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Abstract
The ability to estimate a range of plausible parameter values, based on experimental data, is a critical aspect
in process model validation and design optimization. In this paper, a Python software package is described
that allows for model-based parameter estimation along with characterization of the uncertainty associated
with the estimates. The software, called parmest, is available within the Pyomo open-source software project
as a third-party contribution. The software includes options to obtain confidence regions that are based on
single or multi-variate distributions, compute likelihood ratios, use bootstrap resampling in estimation, and
make use of parallel processing capabilities.
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Introduction

Parameter estimation, the process of estimating
model parameter values derived from a model and
experimental data, is often used to calibrate models
and to gain insight into complex physical processes
that cannot be measured directly. In many cases,
there is inherent uncertainty in our best estimate
of parameter values, and this uncertainty should be
used to inform design decisions. With quantified un-
certainty estimates, we can create multiple scenarios
of plausible parameter values to be used in design
optimization. In this paper, we describe a Python
software package that has been developed for model-
based parameter estimation along with characteri-
zation of the uncertainty associated with the esti-
mates. The software, called parmest, is based on
the Pyomo modeling language 0, and developed
as part of the IDAES project https : //idaes . ore.
The software is available as a third party contribu-
tion within Pyomo (pyomo/contrib module in https :

//githab.com/Pyomo/pyomo). The software package
includes online documentation and examples within
https://pyomo.readthedocs.io

In parameter estimation, we seek to estimate values
for a vector, 0, to use in the functional form

y = g(x; 0)

where x is a vector, typically in high dimension, B is
a vector in much lower dimension and the response
vectors are given as yi, i = 1, ,p with p also much
smaller than the dimension of x. This is done by
collecting S data points called samples, which are

y pairs and then finding B values that minimize
some function of the deviation between the values of
Y that are measured and the values of g("; 0) for each
corresponding x, which is a subvector of the vector
x. Note that for most experiments, only small parts
of x will change from one experiment to the next.

We start by assuming that the data points are in-
dexed by s = 1, . . . , S and the parameters are fit
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using Ellipse

where

s
min Q(0; E qs(0; fis) (1)

s=1

p

qs = E - gi( s; 0)? ,
i=i

i.e., the contribution of sample s to Q, where w E
is a vector of weights for the responses. For multi-
dimensional y, this is the squared weighted L2 norm
and for univarite y the weighted squared deviation.

Note that in general, the function y(•) often has a
large set of parameters that are not included in 0. It is
typically computationally expensive to compute g(.),
and the computation may fail to provide a solution
for some arguments.

The software package parmest solves Problem I to
get a point estimate, 0*. The software includes op-
tions to obtain confidence regions that are based on
single or multi-variate distributions, compute likeli-
hood ratios, use bootstrap resampling in estimation,
and make use of parallel processing capabilities. The
sequel describes these capabilities and includes a sim-
ple example.

Confidence Regions

Confidence regions provide an n-dimensional re-
gion that contains the true value of a parameter es-
timate with stated probability. Most confidence re-
gions are defined by a probability (1 — a) that the
true value of 0* is in the region where a is an input
parameter.

Rectangular

Rectangular confidence regions are formed using a
combination of simple single-variate estimate where
each dimension of 0 is treated separately using the
student-t distribution. The 1 — a level confidence
boundary for each dimension, j, is given by 0; ±
t,/2;,,s,, where v = S — 2 is the degrees of freedom
and sa is the sample standard deviation of 0 for di-
mension j.

Elliptical confidence regions rely on strong assump-
tions about multi-variate normality of the distribu-
tion of 0 in the region around 0*. To generate an
ellipse confidence region, it is very common to use
the Hessian of the likelihood function at 0* as the
inverse of the covariance matrix E671 to demarcate
ellipsoidal regions based on equi-distant values of the
(squared) Mahalanobis distance, defined as

(0 0.)TE671(0 0.)

where 0 is considered to be a column vector. These
distances obey a x2 distribution with S degrees of
freedom, which endows the regions with a probabilis-
tic interpretation. An implementation also based on
Pyomo is described by Eslick et al. A.
Likelihood Ratio

The likelihood ratio method was proposed for pa-
rameter estimation in Chemical Engineering applica-
tions by Rooney and Biegler [8]. To compute the
likelihood ratio, the test statistic for univariate y is:

SSE(0) 
(S — 2) 1)

SSE(0)

where SSE refers to the sum of squared errors, i.e.,
Q(0*; x, Y.). This is compared with the xT_a,s statis-
tic where S is the dimension of 0 and 1 — a is the
level. The a confidence region is defined by 0 vectors
such that

(S — 
2) SSE(0) 1) <

SSE(0*) 1—a,p

Within parmest, the user specifies a multidimen-
sional search space for the parameters of interest For
large search spaces, parallel processing is essential.
Currently, the same statistic is used for multi-variate
y, but in future releases we hope to enhance that
based on models presented by Seber and Wild [9].
Bootstrap

Bootstrap [®] is a widely used technique for resam-
pling from a sample distribution in order to gain in-
sight into the underlying parent distribution. In this
context, bootstrap allows us to work with a much



Number of processors Time (MM:SS)
1 10:52
2 5:35
4 3:24
8 1:42
16 0:56
32 0:36

Table 1: Parallel wall-clock timing results using
mpi4py for bootstrap confidence region estimation for
a semi-batch process.

larger dataset by resampling with replacement to gen-
erate a large number of additional datasets to be used
for estimation. Within parmest, the user specifies the
number of bootstrap samples, N, and the software
creates that number of samples randomly, subject to
the constraint that the number of unique experiments
in the newly-drawn sample exceeds the dimension of
O. These samples can be used to form confidence in-
tervals based on a multivariate normal or a kernel
density estimation procedure.

Parallel computation

Parallelism is implemented within parmest using
the mpi4py package. To demonstrate the value and
limits of our implementation of this form of paral-
lelism we tested bootstrap resampling on a simulated
data set with S = 14 with N = 128 using an example
from the literature [1] which estimates parameters of
a semi-batch process. We used the Pyomo DAE pack-
age [m] to discretize the differential equations. Results
shown in Table I were done on a computer with 96
fairly slow processors (2.1GHx Intel Xeon) and 1TB
of main memory. As the table shows, the parallel
efficiency deteriorates with more than eight proces-
sors, but the wall-clock time reduction is nonetheless
substantial.

Example

To illustrate the use of the parmest package, here
we use a reactor design model, originally presented
in [g] . This model represents a continuously stirred

tank reactor. Initially, the problem was presented as
a design problem, with the goal of choosing the size of
the reactor to maximize the production of one com-
ponent. We instead assume a fixed size reactor and
unknown rate constants for three different internal re-
actions (kl, k2, and k3). We can measure the output
concentrations of three different components, which
are then coupled with the model reaction equations
to estimate the three rate constants.
The entire simulated dataset was used to estimate

values for the internal reactions, resulting in kl of
0.846, k2 of 1.66, and k3 of 0.000168. Bootstrap
resampling was then used to gather information on
uncertainty that surrounds those estimates. The
dataset was resampled 200 times to generate boot-
strap parameter estimates, shown in Figure I.

Confidence regions for the same bootstrap resam-
pling are shown in Figure g and demonstrate the
differences between rectangular, multivariate normal,
and kernel density estimated regions. A slice of each
distribution is shown in the 2D figures, where the
missing dimension is set equal to 0*. For bootstrap
resampling, parmest returns the multivariate normal
and kernel density estimation distributions which can
be used to generate scenarios of plausible parameter
estimates.

Conclusions

This paper describes a new open source Python
package that has been developed for model-based pa-
rameter estimation along with characterization of the
uncertainty associated with the estimates. The soft-
ware is distributed as part of Pyomo. Future devel-
opment will focus on software modularity to support
a wider range of process models, optimization objec-
tives, and data formats.

Disclaimer

This software comes with no warranty of any kind
and is intended only for research use. Sandia Na-
tional Laboratories is a multimission laboratory man-
aged and operated by National Technology & Engi-
neering Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International Inc., for the
U.S. Department of Energy's National Nuclear Secu-



rity Administration under contract DE-NA0003525.
This paper describes objective technical results and
analysis. Any subjective views or opinions that might
be expressed in the paper do not necessarily represent
the views of the U.S. Department of Energy or the
United States Government.
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Figure 1: Distribution of parameter estimates using
parmest with bootstrap resampling.
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Figure 2: Parameter estimates and confidence regions
using bootstrap resampling. Figures include confi-
dence regions using 1 — a=0.8 (blue = mutli-variate
normal, red = kernel density estimation, grey = rect-
angular), black dot shows the location of 0*, and the
blue dots are the parameter estimates.


