An Evaluation of the CORAL Interconnects

Christopher Zimmer', Scott AtchleyT, Ramesh Pankajakshan®, Brian E. Smith, Ian Karlin*,
Matthew L. Leininger®, Adam Bertsch*, Brian S. Ryujin®, Jason Burmark®, André Walker-Loud®,
M. A. Clark®, Olga Pearce*

{zimmercj,atchleyes,smithbe}@ornl.gov
{karlin1,leininger4,pankajakshan1,bertsch2,ryujinl,burmark1,pearce8}@llnl.gov
walkloud@lbl.gov,mclark@nvidia.com
TOak Ridge National Laboratory,*Lawrence Livermore National Laboratory, “Lawrence Berkeley National Laboratory,
SNVIDIA Corporation

ABSTRACT

The US Department of Energy deployed the Summit and Sierra su-
percomputers with the latest state-of-the-art network interconnect
technology in 2018 and both systems entered production in 2019.
In this paper, we provide an in-depth assessment of the systems’
network interconnects that are based on Enhanced Data Rate (EDR)
100 Gb/s Mellanox InfiniBand. Both systems use second-generation
EDR Host Channel Adapters (HCAs) and switches with several new
features such as Adaptive Routing (AR), switch-based collectives,
and HCA-based tag matching. Although based on the same compo-
nents, Summit’s network is “non-blocking” (i.e., a fully provisioned
Clos network) and Sierra’s network has a 2:1 taper between the
racks and aggregation switches. We evaluate the two systems’ in-
terconnects using traditional communication benchmarks as well
as production applications. We find that the new Adaptive Routing
dramatically improves performance but the other new features still
need improvement.

CCS CONCEPTS

+ Networks — Network performance evaluation; Network
performance analysis.

KEYWORDS

High Performance Computing, interconnect, InfiniBand, EDR, la-
tency, bandwidth, switch collectives, congestion, tag matching, of-
fload

ACM Reference Format:

Christopher Zimmer!, Scott Atchley*, Ramesh Pankajakshan®, Brian E.
Smith?, Tan Karlin*, Matthew L. Leininger®, Adam Bertsch*, Brian S. Ryujin®,
Jason Burmark®, André Walker-Loud®, and M. A. Clark?, Olga Pearce®. 2019.
An Evaluation of the CORAL Interconnects. In The International Conference
for High Performance Computing, Networking, Storage, and Analysis (SC ’19),
November 17-22, 2019, Denver, CO, USA. ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3295500.3356166

Publication rights licensed to ACM. ACM acknowledges that this contribution was
authored or co-authored by an employee, contractor or affiliate of the United States
government. As such, the Government retains a nonexclusive, royalty-free right to
publish or reproduce this article, or to allow others to do so, for Government purposes
only.

SC 19, November 17-22, 2019, Denver, CO, USA

1 INTRODUCTION

In 2012, the US Department of Energy (DOE) formed the Collab-
oration of Oak Ridge, Argonne, and Livermore (CORAL), a joint
procurement effort to acquire three leadership class supercom-
puters. Oak Ridge and Livermore deployed and accepted the first
systems, Summit and Sierra, in 2018. The systems are based on the
IBM AC922 [17] node design. The nodes contain IBM POWER9
processors, NVIDIA V100 GPUs, a 1.6 TB Samsung NVMe storage
device, and two ports of EDR InfiniBand. Both systems entered into
production in early 2019. Summit and Sierra have held the number
one and two positions on the Top500 [12] since November 2018.

The Oak Ridge Leadership Computing Facility’s, (OLCF) Summit
system contains 4,608 compute nodes. The system fabric is a single
plane, “non-blocking” fat-tree! where both compute and storage
are integrated into the same fabric. The network design, with full
global bandwidth, caters to open-science, “capability” applications
exploring the natural world. OLCF defines a capability application
as one that uses between 20% and 100% of Summit’s nodes.

Livermore Computing’s (LC) Sierra system contains 4,320 com-
pute nodes. The system has a 2:1 tapered fat-tree network. To create
the taper, each edge switch has one connection to an aggregation
switch for every two connections to compute nodes. LC chose this
approach based on the capacity (less than 20% of system) and ca-
pability job size data as well an understanding of the messaging
patterns of key applications that are expected to use Sierra. The
money saved on the network allowed LC to procure additional
nodes that are expected to increase overall throughput more than
the performance lost through the network tapering.

In this paper, we seek to answer several questions regarding
the interconnects of these two large systems. First, how does the
addition of new InfiniBand technologies impact production appli-
cations and benchmarks? Mellanox EDR InfiniBand has introduced
several significant features to accelerate various aspects of an HPC
application. These new features include:

e Adaptive Routing (AR): the ability to re-route packets mid-
traversal to avoid congestion,

o Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP): an HPC collective optimization moving collective
processing into the switch and,

1While Summit’s network is a Clos network, we use the more common term “fat-tree”
to describe the topology of which Clos is a subset. Also, “non-blocking” is a theoretical
statement about a Clos network and Clos networks do experience congestion as we
will show.


https://doi.org/10.1145/3295500.3356166

SC ’19, November 17-22, 2019, Denver, CO, USA

e Hardware Tag Matching: an offloading of the MPI tag match-
ing algorithms to the HCA’s ASIC.

The second question seeks to address the impacts of system topol-
ogy differences. The Sierra and Summit systems, while employing
the same technologies, have slightly different configurations due to
their respective workloads. Sierra uses a 2:1 tapered fat-tree while
Summit uses a 1:1 “non-blocking” fat-tree. From a high-level per-
spective, the tapered network has reduced global bandwidth and
fewer paths for adaptive routing. The impact of this design choice
on applications and benchmarks is not well understood with this
generation of network technology. We measure the impacts and
provide initial user experiences.

Finally, as these are production systems, we seek to understand
how these large networks perform under congestion. We study
tail-latency and its potential magnitude given the changes in tech-
nology and the choices of topology. Tail-latency has the potential
to significantly disrupt bulk-synchronous applications. These two
systems have an unexpected view of the network ports and the MPI
library provides many choices for using these ports. We evaluate
many of these choices and show their worst-case impacts.

The rest of the paper is organized as follows: Section 2 discusses
the new features in Mellanox’s EDR ConnectX-5 and SwitchIB-2.
Section 3 provides topology comparisons between current systems
at LLNL and ORNL; Section 4 discusses the performance of tra-
ditional networking micro-benchmarks using the new features, a
new tail latency benchmark from Cray that measures the impact of
congestion, as well as production DOE applications using some of
the new features; Section 5 shares some early production applica-
tion experiences, and finally Section 6 discusses our findings and
recommendations for users and system architects.

2 INTERCONNECT DESIGN AND FEATURES

The design of the compute fabric for the CORAL systems focused on
a few particularly challenging acceleration tasks. In this section, we
provide more detail on the communication accelerations, adaptive
routing, Scalable Hierarchical Aggregation and Reduction Protocol,
hardware tag matching and the design choices behind them.

2.1 Spectrum MPI

Both systems use IBM’s Spectrum MPI [18] as the primary com-
munications software. Spectrum MPI is based on an OpenMPI 2.x
base implementation. Process management in Spectrum MPI is
handled through PMIx from OpenMPI. The low-level messaging
interface is implemented through Parallel Active Message Interface
(PAMI) [32].

2.2 Adaptive Routing

Historically, Mellanox InfiniBand networks have been statically
routed except in the case of failure. In the case of path failure, either
due to link or port failure, the network re-routes. This traditionally
is expensive and requires several steps. The subnet manager must
detect the failure, quiesce the network, calculate new network paths
to omit the failed ports, flush the caches, and distribute the new
paths before reactivating the network. At least one reason for this
expense was that InfiniBand networks were strictly in-order net-
works. Re-routing flows dynamically would violate the constraints

Zimmer et al

of the network leading to data-corruption. With the release of EDR,
in particular, ConnectX-5 and Switch-IB 2, Mellanox’s InfiniBand
networks now support out-of-order packet receipt. To maintain
traditional InfiniBand semantics, Mellanox’s software ensures that
completions are released to the application in-order.

Adaptive Routing [25] enables the re-ordering of InfiniBand
packets mid-flight to bypass congestion. The basic implementation
of AR builds upon the notion commonly used in switches called
a Linear Forwarding Table (LFT). The LFT is the mapping of a
terminal end-point to an egress port on a switch. When a packet
arrives, a quick lookup on the LFT tells the switch which egress
port to enqueue the packet for its next transmission. AR extends
this concept for topologies that offer multiple paths between two
end-points in the network. This is true of both non-blocking and
2:1 tapered fat-trees. AR essentially adds a supplemental AR-LFT
that maps several egress ports to a destination group. Packets are
then distributed across these egress queues based on queue depth
as a local measure for congestion.

2.3 Scalable Hierarchical Aggregation and
Reduction Protocol

The Scalable Hierarchical Aggregation and Reduction Protocol
(SHARP) [15] was introduced as a feature in SwitchIB-2 and is used
to accelerate barrier, broadcast, reduce, and allreduce collective
operations. This feature is intended to reduce the cost of large-
scale collective operations that traditionally dominate large job
communication overheads. SHARP essentially works by allocating
an overlay tree across switch resources used in the network. Each
switch is provisioned with memory and processing capability. The
overlay tree performs the collective operation at the switch level,
including any computation and broadcasts that are necessary. The
acceleration associated with SHARP is the result of almost a 50%
reduction in communication as nodes only communicate up the
overlay tree with switches as the destination.

There are several considerations when using SHARP on large
systems like Sierra and Summit. SHARP is a shared resource that
is not currently integrated with any scheduler resources. Thus,
jobs are unable to pre-provision or specify the specific amounts
of fabric resources that they will need. SHARP does offer the abil-
ity to statically allocate resources, called outstanding transactions
(OST)s based on the job-size. However, this is a static policy and
will lead to allocations of resources for jobs choosing not to use
SHARP. Another consideration is that SHARP resources are asso-
ciated with communicator groups, each additional communicator
group potentially increases the number of OSTs needed to satisfy
the application’s collective acceleration.

SHARP operates as an on-node daemon (sharpd) and the SHARP
Aggregation Manager (sharp_am). At MPI_Init(), sharpd will cal-
culate the initial set of OSTs available to the job through sharpd
and sharp_am. Due to the variable availability of the amount of
resources a job can receive, SHARP has a fall-back to software
collectives as well as a mode that will fail the application when
resources are requested but cannot be secured. This could pose
challenges for applications that experience long queue times to
contend with slower collective performance or have the job not run.



An Evaluation of the CORAL Interconnects

This can be mitigated using static allocation, but this hardlimits the
number of OSTs that any job can use.

2.4 Hardware Tag-Matching

High performance computing depends on the Message Passing
Interface (MPI)[14] for inter-process communication. One of the
key elements of MPI is tag-matching for two-sided (i.e., send and
receive) communication. MPI defines an “envelope” as a tuple that
specifies the communicator, the sender’s rank, the receiver’s rank, and
an integer tag. A process’ rank is its index within the communicator.

Most MPTI’s perform tag matching in software when either the
application calls into the MPI library or via a background thread.
Applications may call MPI_Test() to poll for the completion or
MPI_Wait() to block for the completion. Regardless of the method
(polling, waiting, or background thread), modern MPI implementa-
tions will internally spin, calling the underlying network’s comple-
tion queue to minimize latency. The implementation could choose
to internally wait (sleep) using a notification to wake it when a
message arrives, but this can add 1-2 us to the latency. Several
additional methods have been proposed to improve progression
including running progress threads on dedicated cores [20], col-
laborative polling [10], cooperative rendezvous [5], and optimized
async progress [30], but none are employed by Spectrum MPIL By
default, Spectrum MPI only processes tag matching when the ap-
plication calls MPI_Test, MPI_Wiait, or variants. It has an option for
a background progress thread that will perform matching, but it
can consume a core per process.

The Mellanox ConnectX-5 HCAs integrates tag-matching into a
hardware offload. The goals of hardware Tag-Matching (TM) are to
(1) reduce latency for two-sided messaging (or at least be no worse),
(2) provide automatic progression of rendezvous sends, and (3) to
reduce CPU power consumed while performing matching (i.e, to
avoid a CPU thread spinning on the Verbs completion queue).

3 OLCF AND LC SYSTEM TOPOLOGY
COMPARISONS

Both systems employ a three-level fat-tree described later in this
section. The largest difference between the Sierra and Summit net-
works is that Summit has a “non-blocking” fat-tree network while
Sierra has a 2:1 tapered network. The design choice differences
were driven by different workloads, job size and compute node
design at each site.

As an open science machine, Summit must be designed to handle
a diverse set of use cases that can vary year to year based on a
grant based allocation policy. Many of these applications use meth-
ods such as QCD and 3D FFTs which require significant network
bandwidth. Sierra serves a critical mission role for the National
Nuclear Security Agency (NNSA) and has been designed specifi-
cally to handle NNSA codes and workloads. Recent studies at LLNL
have looked into typical messaging patterns and concluded that
a 2:1 tapered network suffices for capacity computing workloads
on CPU-based architectures[21]. This study was reanalyzed, in the
context of the expected Sierra workloads and architecture, and 2:1
network tapering was determined to be reasonable for the Sierra
system. Within a fixed platform budget, the Sierra 2:1 network

SC ’19, November 17-22, 2019, Denver, CO, USA

tapering enabled the acquisition of additional compute nodes that
enhanced overall workload throughput.

While Summit is designed to handle jobs that take 20-100% of
the machine, Sierra is expected to run a combination of capacity
and capability workloads. LLNL observed that the Sequoia system
workload consisted of jobs that utilize 25% of the system or less
consuming 70% of the cycles, and larger jobs consuming the re-
maining 30%. Overall the typical job on Sierra is expected to be
smaller than on Summit. In addition, historical data shows that jobs
on LC systems tend to use about the same percentage of the next
machine as the previous one.

Sierra and Summit utilize the same POWER9 CPU and V100
GPU processors, however, Summit has six GPUs per node while
Sierra has four [35]. With more compute per node, codes effectively
using Summit’s GPUs will have higher communication needs than
Sierra.

Summit Half Node Sierra Half Node

— . — — . —
I} I}
128l |21 | [« | DRAM DRAM s3]0, |7k
Do [S”|5~ 256 GB 128 GB Do "5~
| 8 |8
L -, o L L
50 GB/s o 3 2 ° 3
Y B o o N ©
p— p— = = — — ™
w 2 R v 2
o ol ¢ [ow 64 GB/s ol ¢ [ow
° 20 |lep|2E ||| P |[€—>| Po [« |FC a2t
2 IT® S o~ T S o~
(=) (=)
L] L o o L L
> R
@ [) <
50 GB/s a 2 ©
\ S =
(=3
w
K
o
Lyl s3|.C |pu
mw <> o k|| —
I 8 o~ 6.0 GB/s Read
NVM 15 1 GB/s Write

12.5 GBY/s
NIC
12.5 GBY/:

<¢+—» HBM/DRAM Bus (aggregate B/W)
<—» NVLINK

<—>» X-Bus (SMP)
PCle Gen4

<—» EDRIB

Figure 1: Node block diagram. One half of a Summit is shown
on the left and one half of a Sierra node is shown on the
right. Both nodes have the NVMe device. The shared HCA is
shown in the lower center.

Both Summit and Sierra use the same basic interconnect compo-
nents: HCAs, rack switches, and aggregation switches. Each node
has one HCA in a PCle Gen4 x16 slot. This slot is electrically con-
nected to both POWERY CPUs such that each host has eight lanes
of PCle capable of 16 GB/s. Figure 1 shows the block diagram for
both nodes. The HCA (labeled NIC) connects directly to both CPUs
and both CPUs can directly use both ports. When Linux enumerates
the PCI tree, each CPU reports both ports on the HCA so Linux
recognizes four ports. Socket 0 maps virtual ports V0 and V1 to the
physical ports PO and P1 and socket 1 maps virtual ports V2 and V3
also to PO and P1 as shown in Figure 2. The figure also shows socket
0 striping over virtual ports VO and V3. In this case, the V3 data
will cross the SMP bus from socket 0 to socket 1 and then down
PCle to physical port P1. By default, processes on Summit do not



SC ’19, November 17-22, 2019, Denver, CO, USA

03—
P9 P9
Socket 1 Socket 0

P9 bs

Socket 1

s

Socket 0 [ 64 GB/

Figure 2: The left image shows the mapping of virtual to
physical ports for both sockets. The right image shows
socket 0 striping data over virtual ports VO and V3.

stripe and all socket 0 traffic uses virtual port VO and all socket 1
traffic uses virtual port V3.

The rack switches (commonly referred to as Top Of Rack or
TOR switches) have 36 ports. In both systems, there are 18 “down”
connections per switch to compute node HCAs. In Summit, there
are 18 “up” links, one to each of the 18 aggregation switches. In
Sierra, there are nine “up” links to the nine aggregation switches
and nine empty ports. Within the same rack switch, both systems
are “non-blocking” when communicating between ports connected
to the same rack switch. The taper only impacts communication
that goes up to an aggregation switch. On both systems, each rack
has two rack switches. One rack switch connects to physical port
PO and the other rack switch connects to physical port P1.

An aggregation switch, or Mellanox Director class switch, is a
two-level, “non-blocking” Clos network[7] in a single chassis with
the rack switches comprising the third-level of the network. These
switches have 18 “spine” switches, sitting at the top of the tree,
which connect internally up to 36 “leaf” switches. As described
above, rack switches connect to leaf switches of the aggregation
switches. A fully configured SwitchIB-2 (EDR) Director switch
has 648 ports. In both systems, groups of 18 racks have a single
connection to the same set of 18 (Sierra) or 36 (Summit) leaf switches.
Using the default Up*/Down* routing[33], traffic within this sub-
tree does not need to go up to the spine switches. Each leaf-level sub-
tree is a two-level fat-tree (leaf switch and rack switches) requiring
three switch hops.

4 EVALUATION

In 2018, the integration teams fielding Summit and Sierra published
traditional micro-benchmarks for the system including the network
interconnect[35]. The MPIGraph [27] results showed benefits of
Adaptive Routing in isolation, and the SHARP tests showed nearly
flat scaling for an eight byte MPI_Allreduce() up to 2,048 nodes.
This SHARP performance was 74% faster than IBM’s software col-
lectives. SHARP also performed well on MPI_Barrier () with ~8us
for SHARP compared to ~35pus for Spectrum MPL. In this section, we
evaluate the impact of these new features using additional bench-
marks as well as production applications. We retest some of the
benchmarks at larger scales and evaluate features that were not
covered in the previous paper.

Zimmer et al

4.1 Adaptive Routing

4.1.1  Micro-benchmarks. Mellanox promotes Adaptive Routing
as a mechanism for improving the bandwidth available to applica-
tions by increasing path diversity between two end-points in the
network. We quantify the impact on bandwidth using two com-
mon HPC benchmarks, MPIGraph and the ALCF [37] bisection
measurement test. The first application, MPIGraph, uses a single
rank per node in an advancing ring communication pattern. At
each iteration, each rank increases their communication partner
by one, until all ranks have communicated with all other ranks.
At the full scale of Summit, this resulted in over 21,000,000 mea-
surements between the ranks. The results of this measurement are
shown in Figure 3 as a histogram of every measurement taken. The
MPIGraph benchmark was run under two routing conditions - once
using traditional IB static routing and again with adaptive rout-
ing. Our results show both larger and more consistent bandwidth
measurements with adaptive routing. Adaptive routing achieves
over double the average bandwidth of the statically routed mea-
surements. Performance clusters between 16 and 19 GB/s while the
statically routed measurements range from 4 to 12 GB/s.

le7

mmm Adapative Routing
Static Routing

Frequency
o o = = I Iy
o © o N » o
L ) ! N A L

o
IS
L

o
)
N

o
)

5000 10000 15000 20000
Bandwidth MB/s

o4

Figure 3: Summit: MPIGraph histogram of all send measure-
ments adaptively routed and statically routed.

Figure 4 shows the results for the same test run on Sierra. As with
Summit, Sierra benefits with AR performance clustering around 10
GB/s while the statically routed results have a wider distribution
near 5 GB/s. Sierra’s AR data is not as tightly clustered as Summit’s.
This cluster is spread over two bins, each of which has about half
the frequency as the single bin on Summit.

We ran a second test using the ALCF bisection measurement tool
on 4,608 nodes of Summit with and without adaptive routing. The
benchmark was configured to use six MPI ranks and to stripe large
data messages across both HCA ports. The test utilized a striping
policy on the node with data crossing the SMP bus, thus avoiding
PCI bottlenecks. For the static routing case, the bisection bandwidth
was 39,337 GB/s or only 34% of peak. While the adaptive routing
case, the bisection bandwidth was nearly 2.4x higher at 95,592 GB/s



An Evaluation of the CORAL Interconnects

le7

mmm Adaptive Routing
[ Static Routing

Frequency
o o Iy = I =
o o] o N » o
) ) . N ) )

o
IS
s

o
)
L

.

5000 10000 15000
Bandwidth MB/s

o
o

20000

o

Figure 4: Sierra: MPIGraph histogram of all send measure-
ments adaptively routed and statically routed.

and nearly 83% of peak bandwidth. Additional impacts of Adaptive
Routing are evaluated in the congestion study in this section.

4.2 SHARP

4.2.1 Micro-benchmarks. The first set of SHARP measurements
were taken during the Summit acceptance phase to evaluate col-
lective performance relative to Summit statement-of-work (SOW)
technical requirements. The results are shown in Table 1 and com-
pare Spectrum MPI configured with either the IBM collective library,
the Mellanox HCOLL software library, or the Mellanox SHARP hard-
ware collectives. The results demonstrate a 2x or greater reduction
in latency when using the SHARP collectives.

Collective Nodes/PPN SMPL | HCOLL | SHARP
(ps) (ps) (ps)
Barrier 4096/1 20.40 50.19 9.50
8b Allreduce 4096/1 23.91 23.30 7.79
2k Allreduce 4096/1 55.57 57.65 21.85

Table 1: OSU Collective Benchmark: Latency is significantly
reduced when using SHARP on 4096 nodes.

We also evaluated a Conjugate Gradient solver benchmark intro-
duced in [36]. This benchmark consists of repeating MPI_Allreduce ()
calls with compute iterations between Allreduces. The benchmark
was configured to run on 512 nodes using 42 processes per node
and for 512,000 iterations, for a total of 1,024,000 allreduces. Each
allreduce was a single 8-byte (double precision) value.

Using tuned command-line parameters, provided by Mellanox [26],
the overall benchmark walltime decreased from 18.80 seconds to
12.66 seconds, an improvement of almost 33%. Nearly half the bench-
mark walltime is spent in the MPI_Allreduce() calls. We investi-
gated adding an MPI_Barrier () before each allreduce to ensure all
processes were synchronized before entering the allreduce. How-
ever, this decreased performance considerably - walltime was 32.8

SC ’19, November 17-22, 2019, Denver, CO, USA

seconds for the non-SHARP case and 20.67 seconds for the SHARP
case.

4.2.2  Miniapps. SHARP shows significant benefit to micro-bench-
marks where the runtime is dominated by a particular collective
operation. Now we evaluate the impact in mini-applications with
mixed messaging workloads.

AMG is a parallel algebraic multigrid solver for linear systems
for problems arising from unstructured grids. It is an extraction of
the BoomerAMG solver [16] from the Hypre library with a driver
added to allow it to function as a standalone code. Communication
is dominated by small point to point messages and frequent eight-
byte AllReduces [22].

We ran AMG ten times on both Sierra and Summit using one
rank per GPU, four and six GPUs respectively. Figure 5 shows
performance for 128 nodes on both systems. In each run, turning
on SHARP reduces performance noticeably. In Figure 6, we ran
AMG ten more times on Summit using 256 nodes hoping that strong
scaling the problem would increase the communication time relative
to the compute time. Again, we see reduced performance when
SHARP is enabled.

B 4GPUBase [ 4GPUSHARP 6GPUBase [ 6 GPUSHARP

6 7 8

Figure 5: AMG 128 nodes measurement comparing SHARP
performance to Spectrum Software Collectives.

2.00E+09

1.50E+09
1.00E+09
5.00E+08
ﬁ | BETN WE'E  BEC

0.00E+00

Figure of Merit (Higher Better)

Nekbone is a mini-app that represents the computationally in-
tensive conjugate gradient solver in the Nek5000 application [13].
Similar to AMG, the communication is dominated by nearest neigh-
bor exchanges and AllReduces. Unlike AMG, Nekbone is a balanced
calculation so the AllReduces should be more synchronous. Typ-
ical runs show 1-2% of the overall walltime are spent in commu-
nications in contrast to the CG benchmark where almost 50% of
run-time is spent in communications. Nekbone has a single 8 byte
MPI_Allreduce which is called a number of times and multiple
point-to-point messages of various sizes. Nekbone is set to show
weak scaling. As process counts increase, more total work is done
so run times are reasonably constant with process count. In this
case, the problem size was set to have roughly two minutes of run
time. We ran from 32 to 512 nodes. All tests were with six MPI
processes per node, each process using one GPU. All tests were
run six times and the walltime was averaged. SHARP showed a
1-2% decrease in performance at smaller node counts (32 to 256
nodes) and a 1-2% increase in performance at 512 nodes. However,



SC ’19, November 17-22, 2019, Denver, CO, USA

6GPUBase [ 6 GPUSHARP

8.00E+10

6.00E+10

4.00E+10

2.00E+10

Figure of Merit (Higher Better)

0.00E+00

Figure 6: AMG 256 node performance on Summit comparing
SHARP performance to Spectrum Software Collectives.

Nekbone shows roughly 1-2% variation run-to-run so it is not clear
that SHARP had an impact (positive or negative) on results.

4.3 Hardware Tag-Matching

4.3.1  Micro-benchmarks. Two separate benchmarks were used to
study the impact of hardware MPI tag-matching. The hardware
tag-matching feature offloads MPI tag-matching, thus shifting the
operation from the POWERSY processor to the Mellanox HCA. This
impacts small eager messages and larger message rendezvous pro-
gression. We evaluate the impact with the osu_latency benchmark
run between two nodes with and without hardware tag-matching
enabled.

Enabling tag-matching in Spectrum MPI on Summit and Sierra
is handled through two flags and an environment variable:

--smpiargs="-mca pml_pami_use_2sided 1"
-E PAMI_IBV_ENABLE_TAG_MATCHING=1

The first flag switches PAMI from using the active messaging API
to using the two-sided API. The second flag enables PAMI’s software
emulation layer to perform tag-matching. The environment vari-
able, PAMI_IBV_ENABLE_TAG_MATCHING, shifts tag-matching
from the software layer to the hardware. The combination of these
flags and environment variable enables hardware tag-matching.

The results shown in Table 2 show the latency impact when
using hardware tag-matching for eager messages up to 8 KiB. For
smaller messages (<256 bytes), there is a slight increase in latency
(~10-60 ns). For messages between 256-8,192 bytes, hardware tag
matching lowers the latency from 10 ns at 256 bytes to 310 ns for 8
KiB.

We measure the second feature of hardware tag-matching, ren-
dezvous offloading, using MPI_Overhead [11] from the Sandia
MPI Micro-Benchmark Suite. The MPI_Overhead benchmark deter-
mines overhead using a post-work-wait loop. As the primary loop
iterates, a work time (work_t) is gradually increased during each it-
eration prior to calling into MPI_Wait. When this value is small the
overall loop time does not increase. However, after a point, the work
time will exceed the MPI_Wait time. At this point, the increased
loop time minus the work time is calculated as the overhead time.

Zimmer et al

Message Base HW Tag Higher/(Lower)
Size Latency Matching Latency (ns)

0 1.20 1.22 20

1 1.17 1.23 60

2 1.17 1.23 60

4 1.17 1.23 60

8 1.18 1.22 40

16 1.19 1.23 40

32 1.21 1.24 30

64 1.23 1.26 30

128 1.31 1.32 10

256 1.64 1.63 -10

512 1.76 1.70 -60

1024 2.00 1.83 -170

2048 2.88 2.67 -210

4096 3.52 3.44 -80

8192 5.00 4.69 -310

Table 2: OSU Latency Benchmark: Latency between two
nodes with and without hardware tag-matching enabled.
The fourth column is the difference between baseline and
the offloaded, HW tag-matching. Negative values indicate
HW TM has lower latency and positive numbers show
higher latency. For messages 256 bytes to 8 KiB, HW TM re-
duces latency.

Loop time is bound with start and stop thresholds, when these min-
imum thresholds are not met prior to loop time increasing at the
rate of work time, this can result in negative values. For this study,
we consider the negative values to be zero and report NA. The re-
sults shown in Table 3 demonstrate some interesting impacts from
rendezvous offloading. For the case of sends, the results indicate a
slight increase in overhead when using tag-matching. However, for
the receive case, the overhead is entirely offloaded to the HCA. The
results also show very low overheads for the base PAMI send, with
the lowest measurements not triggering the minimum thresholds.
The results also indicate significant overhead in the default PAMI
receive results. Further analysis shows that by default PAMI is not
progressing posted receives until the application calls into Wait.
The third set of results are taken using the PAMI asynchronous
background thread. The use of the asynchronous progress thread
shows significant reductions in overhead on the receive case, how-
ever this comes at the cost of using an additional core per MPI
rank.

4.3.2  Miniapps. We followed up our evaluation of hardware tag-
matching with applications from the CORAL benchmark suite. In
these tests, we evaluated AMG, UMT, and HACC. We selected this
set of benchmarks for their mixture of message sizes, with UMT
and HACC skewing toward larger messages and AMG with a mix of
smaller messages. Spectrum MPI was used to evaluate performance
impact which show that hardware tag-matching had little impact
or even a slight regression in performance.



An Evaluation of the CORAL Interconnects

Min Max
Test Case Overhead Overhead

(ps) (ps)
Base PAMI Send NA 7.684
Base PAMI Recv 366.531 376.936
Rendezvous Offload Send NA 30.966
Rendezvous Offload Recv NA 10.217
Async PAMI Send 1.941 16.808
Async PAMI Recv 8.099 19.152

Table 3: MPI_Overhead shows significant reductions to the
overhead costs of asynchronous receives using rendezvous
offloading.

Benchmark | Nodes/PPN Impact
AMG 192/6 Small Regression
HACC 128/6 No Impact
UMT 192/6 No Impact

Table 4: The impact of using hardware tag-matching on
three applications.

4.4 Congestion Management

4.4.1  Micro-benchmarks. As HPC network providers struggle to
reduce point-to-point latency below ~600 ns, they are focusing
their attention on reducing message tail latency. For collective oper-
ations, no rank can make forward progress until the last rank enters
the collective. Previous work [23] has identified many sources of
system jitter including OS services and processor variation. System
jitter causes some ranks to delay and hinder application progression.
Network congestion can aggravate this situation when a process’
collective packet encounters congested switch queues caused by an-
other application. For example, one applications I/O traffic blocking
progress of another applications collective messages.

Cray has developed a pair of new benchmarks to measure net-
work tail latencies. The network_test and network_load_test bench-
marks, which comprise the Global Performance and Congestion
Network Test (GPCNeT) [8], provide both mean and ggth percentile
measurements for common communication patterns. To minimize
the benefits of optimal scheduler placement of ranks contiguously
within local groups (e.g., nodes connected to the same TOR in a
fat-tree or within the same local group in a Dragonfly), the applica-
tion will build a random ring similar to the random ring pattern in
HPCC[24] such that all communication occurs over the network
(i.e., no intra-node communication). This pattern is pessimistic and
should provide an upper bound on latency and a lower bound on
bandwidth.

Network_test attempts to characterize performance of an ap-
plication when run in isolation. Ideally, this would be the only
application running on the entire system. This test measures five
communication patterns sequentially. These communication pat-
terns include: 2-Sided Random Ring (RR) 8 byte Latency, 2-Sided
RR 128 KiB Bandwidth, 2-Sided RR 128 KiB Bandwidth with Barrier,
Allreduce 8 byte Latency, and All-to-all 128 byte Bandwidth.

SC ’19, November 17-22, 2019, Denver, CO, USA

These tests do not generate congestion and are meant to charac-
terize performance of an application running in isolation. This test
can be used to measure the entire system as well as local groups
within the topology (e.g., subtrees in a fat-tree, a local group in a
Dragonfly, or a single, all-to-all dimension in a Hyper-X).

Network_load_test, on the other hand, intentionally induces
congestion. It builds random rings for the various communication
patterns. The “victim” workload will use 20% of the nodes in the
job while the “congestors” use the remaining 80%. Each congestor
has a unique random ring and the communication patterns include:
2-sided Incast, 2-sided Broadcast, 1-sided Incast, 1-sided Broadcast,
and All-to-all. Cray has identified these patterns as the worst “bad
actors” within their previous networks. The victim ring runs a
subset of the communications from the isolated tests including:
2-sided Random Ring 8 byte Latency, 2-sided Random Ring 128 KiB
Bandwidth with Barrier, and Allreduce 8 byte Latency.

Each test provides a simple ratio for each victim communication
pattern in which lower is better. For latency measurements, the test
will report the ratio of congested latency divided by uncongested
latency. For bandwidth measurements, it reports the uncongested
bandwidth divided by the congested bandwidth. The tests provide
the ratios for both the mean and the 99% values. The ratios are useful
as a guide to users to understand how much worse the network
can behave when experiencing congestion.

The ratios, by themselves, may be less useful to compare systems
with different interconnects or to help guide system architects to
select an interconnect. Fortunately, the tests also report the absolute
numbers for the mean and 99t percentiles when the victim is run
without and with congestion. This avoids the false comparison of an
interconnect with a low ratio because the isolated performance is
very poor such that the congested performance is not much worse.

0 3 01 23 03 30
P9 P9 P9 P9 P9 Py

Socket 0 64 GB/s Socket 1, socket 0 64 GB/s Socket 1. Socket 0 64 GB/s Socket 1

0 . o v2 2l

) &

125 GBis [
=
HCA
e
12,5 GB/s (M. .

Figure 7: The left images shows the default policy with no
striping, which we call 03. The middle image shows striping
over PCle, which we call 0123. The right images shows strip-
ing over the SMP bus, which we call 0330.

Figure 7 shows three possible policies for processes to access the
network. The current default policy does not stripe (left diagram
in Figure 7), thus socket 0 communicates over virtual port 0 and
socket 1 communicates over virtual port 3. Spectrum MPI enables
striping for messages over 64 KiB, where socket 0 uses virtual ports
0 and 1 and socket 1 uses virtual ports 2 and 3. In this case, eager
messages from both sockets only use physical port 0. The user can
specify additional port policies and we selected to evaluate striping
over the SMP bus where socket 0 uses virtual ports 0 and 3 and
socket 1 uses virtual ports 3 and 0. Reversing the order ensures that



SC ’19, November 17-22, 2019, Denver, CO, USA

socket 1’s eager messages use physical port 1 instead of physical
port 0.

The network_load_test was used to evaluate the robustness of
the three striping policies. The 03 and 0330 policies were found
to be superior to the 0123 policy. The 0123 striping policy had
significantly higher small message latency and significantly worse 1
MiB bandwidth - especially for the 99% mark. We believe one reason
that 0123 policy performs poorly is that all eager messages (<64
KiB) from both sockets only use physical port 0 and no messages
use physical port 1. There may be additional contributors, but we
have not had time to investigate yet.

Next, we ran the congestion benchmark ten times on 4,500 nodes
of Summit and on 4,200 nodes of Sierra to compare the default (03)
to striping over the SMP bus (0330) with AR enabled. On both
machines, we used six processes per node. The test reports mean
and 99% values for three tests and we present the two-sided 8
byte latency results in detail due to space limitations. The first
two tables focus on the mean performance in isolation and when
congested. Table 5 shows statistics for the isolated test and there
is no difference between the port policies with both displaying
very stable results. Table 6 shows the congested results. These are
less stable. Compared to Table 5, the defaults mean is 20.7-39X
higher while the striping mean is only 7.2-8.8X higher. Clearly,
striping provides lower average latencies. With the default port
policy, Sierra’s tapered network suffers more when congested but
striping reduces the impact of the taper.

Zimmer et al

Congested Summit Summit Sierra Sierra
Mean Defaults Striping Defaults Striping
Lat (us) (03) (0330) (03) (0330)
Min 24.3 12.4 63.1 9.8
Median 56.2 18.5 116.9 26.1
Mean 59.9 20.9 117.0 26.3
Max 111.6 63.7 166.5 42.6
Std Dev 21.9 10.8 26.7 9.2

Table 6: Table 5 was in isolation. These results are the mean
latencies when the congestors are running at the same time.
These congested mean latencies are less stable (i.e., higher
standard deviations) than the isolated means. Note, the strip-
ing over 0330 is much better (lower) than the defaults.

Isolated  Summit Summit Sierra Sierra
99% Defaults Striping Defaults Striping
Lat (us) (03) (0330) (03) (0330)
Min 6.6 6.5 7.1 7.1
Median 6.6 6.6 7.1 7.1
Mean 8.3 6.7 7.1 7.1
Max 38.1 7.2 7.1 7.1
Std Dev 7.0 0.2 0.0 0.0

Table 7: Compared to Table 5’s mean values, these are the
isolated 99% values and are also very stable. These represent

the tail latency and are 2.3-2.8X the mean isolated values.

Isolated ~ Summit Summit Sierra  Sierra
Mean Defaults Striping Defaults Striping
Lat (us) (03) (0330) (03) (0330)
Min 2.8 2.8 3.0 3.0
Median 2.8 2.8 3.0 3.0
Mean 2.9 2.8 3.0 3.0
Max 3.8 2.9 3.0 3.0
Std Dev 0.2 0.0 0.0 0.0

Table 5: Statistics for the mean isolated latencies which are
very stable. When run in isolation, there is no difference be-
tween the defaults and striping over 0330 on either machine.

Table 7 and Table 8 focus on the tail latencies by reporting the
99th percentile values when run in isolation and then under conges-
tion. Table 7 also shows very stable values when run in isolation
with little difference between the two policies.? Table 8 shows the
results for the congested runs. It has the highest standard deviations
and the maximum values are 2-4X greater than the minimum values.
Again, the striping policy is much better than Summit’s current de-
faults. Compared to Table 7, the defaults policy is 120.1X worse and
the striping policy is only 55.9X worse on Summit. Sierra’s defaults
policy is 206.2X worse and the striping policy is only 54.8X worse.
Again, Sierra’s taper exacerbates the default policy performance
and striping helps reduce the impact.

We caution against using a single sample to determine system
policies (e.g., enable AR, select default ports) or to compare between

2Summit had one outlier in the defaults results which slightly skewed its statistics.

Congested Summit Summit Sierra Sierra
99% Defaults Striping Defaults Striping
Lat (us) (03) (0330) (03) (0330)
Min 621.0 257.0 1198.8 182.6
Median 1003.1 349.9 1424.2 406.9
Mean 996.6 374.3 1464.0 388.8
Max 1209.4 1025.3 2111.7 519.5
Std Dev 160.3 154.3 261.3 93.2

Table 8: When congested, Summit’s 99% latencies are 120.1X
and 55.9X higher than the isolated 99% latencies in Table 7
and Sierra’s 99% latencies are 206.2X and 54.8X higher than
the isolated 99% latencies. Again, striping over 0330 is much
better than the defaults.

systems with different interconnects. Given the very high standard
deviations during congested runs, one cannot rely on a single sam-
ple. On these networks, however, single samples can provide a good
measure of mean and 99% latencies when run in isolation.

Lastly, we used network_load_test to see the impact of AR when
congested. We used the default policy of 03 and ran it 20 times on
Summit. Table 9 counter-intuitively shows a large, negative impact
on latency with AR is enabled. Tail latencies for the eight-byte mes-
sage are ~75% worse with AR enabled. We surmise that the switches
are detecting congestion and adaptively routing the congestors’
traffic that then consume more buffers within the network and



An Evaluation of the CORAL Interconnects

Congested Defaults Defaults

99% 2-Sided Without AR With AR
8B Latency (us) (03) (03)
Min 141.9 289.3
Median 204.0 377.1
Mean 212.3 374.8
Max 310.8 427.1
Std Dev 41.1 38.5

SC ’19, November 17-22, 2019, Denver, CO, USA

Sierra

B Nogeks = 1 Nracks = 8
A‘?Vrrz('ks =2 A‘(rru'kx =15
Niyacks = 4

Table 9: When Summit is congested, the 99% latencies for 8
byte 2-sided messages are ~75% higher with AR enabled.

increase the latency observed by the latency-sensitive application.
Even though latency is worse with AR during congestion, Table 10
still shows that bandwidth is much better with AR.

Congested Defaults Defaults
99% 2-Sided Without AR With AR
1 MB BW (MB/s) (03) (03)
Min 1610.9 2107.3
Median 1802.3 2430.8
Mean 1801.5 2379.4
Max 1914.8 2611.0
Std Dev 82.4 180.1

Table 10: When congested, the 99% bandwidth for 1 MiB 2-
sided messages are ~30% higher with AR enabled.

5 EARLY APPLICATION EXPERIENCES

During the open science period, we ran multiple applications on
these machines. Because the computation was expected to benefit
greatly from the acceleration, we were concerned that message
passing would become a bottleneck, and thus took a careful look
at the amount of time the codes were spending communicating. In
this section, we discuss two applications that ran on both machines
and the impacts of tapering. Additionally, we describe a third ap-
plication’s experience with messaging on Sierra and discuss the
next steps in addressing the issues of packing and unpacking of
messages.

51 QUDA

QUDA[1, 6] is a framework that supports the construction of highly-
optimized Quantum Chromodynamics (QCD) algorithms for use
with NVIDIA GPUs. QCD is the fundamental theory of nuclear
strong interactions that governs the formation and structure of
protons, neutrons, and atomic nuclei. Understanding basic proper-
ties of matter directly from QCD requires the use of HPC. One of
the early science applications on Sierra used QCD computations
to make the most precise theoretical prediction of the neutron life-
time, a quantity of current scrutiny in the search for new physics.
The software development for this effort was recognized as a 2018
Gordon Bell Finalist[3] and the science research is being followed
up on both Lassen and Summit.

Distribution of job performance

10000 12500 15000 17500 20000 22500 25000 27500 30000

Performance / GFlops

Figure 8: QUDA performance distribution of 4-node jobs on
Sierra and Summit versus the number of racks allowed to
the job (each rack has 18 nodes). The jobs were run simulta-
neously in bundles of 4 (1 rack), 8 (2 racks), 16 (4 racks), 32
(8 racks) and 64 (15 racks).

The majority of QCD computational requirements is the solu-
tion to large, sparse, linear system solves of the discretized Dirac
operator, which must be performed hundreds of thousands of times
over a Monte Carlo history. Since QCD is a four-dimensional the-
ory (time plus three space), the stencil kernels result in a lot of
nearest-neighbor communication and hence, much off-node mem-
ory traffic, making it particularly bandwidth bound compared with
other HPC applications. Each of the many computations described
above required between one and four nodes of Sierra or Summit,
depending on the problem size. Figure 8 shows the distribution
performance of sample tasks performed on both machines, 4-node
jobs utilizing all GPUs in both cases. The left axis represents the
number of samples measured at a particular performance (x-axis)
based on rack distribution. To reduce the number of jobs submitted
to the queue, tasks were bundled together and run simultaneously
with METAQ[2]. On Sierra, we observed a significant performance
degradation when the job size was increased to run more tasks
simultaneously. The cause was individual tasks having their nodes
split between multiple racks, the probability of which increased
with increasing job size (larger number of allowed racks). This
is observed by the broadening distribution of performance (and
lower mean) in the top panel of Figure 8. When the jobs were not
allowed to go off a single rack, the performance distribution is
tightly peaked near the expected maximum. On Summit, with the
1:1 "non-blocking" fat-tree, we did not observe such performance
degradation, with all distributions staying tightly peaked near the
expected maximum. Understanding the cause of the performance
loss on Sierra (and Lassen) also suggests a simple solution: the
bundled jobs just need to be submitted with a restriction on the
number of racks they are allowed to use.

5.2 Sw4

The large scale runs of SW4[29], a 3-D seismic modeling code,
indicate that any effects of the tapering were offset by other factors
such as contention for the NIC and NVLink. In SW4, a majority of



SC ’19, November 17-22, 2019, Denver, CO, USA

the message passing time is spent in the halo exchange involving
the packing and unpacking of pinned host memory buffers by GPU
kernels or host code followed by MPI_Isends and MPI_Irecvs on
the host. We ran the same 7,200 rank problem on 7,200 GPUs on
both Sierra and Summit using 1,800 and 1,200 nodes respectively.

The Sierra run took 493 seconds and the Summit run took 509
seconds for a 3% slowdown on Summit. On both machines compute
time in GPU kernels was identical so the performance differences
were purely communication driven. NVlink data transfers were 30
seconds on Sierra and 40 seconds on Summit for a 33% slowdown on
Summit. MPI time on Sierra was 37 seconds while it was 43 seconds
on Summit for a 16% overall slowdown. Broken down into its on
node MPI_Isends and Irecvs component messages on Summit took
33% longer to leave the node. For both Sending of messages and
NVLink transfers, Sierra has 50% more bandwidth per GPU than
Summit. Other overheads should be similar on each machine, e.g.
the MPI runtime, kernel launch, etc. contribute to a performance
gap that is smaller than the difference in raw performance.

With messages taking 33% longer to leave Summit nodes, but
performance only 16% slower this implies that the penalty of taper-
ing the Sierra network could be up to 17% of the MPI time. There
are other factors that likely make this a bit smaller, e.g. a higher
percentage of Summit communication traffic staying within a node.
However, the overall impact of the taper on performance is small
as MPI takes less than 10% of the overall runtime. Therefore, the
overall performance impact is less than 2% of runtime and tapering
is a net gain for SW4 throughput because it allows procuring 6-8%
more nodes.

5.3 ARES

ARES [9] is a massively parallel, multi-dimensional, multi-physics
simulation that used a significant fraction of the early science
time on Sierra running Rayleigh-Taylor instability calculations [34].
Capable of running on millions of processors [28], ARES is also
portable across architectures [31]. To make a direct comparison
between Sierra and a LLNL Broadwell CPU-based cluster, we study
a Rayleigh-Taylor problem with 192 million zones, which is suitable
for execution on 32 nodes on both architectures. ARES achieves
a 13x speedup on Sierra over the Broadwell cluster. For this prob-
lem, ARES spends 30% of its runtime in communication routines
on Sierra, nearly a 10x increase over the 3.4% of runtime on the
Broadwell cluster. Because ARES weak scales well, we saw the
same runtime breakdown on the full-machine run on Sierra. While
the interconnect bandwidth on Sierra is only 2x higher than the
bandwidth of the Broadwell cluster, we weren’t expecting the 10x
degradation in communication costs.

To ease understanding of the communication cost, we developed
Comb [4], a miniapp which represents the Halo exchange in ARES
(90% of the communication cost in ARES). Since the bulk of ARES
computation is performed on GPUs, application data is located
in device memory at the time of communication. Communication
routines on Sierra are different than on a CPU-only architecture in
two main ways:

(1) Host or device can pack boundary information into buffers;

Zimmer et al

(2) The buffers can be stored in host or device memory, possibly
requiring additional data transfers between the host and the
device prior and after the MPI communication.

Figure 9 shows that a significant portion of the communication
routine in Comb is spent in message packing and unpacking, and
only half of the time is spent in MPL These results indicate that
going forward, ARES will spend a manageable 15% of its time in
MPI, easing the impact of relative network bandwidth loss.

The experience with ARES presents a new opportunity for in-
vestigating network features on Summit and Sierra that can reduce
the cost of packing and unpacking buffers for transmission over
the network. One such addition is User-Mode Memory Registration
(UMR), the ability to register non-contiguous memory regions for
transmission over the network. The mechanism for integration of
MPT and UMR is still under investigation, however, this technology
may provide the opportunity to reduce or eliminate the need to
pack buffers for data transmission eliminating a large cost to many
GPU enabled applications.

6 CONCLUSION

The design of the Sierra and Summit networks incorporates new
technologies tailored specifically to accelerate HPC workloads. We
conclude with a discussion of our measurements and findings re-
lated to these new technologies from both users’ and facilities’
perspectives. We also discuss lessons learned from procurement
and working with vendors on advanced features.

6.1 Adaptive Routing

Adaptive routing shows tremendous benefit in bandwidth mea-
surements on both Sierra and Summit. The results indicate a more
consistent state of bandwidth available to applications with little
drawback under most conditions. AR is transparent to applications,
enabled by setting a PAMI environment variable. We recommend
that users should enable AR. If a user should choose not to use AR
it may create unnecessary congestion in the network impacting
their own and other applications running at the same time.

From the facility perspective, AR has some challenges. AR calcu-
lations add additional stress to UFM appliances and, on very large
networks, network flaps can generate an almost constant recal-
culation cycle. AR has also shown to be beneficial in diagnosing
faulty hardware. The reduction in variability of measurements in
tools like MPIGraph made it very easy to identify underperforming
hardware leading to replacements during system bring up. IBM has
since added this test to the diagnostic tool suite.

6.2 Hardware Tag Matching

Hardware tag-matching and, in particular, rendezvous offloading
are promising features built into ConnectX-5. For small, eager mes-
sages, HW TM varied from 3% slower for 8 byte messages to 6%
faster for 8 KiB messages when compared to Spectrum MPT’s soft-
ware implementation. Users with applications that send a lot of
eager messages will need to understand their message sizes to
determine when HW TM makes sense.

For users with applications sending larger messages that use a
rendezvous protocol (i.e., larger than 64 KiB), HW TM allows for
complete overlap without consuming another core for polling or



An Evaluation of the CORAL Interconnects

SC ’19, November 17-22, 2019, Denver, CO, USA

Figure 9: Comb data showing the relative cost of various parts of the communication routine on Sierra

without incurring higher latency for a progress thread that blocks.
While Spectrum MPI (and Open-MPI on which it is based) can
provide background progress of rendezvous messages when the
user selects the async progress thread, this thread consumes a
core which the application might be able to use for computation.
Rendezvous offloading via HW TM allows the application to use
that core for computation. Spectrum MPI, unfortunately, does not
allow the user to select a threshold for using HW TM - it is for all
two-sided messages or none.

6.3 SHARP

SHARP shows tremendous reduction in the cost of collective algo-
rithms particularly at scale. This has been measured in benchmarks
from previous work and as part of the acceptance processes for the
machines. However, a deeper exploration of SHARP in applications
Nekbone and AMG show that the benefits of SHARP do not neces-
sarily translate to a performance improvement in applications. In
many cases, SHARP leads to more variation measured from run-
to-run without resulting in overall performance improvements as
demonstrated in the AMG results. SHARP can improve applica-
tion performance as one of the 2018 Gordon Bell Finalists [19] used
SHARP in their application and saw improvements in overall kernel
performance. This application was heavily dominated by Allreduce
collective calls. Feedback to users interested in this feature would
be to profile and to consider SHARP only when the application run-
time is significantly affected by collective communication. SHARP
is still under development and we expect improvements to reduce
overheads and for it to benefit more application codes over time.

6.4 Congestion and Tail Latency

We tested multiple policies (e.g., AR, striping, port configurations)
on both Summit and Sierra. The congestion benchmark highlights
the impact of the tapered network which shows 1.5-2X higher la-
tencies with the current default policy. We identified a promising,
albeit non-intuitive, option which stripes data over the SMP bus
which brings Sierra’s tapered performance closer to Summit’s per-
formance. The benchmark, however, avoids intra-node communi-
cation unlike real applications that attempt to maximize intra-node
communication. We plan on working with real applications to de-
termine if consuming up to 6 GB/s of the 64 GB/s SMP link, in each

direction, negatively impacts on-node MPI communication. If not,
we will recommend changing the defaults to this configuration.

We also used this benchmark to look at the impact of enabling
AR on latency and bandwidth under congestion. Even though AR
adds significantly to latency under heavy congestion, the benefits to
bandwidth are equally dramatic. When not congested, the latencies
are similar with and without AR. We will continue to recommend
using AR for all MPI communication.

6.5 Tapering

Tapering the Sierra network resulted in a 6-8% increase in the num-
ber of compute nodes given a fixed procurement budget. Data from
early Sierra science applications indicates little to no impact on
more traditional NNSA workloads (SW4), while the performance of
some science workloads such as QCD and some graph algorithms
are negatively impacted by the 2:1 network tapering. The former
applications have network characteristics that are more representa-
tive of the expected workloads on Sierra over its production lifetime,
therefore, tapering the network is still justified for Sierra. Regard-
less, LLNL plans to monitor the performance of Sierra applications
to better understand the full impacts of the tapered network.

The science applications (QCD and graph algorithms) impacted
by the taper are representative of major workloads expected on
Summit and the LLNL unclassified Sierra-like machine, Lassen.
Thus, the OLCF’s decision to use a non-blocking network is also
justified given their workload that includes some FFT heavy codes.
At LLNL, more data gathering and analysis is needed to better un-
derstand the workloads on the unclassified machines. Data collected
on smaller machines was projected forward and this worked well
for Sierra when the workloads are similar. However, this projection
approach may not be appropriate if the workloads vary between
large and small systems.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. DOE by
Oak Ridge Leadership Computing Facility at ORNL under contract
DE-AC05-000R22725. The US government retains and the pub-
lisher, by accepting the article for publication, acknowledges that
the US government retains a nonexclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of



SC ’19, November 17-22, 2019, Denver, CO, USA

this manuscript, or allow others to do so, for US government pur-
poses. DOE will provide public access to these results of federally
sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

Prepared by LLNL under Contract DE-AC52-07NA27344. LLNL-
CONF-772398.

REFERENCES

[1] R.Babich, M. A. Clark, B. Joo, G. Shi, R. C. Brower, and S. Gottlieb. 2011. Scaling

[2

[11

[12

(13

[14

[15

[16

(18

[19

=S

]

]

]

]

]

Lattice QCD beyond 100 GPUs. In SC11 International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis Seattle, Washington, Novem-
ber 12-18, 2011. https://doi.org/10.1145/2063384.2063478 arXiv:hep-lat/1109.2935
Evan Berkowitz. 2017. METAQ: Bundle Supercomputing Tasks. (2017).
arXiv:physics.comp-ph/1702.06122

Evan Berkowitz, M. A. Clark, Arjun Gambhir, Ken McElvain, Amy Nicholson,
Enrico Rinaldi, Pavlos Vranas, André Walker-Loud, Chia Cheng Chang, Balint
Joo, Thorsten Kurth, and Kostas Orginos. 2018. Simulating the Weak Death of the
Neutron in a Femtoscale Universe with Near-exascale Computing. In Proceedings
of the International Conference for High Performance Computing, Networking,
Storage, and Analysis (SC '18). IEEE Press, Piscataway, NJ, USA, Article 55, 9 pages.
http://dl.acm.org/citation.cfm?id=3291656.3291730

Jason Burmark. 2019. https://github.com/LLNL/Comb. (2019).

S. Chakraborty, M. Bayatpour, J. Hashmi, H. Subramoni, and D. K. Panda. 2018.
Cooperative Rendezvous Protocols for Improved Performance and Overlap. In
Proceedings of the International Conference for High Performance Computing,
Networking, Storage, and Analysis (SC ’18). IEEE Press, Piscataway, NJ, USA,
Article 28, 13 pages. http://dl.acm.org/citation.cfm?id=3291656.3291694

M. A. Clark, R. Babich, K. Barros, R. C. Brower, and C. Rebbi. 2010. Solving Lattice
QCD systems of equations using mixed precision solvers on GPUs. Comput.
Phys. Commun. 181 (2010), 1517-1528. https://doi.org/10.1016/j.cpc.2010.05.002
arXiv:hep-lat/0911.3191

Charles Clos. 1953. A study of non-blocking switching networks. The Bell System
Technical Journal Volume 32, Issue 2 (Mar 1953), 406—424. https://doi.org/10.
1002/§.1538-7305.1953.tb01433.x

Cray. 2019. Global Performance and Congestion Network Test - GPCNeT. (2019).
https://xgitlab.cels.anl.gov/networkbench/GPCNET

R. Darlington, T. McAbee, and G. Rodrigue. 2001. A Study of ALE Simulations
of Rayleigh-Taylor Instability. In Computer Physics Communications, Vol. 135.
58-73.

Sylvain Didelot, Patrick Carribault, Marc Pérache, and William Jalby. 2014. Im-
proving MPI Communication Overlap with Collaborative Polling. Computing 96,
4 (April 2014), 263-278. https://doi.org/10.1007/s00607-013-0327-z

Douglas Doerfler and Ron Brightwell. 2006. Measuring MPI Send and Re-
ceive Overhead and Application Availability in High Performance Network
Interfaces. In Proceedings of the 13th European PVM/MPI User’s Group Confer-
ence on Recent Advances in Parallel Virtual Machine and Message Passing In-
terface (EuroPVM/MPI'06). Springer-Verlag, Berlin, Heidelberg, 331-338. https:
//doi.org/10.1007/11846802_46

Jack Dongarra, Hans Meuer, and Erich Strohmaier. 2015. Top500 Supercomputing
Sites. http://www.top500.0rg. (2015).

P. Fischer, J. Lottes, D. Pointer, and A. Siegel. 2008. Petascale algorithms for
reactor hydrodynamics. In Journal of Physics Conference Series (Journal of Physics
Conference Series), Vol. 125. Article 012076, 012076 pages. https://doi.org/10.1088/
1742-6596/125/1/012076

Message P Forum. 1994. MPI: A Message-Passing Interface Standard. Technical
Report. Knoxville, TN, USA.

R. L. Graham, D. Bureddy, P. Lui, H. Rosenstock, G. Shainer, G. Bloch, D. Golden-
erg, M. Dubman, S. Kotchubievsky, V. Koushnir, L. Levi, A. Margolin, T. Ronen,
A. Shpiner, O. Wertheim, and E. Zahavi. 2016. Scalable Hierarchical Aggregation
Protocol (SHArP): A Hardware Architecture for Efficient Data Reduction. In 2016
First International Workshop on Communication Optimizations in HPC (COMHPC).
1-10. https://doi.org/10.1109/COMHPC.2016.006

Van Emden Henson and Ulrike Meier Yang. 2002. BoomerAMG: A parallel
algebraic multigrid solver and preconditioner. Applied Numerical Mathematics 41,
1(2002), 155 - 177. https://doi.org/10.1016/S0168-9274(01)00115-5 Developments
and Trends in Iterative Methods for Large Systems of Equations - in memorium
Rudiger Weiss.

IBM. 2018. IBM Power System AC922 Introduction and Technical Overview.
(2018). http://www.redbooks.ibm.com/abstracts/redp5472.html

IBM. 2019. IBM Spectrum MPI. (2019). https://www.ibm.com/us-en/marketplace/
spectrum-mpi

Tsuyoshi Ichimura, Kohei Fujita, Takuma Yamaguchi, Akira Naruse, Jack C.
Wells, Thomas C. Schulthess, Tjerk P. Straatsma, Christopher J. Zimmer, Maxime
Martinasso, Kengo Nakajima, Muneo Hori, and Lalith Maddegedara. 2018. A Fast
Scalable Implicit Solver for Nonlinear Time-evolution Earthquake City Problem

[20]

[21

[22]

[23

[24

[25

[26]

[27]

@
=

[33

Zimmer et al

on Low-ordered Unstructured Finite Elements with Artificial Intelligence and
Transprecision Computing. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage, and Analysis (SC ’18). IEEE Press,
Piscataway, NJ, USA, Article 49, 11 pages. http://dl.acm.org/citation.cfm?id=
3291656.3291722

S. Kumar, Y. Sun, and L. V. KalAL 2013. Acceleration of an Asynchronous
Message Driven Programming Paradigm on IBM Blue Gene/Q. In 2013 IEEE
27th International Symposium on Parallel and Distributed Processing. 689-699.
https://doi.org/10.1109/IPDPS.2013.83

Edgar A. Leén, Ian Karlin, Abhinav Bhatele, Steven H. Langer, Chris Chambreau,
Louis H. Howell, Trent D’Hooge, and Matthew L. Leininger. 2016. Characterizing
Parallel Scientific Applications on Commodity Clusters: An Empirical Study
of a Tapered Fat-tree. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’16). IEEE Press,
Piscataway, NJ, USA, Article 78, 12 pages. http://dl.acm.org/citation.cfm?id=
3014904.3015009

Edgar A. Le6n, Ian Karlin, Abhinav Bhatele, Steven H. Langer, Chris Chambreau,
Louis H. Howell, Trent D’'Hooge, and Matthew L. Leininger. 2016. Characterizing
Parallel Scientific Applications on Commodity Clusters: An Empirical Study
of a Tapered Fat-tree. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis (SC ’16). IEEE Press,
Piscataway, NJ, USA, Article 78, 12 pages. http://dl.acm.org/citation.cfm?id=
3014904.3015009

Edgar A. LeAsn, lan Karlin, and Adam T. Moody. 2016. System Noise Revisited:
Enabling Application Scalability and Reproducibility with SMT. In Proceedings of
the 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IEEE. https://doi.org/10.1109/IPDPS.2016.48

Piotr R Luszczek, David H Bailey, Jack J Dongarra, Jeremy Kepner, Robert F
Lucas, Rolf Rabenseifner, and Daisuke Takahashi. 2006. The HPC Challenge
(HPCC) Benchmark Suite. In Proceedings of the 2006 ACM/IEEE Conference on
Supercomputing (SC '06). ACM, New York, NY, USA, Article 213. https://doi.org/
10.1145/1188455.1188677

Mellanox. 2018. Mellanox Adaptive Routing. (2018). https://community.mellanox.
com/s/article/howto- configure-adaptive-routing-and-shiel

Mellnox. 2019. (2019). The following environment variables
were suggested by Mellanox for SHARP runs: PAMI_IBV_MTU=4096
HCOLL_MAIN_IB=mlx5_0:1 PAMI_IBV_DEBUG_CQE=1HCOLL_SHARP_NP=2
HCOLL_ENABLE_SHARP=3 HCOLL_ML_USE_SHMSEG_ALLREDUCE=1
SMPI_HCOLL_ENABLE_BCAST=1 PAMI_ENABLE_STRIPING=0
HCOLL_BCOL_P2P_ALLREDUCE_SHARP_MAX=2048
SHARP_COLL_JOB_QUOTA_MAX_GROUPS=4

MLX5_CQE_SIZE=128 SHARP_COLL_JOB_QUOTA_OSTS=64
PAMI_IBV_ADAPTER_AFFINITY=1 HCOLL_ML_USE_SHMSEG_BARRIER=1
HCOLL_ML_DISABLE_ALLREDUCE=0 HCOLL_ML_DISABLE_BCAST=0
PAMID_EAGER_LOCAL=8192 SHARP_COLL_ENABLE_MCAST TARGET=1
SHARP_COLL_JOB_QUOTA_PAYLOAD_PER_OST=256
PAMI_IBV_CQEDEPTH=4096 PAMI_IBV_OPT_LATENCY=1
PAMI_PMIX_DATACACHE=1 PAMI_IBV_ENABLE DCT=1 and the fol-
lowing options were passed to —smpiargs: -mca coll_hcoll_enable 1 -mca
coll_hcoll_np 0 -mca coll "basic -mca coll “ibm -HCOLL -FCA.

Adam Moody. 2009. Contention-Free Routing for Shift-based Communication in
MPI Applications on Large-scale InfiniBand Clusters. Technical Report. LLNL-
TR-418522, Lawrence Livermore National Laboratory.(LLNL), Livermore, CA
(USA).

B. E. Morgan and J. A. Greenough. 2015. Large-Eddy and Unsteady RANS
Simulations of a Shock-Accelerated Heavy Gas Cylinder. In Shock Waves.

N. A. Petersson and B. Sjogreen. 2017. User’s guide to SW4, version 2.0. Technical
Report LLNL-SM-741439. Lawrence Livermore National Laboratory. (Source
code available from geodynamics.org/cig).

Amit Ruhela, Hari Subramoni, Sourav Chakraborty, Mohammadreza Bayatpour,
Pouya Kousha, and Dhabaleswar K. Panda. 2018. Efficient Asynchronous Com-
munication Progress for MPI Without Dedicated Resources. In Proceedings of the
25th European MPI Users’ Group Meeting (EuroMPI'18). ACM, New York, NY, USA,
Article 14, 11 pages. https://doi.org/10.1145/3236367.3236376

B. S. Ryujin. 2015. Performance and Portability in the Ares Multi-Physics Code.
In DOE High Performance Computing Operational Review (HPCOR) on Scientific
Software Architecture for Portability and Performance.

S. Kumar, A. R. Mamidala, D. A. Faraj, B. Smith, M. Blocksome, B. Cernohous,
D. Miller, J. Parker, J. Ratterman, P. Heidelberger, D. Chen, B. Steinmacher-
Burrow. 2012. PAMI: A Parallel Active Message Interface for the Blue Gene/Q
Supercomputer. In IEEE 26th International Parallel and Distributed Processing
Symposium. 763-773.

Michael D. Schroeder, Andrew D. Birrell, Michael Burrows, Hal Murray, Roger M.
Needham, Thomas L. Rodeheffer, Edwin H. Sa’]-ferthwaite, and Charles P.
Thacker. 1991. Autonet: a High-speed, Self-configuring Local Area Network
Using Point-to-point Links. IEEE Journal on Selected Areas in Communications 9
(1991).


https://doi.org/10.1145/2063384.2063478
http://arxiv.org/abs/hep-lat/1109.2935
http://arxiv.org/abs/physics.comp-ph/1702.06122
http://dl.acm.org/citation.cfm?id=3291656.3291730
https://github.com/LLNL/Comb
http://dl.acm.org/citation.cfm?id=3291656.3291694
https://doi.org/10.1016/j.cpc.2010.05.002
http://arxiv.org/abs/hep-lat/0911.3191
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://doi.org/10.1002/j.1538-7305.1953.tb01433.x
https://xgitlab.cels.anl.gov/networkbench/GPCNET
https://doi.org/10.1007/s00607-013-0327-z
https://doi.org/10.1007/11846802_46
https://doi.org/10.1007/11846802_46
http://www.top500.org
https://doi.org/10.1088/1742-6596/125/1/012076
https://doi.org/10.1088/1742-6596/125/1/012076
https://doi.org/10.1109/COMHPC.2016.006
https://doi.org/10.1016/S0168-9274(01)00115-5
http://www.redbooks.ibm.com/abstracts/redp5472.html
https://www.ibm.com/us-en/marketplace/spectrum-mpi
https://www.ibm.com/us-en/marketplace/spectrum-mpi
http://dl.acm.org/citation.cfm?id=3291656.3291722
http://dl.acm.org/citation.cfm?id=3291656.3291722
https://doi.org/10.1109/IPDPS.2013.83
http://dl.acm.org/citation.cfm?id=3014904.3015009
http://dl.acm.org/citation.cfm?id=3014904.3015009
http://dl.acm.org/citation.cfm?id=3014904.3015009
http://dl.acm.org/citation.cfm?id=3014904.3015009
https://doi.org/10.1109/IPDPS.2016.48
https://doi.org/10.1145/1188455.1188677
https://doi.org/10.1145/1188455.1188677
https://community.mellanox.com/s/article/howto-configure-adaptive-routing-and-shiel
https://community.mellanox.com/s/article/howto-configure-adaptive-routing-and-shiel
https://doi.org/10.1145/3236367.3236376

An Evaluation of the CORAL Interconnects

[34] A.P.Singh, K. Duraisamy, and B. E. Morgan. 2019. Data-Augmented Modeling

[35

of Transition to Turbulence in Rayleigh-Taylor Mixing Layers". Technical Report
LLNL-TR-767683.

Sudharshan S. Vazhkudai, Bronis R. de Supinski, Arthur S. Bland, Al Geist,
James Sexton, Jim Kahle, Christopher J. Zimmer, Scott Atchley, Sarp Oral, Don E.
Maxwell, Veronica G. Vergara Larrea, Adam Bertsch, Robin Goldstone, Wayne
Joubert, Chris Chambreau, David Appelhans, Robert Blackmore, Ben Casses,
George Chochia, Gene Davison, Matthew A. Ezell, Tom Gooding, Elsa Gon-
siorowski, Leopold Grinberg, Bill Hanson, Bill Hartner, Ian Karlin, Matthew L.
Leininger, Dustin Leverman, Chris Marroquin, Adam Moody, Martin Ohmacht,
Ramesh Pankajakshan, Fernando Pizzano, James H. Rogers, Bryan Rosenburg,
Drew Schmidt, Mallikarjun Shankar, Feiyi Wang, Py Watson, Bob Walkup,

(36]

(37]

SC ’19, November 17-22, 2019, Denver, CO, USA

Lance D. Weems, and Junqi Yin. 2018. The Design, Deployment, and Evalu-
ation of the CORAL Pre-exascale Systems. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage, and Anal-
ysis (SC °18). IEEE Press, Piscataway, NJ, USA, Article 52, 12 pages. http:
//dLacm.org/citation.cfm?id=3291656.3291726

M. G. Venkata, P. Shamis, R. Sampath, R. L. Graham, and J. S. Ladd. 2013. Opti-
mizing blocking and nonblocking reduction operations for multicore systems:
Hierarchical design and implementation. In 2013 IEEE International Conference
on Cluster Computing. IEEE, 1-8. https://doi.org/10.1109/CLUSTER.2013.6702676
Vitali Morozov. [n. d.]. ALCF MPI BENCHMARKS. https://www.alcf.anl.gov/
software (visited March 2018). ([n. d.]).


http://dl.acm.org/citation.cfm?id=3291656.3291726
http://dl.acm.org/citation.cfm?id=3291656.3291726
https://doi.org/10.1109/CLUSTER.2013.6702676
https://www.alcf.anl.gov/software
https://www.alcf.anl.gov/software

Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

Summit Tests: OSU Benchmarks: 5.5 Compiled using Spectrum MPI
10.2, XL 16.1 Coral Optimized AMG2013 Compile using PGI 18.7,
Spectrum MPI 10.2 Cuda 9.2 Strong Scaling AMG 2013 (Base) XL
16.1 Spectrum MPI 10.2 (HCOLL Integrated) Global Performance
and Congestion Network Test - GPCNeT, Spectrum MPI 10.2, XL
16.1 Sierra Tests: Compiler XL v16.1.1 Spectrum MPI 10.2.0.11rtm2
SW4 commit f10323c027c42fac8d63a7312ca520a5f11d656b from:
https://github.com/geodynamics/sw4.git The CG benchmark
and Nekbone application were run with the following com-
mand line parameters: "-E HCOLL_MAIN_IB=mlx5_0:1 -E
PAMI IBV_DEBUG_CQE-=1-E SMPI HCOLL _ENABLE_BCAST=1

E HCOLL ML USE_SHMSEG BARRIER=1 -
E HCOLL_ML_USE_SHMSEG_ALLREDUCE=1 -
E HCOLL_ML_DISABLE_ALLREDUCE=0 E

HCOLL_ML_DISABLE BCAST=0 -E PAMI_IBV_MTU=4096
-E PAMID_EAGER_LOCAL=8192 -E PAMI_ENABLE_STRIPING=0
-E MLX5_CQE SIZE=128 -E PAMI IBV_CQEDEPTH=4096
-E PAMI_IBV_ADAPTER_AFFINITY=1 -E
PAMI_IBV_OPT_LATENCY=1 -E PAMI_PMIX_DATACACHE=1 -E
PAMI_IBV_ENABLE_DCT=1" SMPIARGS="-mca coll_hcoll_enable
1 -mca coll_hcoll_np 0 -mca coll *basic -mca coll *ibm -HCOLL
-FCA" When testing SHARP results, the following additional
parameters were used: -E HCOLL_ENABLE_SHARP=3 -E
HCOLL_SHARP_NP=2 -E SHARP_COLL_LOG_LEVEL=3

E HCOLL_BCOL_P2P_ALLREDUCE_SHARP MAX=2048
E SHARP_COLL_JOB_QUOTA_MAX_GROUPS=4
E SHARP_COLL_JOB_QUOTA_OSTS=64 E
SHARP_COLL_ENABLE_MCAST TARGET=1 E

SHARP_COLL JOB_QUOTA_PAYLOAD_ PER OST=256 Both
the CG benchmark and Nekbone were built with XL compilers,
Spectrum MPI 10.2 and Nekbone was built with CUDA 9.2. The
Nekbone source was that used for the CORAL benchmarks and
acceptance testing.

ARTIFACT AVAILABILITY

Software Artifact Availability: There are no author-created soft-
ware artifacts.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

List of URLs and/or DOIs where artifacts are available:

None

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Summit, Sierra

Operating systems and versions: RHEL 7.4

Compilers and versions: XL 16, PGI 18, gcc7.3.1

Applications and versions: OSU 5.5, AMG2013, QUDA 0.9.0

Libraries and versions: Spectrum MPI 10.2

Output from scripts that gathers execution environment informa-
tion.

% cat env-redacted.out

USER=[redacted]

LOGNAME=[redacted]

HOME=/ccs/home/[redacted]
PATH=/ccs/home/[redacted]/projects/stagesend: /usr/bi
— n:/usr/sbin:/sw/sources/1sf-tools/2.0/summit/bin,
:/sw/sources/1sf-tools/2.0/summit/bin:/sw/summit
/xalt/1.1.3/bin:/autofs/nccs-svml_sw/summit/.swc
i/1-compute/opt/spack/20180914/1inux-rhel7-ppc64
le/gcc-4.8.5/darshan-runtime-3.1.6-wwbm2i5cife23
vuzrlmenbokfpn5skén/bin:/sw/sources/hpss/bin:/au
tof's/nccs-svml_sw/summit/.swci/1-compute/opt/spa
ck/20180914/1inux-rhel7-ppc64le/x1-16.1.1-1/spec
trum-mpi-10.2.0.10-20181214-y75ruim4h6cvqcdymmen |
bémllodtyfuz/bin:/sw/summit/x1/16.1.1-1/x1C/16.1
.1/bin:/sw/summit/x1/16.1.1-1/x1f/16.1.1/bin:/op
t/ibm/spectrumcomputing/1sf/10.1/1inux3.10-glibc
2.17-ppc64le-csm/etc:/opt/ibm/spectrumcomputing/
1sf/10.1/1inux3.10-glibc2.17-ppc64le-csm/bin:/op
t/ibm/csm/bin:/usr/local/bin:/usr/bin:/ccs/home/
[redacted]/bin:/usr/local/sbin:/usr/sbin:/opt/ib
m/flightlog/bin:/opt/ibutils/bin:/opt/ibm/spectr
um_mpi/jsm_pmix/bin:/opt/puppetlabs/bin:/usr/lpp,
— /mmfs/bin

MAIL=/var/spool/mail/[redacted]

SHELL=/bin/zsh

SSH_CLIENT=[redacted] [redacted] 22
SSH_CONNECTION=[redacted] [redacted] [redacted] 22
SSH_TTY=/dev/pts/23

TERM=xterm-256color

XDG_SESSION_ID=8831

XDG_RUNTIME_DIR=/run/user/58031

SHLVL=1
PWD=/gpfs/alpine/scratch/[redacted]/[redacted]/cray-
— congestion-test-1M/266561
OLDPWD=/gpfs/alpine/[redacted]

HISTCONTROL=ignoredups

HOSTNAME=1ogin5

HISTSIZE=2000

!

L



LS_COLORS=rs=0:di=38;5;27:1n=38;5;51:mh=44;38;5;15:p,
«— 1=40;38;5;11:50=38;5;13:d0=38;5;5:bd=48;5;232;38,
— ;5;11:cd=48;5;232;38;5;3:0r=48;5;232;38;5;9:mi=0
— 5;48;5;232;38;5;15:s5u=48;5;196;38;5;15:5g=48;5;1
— 1;38;5;16:ca=48;5;196;38;5;226:tw=48;5;10;38;5;1
— 6:0w=48;5;10;38;5;21:5t=48;5;21;38;5;15:ex=38;5; |
— 34:%.tar=38;5;9:*.tgz=38;5;9:%.arc=38;5;9:%.arj=,
— 38;5;9:%.taz=38;5;9:%.1ha=38;5;9:*%.124=38;5;9:%*. ,
1zh=38;5;9:%.1zma=38;5;9:%.t12z=38;5;9:*.txz=38;5,
;9:%.120=38;5;9:%.t72=38;5;9:*%.2ip=38;5;9:%.2=38
35;9:%.7=38;5;9:%.dz=38;5;9:%.g2z=38;5;9:%.1rz=38
;5;9:%.12=38;5;9:%.120=38;5;9:%.x2=38;5;9:%.bz2=
38;5;9:%.bz=38;5;9:*.tbz=38;5;9:%.tbz2=38;5;9:%*. ,
tz=38;5;9:%.deb=38;5;9:x.rpm=38;5;9:*.jar=38;5;9
1x.war=38;5;9:%.ear=38;5;9:%.sar=38;5;9:%.rar=38
;5;9:%.alz=38;5;9:*.ace=38;5;9:%.200=38;5;9:%.cp
10=38;5;9:%.72=38;5;9:%.rz=38;5;9:%.cab=38;5;9: %
.Jpg=38;5;13:%.jpeg=38;5;13:*.gif=38;5;13:*.bmp=,
38;5;13:%.pbm=38;5;13:%.pgm=38;5;13:%.ppm=38;5;1,
3:%.tga=38;5;13:%.xbm=38;5;13:%x.xpm=38;5;13:%.ti,
f=38;5;13:%.tiff=38;5;13:%.png=38;5;13:%.svg=38; |
5;13:%.svgz=38;5;13:%.mng=38;5;13:%.pcx=38;5;13:
*.mov=38;5;13:%.mpg=38;5;13:%.mpeg=38;5;13:%.m2v
=38;5;13:%x.mkv=38;5;13:%.webm=38;5;13:%.0gm=38;5
—  ;13:%.mp4=38;5;13:%.m4v=38;5;13:%x.mp4v=38;5;13:%
< .vob=38;5;13:%.qt=38;5;13:%.nuv=38;5;13:%.wmv=38
— ;5;13:%.asf=38;5;13:%.rm=38;5;13:*.rmvb=38;5;13:,
— *.flc=38;5;13:*%.avi=38;5;13:*.fli=38;5;13:*.flv=)
— 38;5;13:%.g1=38;5;13:%.d1=38;5;13:%.xcf=38;5;13:,
— *.xwd=38;5;13:*%.yuv=38;5;13:*.cgm=38;5;13:x.emf=
«— 38;5;13:%.axv=38;5;13:*%.anx=38;5;13:%.0gv=38;5;1,
«— 3:%.0gx=38;5;13:%.aac=38;5;45:%.au=38;5;45:*x.fla,
— €=38;5;45:%x.mid=38;5;45:x.midi=38;5;45:x.mka=38; ,

]

]

L )

!

— 5;45:%.mp3=38;5;45:%.mpc=38;5;45:*.0gg=38;5;45:*%
— .ra=38;5;45:%.wav=38;5;45:*.axa=38;5;45:%.0ga=38
— ;5;45:%.spx=38;5;45:x.xspf=38;5;45:

CVS_RSH=ssh

LESSOPEN=]| | /usr/bin/lesspipe.sh %s

BINARY_TYPE_HPC=
LD_LIBRARY_PATH=/autofs/nccs-svm1_sw/summit/.swci/1-,
— compute/opt/spack/20180914/1inux-rhel7-ppc64le/g,
— cc-4.8.5/darshan-runtime-3.1.6-wwbm2i5cife23vuzr
— lmenbokfpn5skén/lib:/autofs/nccs-svml_sw/summit/
— .swci/1-compute/opt/spack/20180914/1linux-rhel7-p,
— pc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-201812,
— 14-y75ruim4h6cvgcdymmenb6mllodtyfuz/lib: /sw/summ
— it/x1/16.1.1-1/x1smp/5.1.1/1ib:/sw/summit/x1/16.
— 1.1-1/x1lmass/9.1.1/1ib:/sw/summit/x1/16.1.1-1/x1
— C€/16.1.1/1ib:/sw/summit/x1/16.1.1-1/x1f/16.1.1/1,
— ib:/sw/summit/x1/16.1.1-1/1ib:/opt/ibm/spectrumc
— omputing/1sf/10.1/1inux3.10-glibc2.17-ppc64le-cs
— m/lib
LSF_SERVERDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1i,
— nux3.10-glibc2.17-ppc64le-csm/etc
LSF_BINDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1linux
— 3.10-glibc2.17-ppc64le-csm/bin

Zimmer, et al.

LSF_LIBDIR=/opt/ibm/spectrumcomputing/1sf/10.1/1linux
— 3.10-glibc2.17-ppc64le-csm/1lib
XLSF_UIDDIR=/opt/ibm/spectrumcomputing/1sf/1@.1/1inu
— x3.10-glibc2.17-ppc64le-csm/lib/uid
LSF_ENVDIR=/opt/ibm/spectrumcomputing/lsf/conf
MANPATH=/sw/sources/hpss/man:/autofs/nccs-svml_sw/su
— mmit/.swci/1-compute/opt/spack/20180914/1linux-rh
el7-ppc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-2
0181214-y75ruim4h6cvgcdymmenbbmllodtyfuz/share/m
an:/sw/summit/x1/16.1.1-1/x1C/16.1.1/man/en_US:/
sw/summit/x1/16.1.1-1/x1f/16.1.1/man/en_US:/sw/s
ummit/Imod/7.7.10/rhel7.3_gnu4.8.5/1mod/1mod/sha
— re/man:/opt/ibm/spectrumcomputing/1lsf/10.1/man::
PS1=[%{%3}%n%{ %}@%{ %} %m%{ %} 1%{%}%3c %{%}%#
OLCF_LMOD_ROOT=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.8
— .5

LMOD_sys=Linux
MODULEPATH_ROOT=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.
— 8.5/modulefiles
MODULEPATH=/autofs/nccs-svm1_sw/summit/modulefiles/s
— 1ite/linux-rhel7-ppc64le/spectrum-mpi/10.2.0.10-2,
0181214-y75ruim/x1/16.1.1-1:/sw/summit/modulefil
es/site/linux-rhel7-ppc64le/x1/16.1.1-1:/sw/summ
it/modulefiles/site/linux-rhel7-ppc64le/Core:/sw
/summit/modulefiles/core:/sw/summit/1lmod/7.7.10/
rhel7.3_gnu4.8.5/modulefiles/Linux:/sw/summit/1m
0d/7.7.10/rhel7.3_gnu4.8.5/modulefiles/Core:/sw/
— summit/lmod/7.7.10/rhel7.3_gnu4.8.5/1mod/1mod/mo
— dulefiles/Core
BASH_ENV=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.8.5/1mo,
— d/1mod/init/bash
LMOD_PKG=/sw/summit/Imod/7.7.10/rhel7.3_gnu4.8.5/1mo
— d/1lmod
LMOD_DIR=/sw/summit/1lmod/7.7.10/rhel7.3_gnu4.8.5/1mo,
— d/1lmod/libexec
LMOD_CMD=/sw/summit/Imod/7.7.1@0/rhel7.3_gnu4.8.5/1mo
— d/1mod/libexec/1mod
MODULESHOME=/sw/summit/1mod/7.7.10/rhel7.3_gnu4.8.5/
— 1mod/1mod

LMOD_SETTARG_FULL_SUPPORT=no

LMOD_VERSION=7.7.10

SHOST=login5
_ModuleTable@@1_=X01vZHVsSZVRhYmx1Xz17WyJNVHZ1cnNpb24 |
iXTOzLFsiY19yZWJI1aWxkVG1tZSIdPWZhbHNILFsiY19zaG9
ydFRpbWUiXT1mYWxzZSxkZXB@aFQ9e30sZmFtaWx5PXtbImN |
vbXBpbGVyI1@9InhsIixbImlwaSJdPSJzcGVjdHI1bSTtcGk
iLHOsbVQ9e@R1ZkFwcHM9e1siZm4iXTOiL3N3L3NTbW1pdCI
tb2R1bGVmaWx1cy9zaXR1L2xpbnV4LXJoZWw3LXBwYzYQbGU
vQ29yZS9EZWZBcHBzLmx1YSIsWy JmdWxsTmFtZSJdPSJEZWZ |
BcHBzIixbImxvYWRPcmR1ciJdPTcscHIvcFQ9e3@sWyJzdGF |
ja@R1cHRoI1@9MCxbINNOYXR1cyJdPSThY3RpdmUiLFsidXN
1ck5hbWUiXT@iRGVmMQXBwcyIsfSxbImRhcnNoYW4tcnVudGl
tZSJdPXtbImZuIl09Ii9zdy9zdW1taXQvbWokdWx1Zmls

rrrtrt

rrrtre

!

L A



An Evaluation of the CORAL Interconnects

_ModuleTable@02_=ZXMvc210ZS9saW51eC1yaGVsNy 1wcGM2NGx |
« 1LONvemUVZGFyc2hhbilydW50aW11LzMuMS42Lmx1YSIsWyJ
— mdWxsTmFtZSJdPSJKkYXJzaGFuLXJ1bnRpbWUVMy4xLjYilLFs
— 1bG9IhZE9yZGVyI109NixwecmOwVD17fSxbInNOYWNrRGVwdGg
— iXTOxLFsic3RhdHVZI1@9ImFjdG12ZSIsWyJ1c2VyTmFtZST
— dPSJkYXJzaGFuLXJ1bnRpbWUiLH@saHNpPXtbImZuI1@9Ii9
— zdy9zdW1taXQvbWokdWx1ZmlsZXMvc210ZS9saW51eClyaGV
< SNyTwcGM2NGx1L@ONvecmUvaHNpLzUUMC4yLnATLmx1YSIsWyJ
— mdWxsTmFtZSJdPSJoc2kvNS4wL jTucDUiLFsibGOhZESyZGV
—  yI1@9Myxwcm9wVD17fSxbInNOYWNrRGVwdGgiXTOxLFsic3R
— hdHVzI1Q9ImFjdGl2ZSIsWyJ1c2VyTmFtZSJdPSJoc2ki
_ModuleTable_Sz_=6

__Init_Default_Modules=1
LMOD_SYSTEM_DEFAULT_MODULES=DefApps
__LMOD_REF_COUNT_CMAKE_PREFIX_PATH=/autofs/nccs-svml
— _sw/summit/.swci/1-compute/opt/spack/20180914/11
— nux-rhel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1.
— 6-wwbm2i5cife23vuzrlmenbokfpn5skén:1;/autofs/ncc
— s-svml_sw/summit/.swci/1-compute/opt/spack/20180
— 914/linux-rhel7-ppc64le/x1-16.1.1-1/spectrum-mpi
— -10.2.0.10-20181214-y75ruim4h6cvgcdymmcnbémllodty
— fuz:1
CMAKE_PREFIX_PATH=/autofs/nccs-svml_sw/summit/.swci/
— 1-compute/opt/spack/20180914/1linux-rhel7-ppc64le
— /gcc-4.8.5/darshan-runtime-3.1.6-wwbm2i5cife23vu
— zrlmenbokfpn5skén:/autofs/nccs-svml_sw/summit/.s
— wci/1-compute/opt/spack/20180914/1inux-rhel7-ppc
— 64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-20181214,
— =y75ruim4h6cvqgcdymmcnbémllodtyfuz
__LMOD_REF_COUNT_CPATH=/autof's/nccs-svml_sw/summit/.
— swci/1-compute/opt/spack/20180914/1linux-rhel7-pp,
— c64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-2018121,
— 4-y75ruim4h6cvgcdymmenb6émllodtyfuz/include:1
CPATH=/autofs/nccs-svm1_sw/summit/.swci/1-compute/op
— t/spack/20180914/1inux-rhel7-ppc64le/x1-16.1.1-1,
— /spectrum-mpi-10.2.0.10-20181214-y75ruim4h6cvqcd |
— ymmcnb6mllodtyfuz/include
__LMOD_REF_COUNT_LD_LIBRARY_PATH=/autofs/nccs-svml_s
— w/summit/.swci/1-compute/opt/spack/20180914/linu
— x-rhel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1.6-
— wwbm2i5cife23vuzrlmenbokfpn5skén/lib:1;/autofs/n
— ccs-svml_sw/summit/.swci/1-compute/opt/spack/201
— 80914/linux-rhel7-ppc64le/x1-16.1.1-1/spectrum-m
— pi-10.2.0.10-20181214-y75ruim4h6cvgcdymmcnbémllo
— dtyfuz/lib:1;/sw/summit/x1/16.1.1-1/x1smp/5.1.1/,
— lib:1;/sw/summit/x1/16.1.1-1/xlmass/9.1.1/1ib:1;,
— /sw/summit/x1/16.1.1-1/x1C/16.1.1/1ib:1;/sw/summ
— 1t/x1/16.1.1-1/x1f/16.1.1/1ib:1;/sw/summit/x1/16
< .1.1-1/1ib:1;/opt/ibm/spectrumcomputing/1sf/10.1,
— /linux3.10-glibc2.17-ppc64le-csm/1lib:1

__LMOD_REF_COUNT_LIBRARY_PATH=/autofs/nccs-svml_sw/s
ummit/.swci/1-compute/opt/spack/20180914/1linux-r
hel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1.6-wwb
m2i5cife23vuzrlmenbokfpn5skén/lib:1;/autofs/nccs
-svm1_sw/summit/.swci/1-compute/opt/spack/2018091
4/linux-rhel7-ppc64le/x1-16.1.1-1/spectrum-mpi-1
0.2.0.10-20181214-y75ruim4h6cvgcdymmenbémllodtyf |
uz/lib:1
LIBRARY_PATH=/autofs/nccs-svm1_sw/summit/.swci/1-com
pute/opt/spack/20180914/1inux-rhel7-ppc64le/gcc-
4.8.5/darshan-runtime-3.1.6-wwbm2i5cife23vuzrlme
nbokfpn5skén/lib:/autofs/nccs-svml_sw/summit/.sw
ci/1-compute/opt/spack/20180914/1linux-rhel7-ppc6
4le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-20181214-
— y75ruim4h6cvgcdymmcnbémllodtyfuz/1ib
LMOD_FAMILY_COMPILER=x1
LMOD_FAMILY_COMPILER_VERSION=16.1.1-1
LMOD_FAMILY_MPI=spectrum-mpi
LMOD_FAMILY_MPI_VERSION=10.2.0.10-20181214
LMOD_MPI_NAME=spectrum-mpi
LMOD_MPI_VERSION=10.2.0.10-20181214-y75ruim
__LMOD_REF_COUNT_LOADEDMODULES=x1/16.1.1-1:1;spectru
— m-mpi/10.2.0.10-20181214:1;hsi/5.0.2.p5:1;xalt/1
— .1.3:1;1sf-tools/2.0:1;darshan-runtime/3.1.6:1;D
— efApps:1
LOADEDMODULES=x1/16.1.1-1:spectrum-mpi/10.2.0.10-201
— 81214:hsi/5.0.2.p5:xalt/1.1.3:1sf-tools/2.0:dars
— han-runtime/3.1.6:DefApps
__LMOD_REF_COUNT_MANPATH=/sw/sources/hpss/man:1;/aut
ofs/nccs-svml_sw/summit/.swci/1-compute/opt/spac
k/20180914/1inux-rhel7-ppc64le/x1-16.1.1-1/spect
rum-mpi-10.2.0.10-20181214-y75ruim4h6cvgcdymmenb |
6mllodtyfuz/share/man:1;/sw/summit/x1/16.1.1-1/x
1¢/16.1.1/man/en_US:1;/sw/summit/x1/16.1.1-1/x1f
/16.1.1/man/en_US:1;/sw/summit/1mod/7.7.10/rhel7
.3_gnu4.8.5/1mod/1mod/share/man:1;/opt/ibm/spect
— rumcomputing/1sf/10.1/man:1
MPI_ROOT=/autofs/nccs-svml_sw/summit/.swci/1-compute
— /opt/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.
— 1-1/spectrum-mpi-10.2.0.10-20181214-y75ruim4hécyv |
— qcdymmcnb6émllodtyfuz
__LMOD_REF_COUNT_NLSPATH=/sw/summit/x1/16.1.1-1/msg/
— en_US/%N:2;/sw/summit/x1/16.1.1-1/x1C/16.1.1/msg
— /en_US/%N:1;/sw/summit/x1/16.1.1-1/x1f/16.1.1/ms
— g/en_US/%N:1
NLSPATH=/sw/summit/x1/16.1.1-1/msg/en_US/%N:/sw/summ
— 1t/x1/16.1.1-1/x1C/16.1.1/msg/en_US/%N:/sw/summi |
— t/x1/16.1.1-1/x1f/16.1.1/msg/en_US/%N
OLCF_DARSHAN_RUNTIME_ROOT=/autofs/nccs-svml_sw/summi |
< t/.swci/1-compute/opt/spack/20180914/1linux-rhel7
— -ppc64le/gcc-4.8.5/darshan-runtime-3.1.6-wwbm2i5c
— ife23vuzrlmenbokfpn5skén
OLCF_HSI_R0OOT=/sw/sources/hpss

L A

! !

et

rrrrrtre



OLCF_SPECTRUM_MPI_ROOT=/autofs/nccs-svml_sw/summit/.
— swci/1-compute/opt/spack/20180914/1linux-rhel7-pp,
— c64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-2018121
— 4-y75ruim4h6cvgcdymmcnbémllodtyfuz
OLCF_XLC_ROOT=/sw/summit/x1/16.1.1-1/x1C/16.1.1
OLCF_XLF_ROOT=/sw/summit/x1/16.1.1-1/x1f/16.1.1
OLCF_XLMASS_ROOT=/sw/summit/x1/16.1.1-1/x1lmass/9.1.1
OLCF_XLSMP_ROOT=/sw/summit/x1/16.1.1-1/x1smp/5.1.1
OLCF_XL_ROOT=/sw/summit/x1/16.1.1-1
OMPI_CC=/sw/summit/x1/16.1.1-1/x1C/16.1.1/bin/x1lc_r
OMPI_CXX=/sw/summit/x1/16.1.1-1/x1C/16.1.1/bin/x1lc++
- _r
OMPI_DIR=/autofs/nccs-svml_sw/summit/.swci/1-compute
— /opt/spack/20180914/1inux-rhel7-ppc64le/x1-16.1.
— 1-1/spectrum-mpi-10.2.0.10-20181214-y75ruim4hécv
— qcdymmcnbémllodtyfuz
OMPI_FC=/sw/summit/x1/16.1.1-1/x1f/16.1.1/bin/x1f200
— 8_r
OMPI_LD_PRELOAD_PREPEND=/autofs/nccs-svml_sw/summit/ |
< .swci/1-compute/opt/spack/20180914/1linux-rhel7-p,
— pc64le/gcc-4.8.5/darshan-runtime-3.1.6-wwbm2i5ci
— fe23vuzrlmenbokfpn5skén/lib/libdarshan.so
OPAL_LIBDIR=/autofs/nccs-svml_sw/summit/.swci/1-comp
— ute/opt/spack/20180914/1linux-rhel7-ppc64le/x1-16
— .1.1-1/spectrum-mpi-10.2.0.10-20181214-y75ruiméh
— 6cvgcdymmenb6mllodtyfuz/lib
OPAL_PREFIX=/autofs/nccs-svml_sw/summit/.swci/1-comp
— ute/opt/spack/20180914/1linux-rhel7-ppc64le/x1-16
— .1.1-1/spectrum-mpi-10.2.0.10-20181214-y75ruim4h
— 6cvgedymmenbémllodtyfuz

PAMI_IBV_ENABLE_OOO_AR=1

PAMI_IBV_QP_SERVICE_LEVEL=8
__LMOD_Priority_PATH=/sw/sources/1sf-tools/2.0/summi |
— t/bin:-9999;/sw/summit/xalt/1.1.3/bin:-9999
__LMOD_REF_COUNT_PATH=/sw/sources/1sf-tools/2.0/summ
«— it/bin:1;/sw/summit/xalt/1.1.3/bin:1;/autofs/ncc
s-svm1_sw/summit/.swci/1-compute/opt/spack/20180
914/linux-rhel7-ppc64le/gcc-4.8.5/darshan-runtim
e-3.1.6-wwbm2i5cife23vuzrlmenbokfpn5skén/bin:1;/
sw/sources/hpss/bin:1;/autofs/nccs-svml_sw/summi |
t/.swci/1-compute/opt/spack/20180914/1linux-rhel7
-ppc64le/x1-16.1.1-1/spectrum-mpi-10.2.0.10-20181
214-y75ruim4h6cvgcdymmenbémllodtyfuz/bin:1;/sw/s
ummit/x1/16.1.1-1/x1C/16.1.1/bin:1;/sw/summit/x1
/16.1.1-1/x1£f/16.1.1/bin:1;/opt/ibm/spectrumcomp
uting/1sf/10.1/1inux3.10-glibc2.17-ppc64le-csm/e
tc:1;/opt/ibm/spectrumcomputing/1sf/10.1/1inux3.
10-glibc2.17-ppc64le-csm/bin:1;/opt/ibm/csm/bin: |
1;/usr/local/bin:1;/usr/bin:1;/ccs/home/[redacte
— d1/bin:1;/usr/local/sbin:1;/usr/sbin:1;/opt/ibm/
— flightlog/bin:1;/opt/ibutils/bin:1;/opt/ibm/spec
— trum_mpi/jsm_pmix/bin:1
__LMOD_REF_COUNT_PKG_CONFIG_PATH=/autofs/nccs-svml_s
— w/summit/.swci/1-compute/opt/spack/20180914/linu
« x-rhel7-ppc64le/gcc-4.8.5/darshan-runtime-3.1.6-
— wwbm2i5cife23vuzrlmenbokfpn5sk6én/1ib/pkgconfig:1

A

)

Zimmer, et al.

PKG_CONFIG_PATH=/autofs/nccs-svml_sw/summit/.swci/1-
< compute/opt/spack/20180914/1linux-rhel7-ppc64le/g
— cc-4.8.5/darshan-runtime-3.1.6-wwbm2i5cife23vuzr
— 1lmenbokfpn5sk6n/lib/pkgconfig
__LMOD_REF_COUNT_PYTHONPATH=/sw/summit/xalt/1.1.3/si
— te:1;/sw/summit/xalt/1.1.3/libexec:1
PYTHONPATH=/ccs/home/[redacted]/projects/stagesend:/
— usr/bin:/usr/sbin:/sw/sources/1sf-tools/2.0/summ
it/bin:/sw/sources/1lsf-tools/2.0/summit/bin:/sw/
summit/xalt/1.1.3/bin:/autofs/nccs-svml_sw/summi |
t/.swci/1-compute/opt/spack/20180914/1linux-rhel7
-ppc64le/gcc-4.8.5/darshan-runtime-3.1.6-wwbm2i5c
ife23vuzrlmenbokfpn5skén/bin:/sw/sources/hpss/bi
n:/autofs/nccs-svml_sw/summit/.swci/1-compute/op
t/spack/20180914/1linux-rhel7-ppc64le/x1-16.1.1-1
/spectrum-mpi-10.2.0.10-20181214-y75ruim4h6cvacd |
ymmenbémllodtyfuz/bin:/sw/summit/x1/16.1.1-1/x1C
/16.1.1/bin:/sw/summit/x1/16.1.1-1/x1f/16.1.1/bi
n:/opt/ibm/spectrumcomputing/1sf/10.1/1inux3.10-
glibc2.17-ppc64le-csm/etc: /opt/ibm/spectrumcompu
ting/1sf/10.1/1inux3.10-glibc2.17-ppc64le-csm/bi
n:/opt/ibm/csm/bin:/usr/local/bin:/usr/bin:/ccs/
home/[redacted]/bin:/usr/local/sbin:/usr/sbin: /o
pt/ibm/flightlog/bin:/opt/ibutils/bin:/opt/ibm/s
pectrum_mpi/jsm_pmix/bin:/opt/puppetlabs/bin:/us
r/lpp/mmfs/bin:/ccs/home/[redacted]/projects/pex
pect-2.3/build/lib:/ccs/home/[redacted]/projects
— /stagesend
XALT_ETC_DIR=/sw/summit/xalt/1.1.3/etc
XALT_OLCF=1
XL_LINKER=/sw/summit/xalt/1.1.3/bin/1d
LMOD_REF_COUNT__LMFILES_=/sw/summit/modulefiles/si
te/linux-rhel7-ppc64le/Core/x1/16.1.1-1.1ua:1;/s
w/summit/modulefiles/site/linux-rhel7-ppc64le/x1
/16.1.1-1/spectrum-mpi/10.2.0.10-20181214.1ua:1;
/sw/summit/modulefiles/site/linux-rhel7-ppc64le/
Core/hsi/5.0.2.p5.1ua:1;/sw/summit/modulefiles/s
ite/linux-rhel7-ppc64le/Core/xalt/1.1.3.1ua:1;/s,
w/summit/modulefiles/site/linux-rhel7-ppc64le/Co
re/lsf-tools/2.0.1lua:1;/sw/summit/modulefiles/si
te/linux-rhel7-ppc64le/Core/darshan-runtime/3.1.
6.lua:1;/sw/summit/modulefiles/site/linux-rhel7-
ppc64le/Core/DefApps.lua:1
_LMFILES_=/sw/summit/modulefiles/site/linux-rhel7-pp
c64le/Core/x1/16.1.1-1.1ua:/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/x1/16.1.1-1/spectrum-
mpi/10.2.0.10-20181214.1lua:/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/Core/hsi/5.0.2.p5.1ua
:/sw/summit/modulefiles/site/linux-rhel7-ppc64le
/Core/xalt/1.1.3.1ua:/sw/summit/modulefiles/site
/linux-rhel7-ppc64le/Core/1sf-tools/2.0.1lua:/sw/
summit/modulefiles/site/linux-rhel7-ppc64le/Core
/darshan-runtime/3.1.6.1ua:/sw/summit/modulefile
s/site/linux-rhel7-ppc64le/Core/DefApps.lua

L

L

L A A



An Evaluation of the CORAL Interconnects

_ModuleTable@@3_=LHosWyJsc2YtdGIvbHMiXT17WyJmbiJdPSI |

vc3cve3VtbWloL21vZHVsZWZpbGVzL3NpdGUvbGLudXgtemh |
1bDctcHBjNjRsZS9Db3J1L2xzZ110b29scy8yL jAubHVhIix
bImZ1bGx0YW111109ImxzZi10b29scy8yL jAiLFsibGOhZE9
yZGVyI109NSxwecmIwVD17fSxbInNOYWNrRGVwdGgiXTOXLFs |
1c3RhdHVZzI109ImFjdG12ZSIsWyJ1c2VyTmFtZSJdPSTsc2Y
tdGIVbHMiLHOsWyJzcGVjdHI1bS1tcGkiXT17WyJImbiJdPST |
vc3cve3VtbWloL21vZHVsZWZpbGVzL 3NpdGUvbGLudXgtemh |
1bDctcHBjNjRsZS94bC8xNi4xL jJEtMS9zcGVjdHIT1bSTtcGk
VMTAuUMi4wL JEWLTIWMTgxMJEOLmx1YSIsWyTmdWxsTmFtZS]J |
dPSJzcGVjdHI1bS1tcGkvMTAUMi4wL JEWLTIWMTgxMJEQ

_ModuleTable@04_=IixbImxvYWRPcmRlciJdPTIscHJvcFQ9e30

sWyJzdGF ja@R1cHRoI1@9MSxbInN@YXR1cyJdPSIThY3RpdmU
iLFsidXN1ck5hbWUiXT@ic3B1Y3RydWatbXBpIix9LHhhbHQ
9e1s1Zm4iXT@OiL3N3L3NTbW1pdC9tb2R1bGVmaWx1lcy9zaXR
1L2xpbnV4LXJoZWw3LXBwYzY@bGUVQ29yZS94YWxOLZEUMS4 |
zLmx1YSIsWyImdWxsTmFtZSJdPSJ4YWx@LzEuMS4zIixbImx
VYWRPcmR1ciJdPTQscHIvcFQ9e30sWyJzdGF ja@R1cHR0I10 |
9MSXbINNOYXR1cyJdPSIhY3RpdmUiLFsidXN1ck5hbWUiXT@
1eGFsdCIsfSx4bD17WyJmbiJdPSIvc3cve3VtbWloL21vZHY
SZWZpbGVzL 3NpdGUvbGludXgtcmhlbDctcHBNjRSZS9Db3T |
1L3hsLzE2L JEUMSOXLmx1YSIsWyImdWxsTmFtZSJdPSJ4

_ModuleTable@@5_=bC8xNi4xL jEtMSIsWyJsb2FkT3JkZXIiXT@

—

XLHByb3BUPXt9LFsic3RhY2tEZXBO@aCJdPTEsWyJzdGF@dXM
iXTOiYWNOaXZ1IixbInVzZXJOYW11I1109InhsIix9LHOsSbXB
hdGhBPXsiL2F1dG9mcy9uY2NzLXN2bTFfc3cve3VtbwleL21
VZHVsZWZpbGVzL 3NpdGUvbGludXgtcmhlbDctcHBjNRSZS9 |
2cGVjdHI1bS1tcGkvMTAUMi 4wl JEWLTIwMTgxMJEQLXK3NXJ |
1aWQveGwvMTYuMS4xLTEiILCIve3cve3VtbWloL21vZHVSZWZ |
pbGVzL3NpdGUvbGludXgtcmhlbDctcHBNjRsZS94bC8xNi4 |
XLjJEtMSIsIi9zdy9zdW1taXQvbWokdWx1ZmlsZXMvc210ZS9
saW51eC1yaGVsNyTwcGM2NGx1LONvemUiLCIve3cve3VibWl |
OL21vZHVSZWZpbGVzL2NvemUiLCIve3cve3VtbWloLl2xt

_ModuleTable@@6_=b2QuNy43L JEWL3ToZWw3L jNFZ251NC44L U

vbWOkdWx1ZmlsZXMvTGludXgilCIvc3cve3VtbWlaL2xth2Q
VNy43LFEwL3J0ZWw3LjNfZ25T1NC44L jUvbWIkdWx1ZmlsZXM |
vQ29yZSIsIi9zdy9zdW1taXQvbG1vZC83L jcuMTAvemhlbDc
uM19nbnUOL jguNS9sbWIkL2xtb2QvbWIkdWx1ZmlsZXMvQ29 |
yZSIsfSxbInN5c3R1bUThc2VNUEFUSCIAPSIve3cve3VtbWl
0L2xtb2QvNy43LJEwWL3J0oZWw3L jNfZ251NC44L jUvbWIkdWx |
1Zm1sZXMvTGludXg6L3N3L3N1bW1pdCIsbWIkLzcuNy4xMC9 |
yaGVsNy4zX2dudTQuOC41L21vZHVsSZWZpbGVzLONvemUGL 3N |
3L3N1bW1pdC9sbWIkLzcuNy4xMC9yaGVsNy4zX2dudTQuOC4
1L2xtb2QvbG1vZC9tb2R1bGYmaWx1cy9Db3J11ix9

OLCF_MODULEPATH_ROOT=/sw/summit/modulefiles
MEMBERWORK=/gpfs/alpine/scratch/[redacted]
PROJWORK=/gpfs/alpine/proj-shared
WORLDWORK=/gpfs/alpine/world-shared
PAMI_ENABLE_STRIPING=0
PAMI_IBV_ENABLE_DCT=1
PAMI_IBV_ADAPTER_AFFINITY=1
OMPI_MCA_io=romio314
OMPI_MCA_coll_ibm_xml_disable_cache=1
PAMI_PMIX_USE_OLD_MAPCACHE=1

LESS=-RseFiX

EDITOR=/usr/bin/vim

SAVEHIST=1000
HISTFILE=/ccs/home/[redacted]/.zsh/zsh_history
_=/usr/bin/env

% module list

Currently Loaded Modules:
1) x1/16.1.1-3 3) hsi/5.0.2.p5
— 5) lsf-tools/2.0 7) DefApps
2) spectrum-mpi/10.3.0.0-20190419 4) xalt/1.1.3
—  6) darshan-runtime/3.1.7



	Abstract
	1 Introduction
	2 Interconnect Design and Features
	2.1 Spectrum MPI
	2.2 Adaptive Routing
	2.3 Scalable Hierarchical Aggregation and Reduction Protocol
	2.4 Hardware Tag-Matching

	3 OLCF and LC System Topology Comparisons
	4 Evaluation
	4.1 Adaptive Routing
	4.2 SHARP
	4.3 Hardware Tag-Matching
	4.4 Congestion Management

	5 Early Application Experiences
	5.1 QUDA
	5.2 SW4
	5.3 ARES

	6 Conclusion
	6.1 Adaptive Routing
	6.2 Hardware Tag Matching
	6.3 SHARP
	6.4 Congestion and Tail Latency
	6.5 Tapering

	Acknowledgments
	References

