennedy. Modelling
and analysis of high-speed I/0 links. IEEE Transactions on Advanced Packaging, 32(2):237-
247, 2009.

[36] P. K. Hanumolu, G. Y. Wei, and U. K. Moon. Equalizers for high-speed serial links. Interna-
tional Journal of High Speed Electronics and Systems, 15(2):429-458, 2005.

[37] J. A. Davis and J. D. Meindl. lnterconnect technology and design for gigascale integration.
Springer, Netherlands, 2003.

[38] B. Razavi. Design of analog CMOS integrated circuits. Tata McGraw-Hill Publishing Company
Ltd., New Delhi, India, 2001.

[39] J. L. Stensby. Phase-locked loops: Theory and applications. CRC Press, 1997.

[40] A. Goel and S. Vrudhula. Statistical waveform and current source based standard cell models
for accurate timing analysis. In DAC '08: Proceedings of the 45th Annual Design Automation
Conference, pages 227-230, 2008.

[41] L. Yu, S. Saxena, C. Hess, I. M. Elfadel, D. Antoniadis, and D. Boning. Statistical library
characterization using belief propagation across multiple technology nodes. In DATE '15:
Proceedings of the 18th Design, Automation & Test Conference in Europe, pages 1383-1388,
2015.

[42] J. M. Dresch, M. A. Thompson, D. N. Arnosti, and C. Chiu. Two-layer mathematical modelling
of gene expression: Incorporating DNA-level information and system dynamics. SIAM Journal
on Applied Mathematics, 73(2):804-826, 2013.

39

DISTRIBUTION:

1 MS 0899 Technical Library, 9536 (electronic copy)

v1.40

41

Sandia National Laboratories

42

