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2 Molten Na Batteries for Grid Scale Energy Storage:
New Approaches for an Old Technology

Traditional Chemistries Operate at High Temperature
(-300 °C)

High Materials Cost

Increased Operational Cost

Shortened Lifetimes

Safety (Na-S)

Substantially Lowering Operating Temperature
Requires Novel Chemistry

Anode: Molten Na

Separator: NaSICON

Cathode: 25 mol% Nal in AlBr3 liquid catholyte
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3 NaSICON Promotes Low Temperature Operation

Sodium (Na) Super Ionic CONductor
Nal+),Zr2SixP3_x01 2

"Skeleton structure" of Zr06 octahedra and PO4, SiO4
tetrahedra enable fast Na+ transport

Advantages:

Tunable crystal structure

High conductivity at low temperature

Chemical stability with molten sodium
100 — 150 °C

Flexibility in end design
Sheets, discs, tubes, & thin films can be
synthesized

4

2

gg 0 NaSICON
A 

o
o

A o
A o

o

2.5 3
1000/T / K-1

L.J. Small, E.D. Spoerke et al., J. Power Sources, 360 (2017) 569-574.
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4 Challenges in Lowering the Operating Temperature
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High overpotential at low current density
> I V at 0.1 6 mA cm-2

Post Mortem: Na wet very poorly to NaSICON
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5 Challenges in Lowering the Operating Temperature
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6 Challenges in Lowering the Operating Temperature
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7 Contact Angle Measures Wettability of Na on NaSICON
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Contact angle is a measure of Na wetting

Traditional thinking:

High ContactAngle = Poor Charge Transfer

> 90° nonwetting, < 90° wetting

Contact angle increases as temperature
decreases

Na metal wets poorly to NaSICON at low
temperature

L.Viswanathan,A.V.Virkar, J. Mater. Sci., (1982) 17, 753.



8 Contact Angle Measures Wettability of Na on NaSICON
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Contact angle is a measure of Na wetting

Traditional thinking:
High ContactAngle = Poor Charge Transfer

> 90° nonwetting, < 90° wetting

Contact angle increases as temperature
decreases

Na metal wets poorly to NaSICON at low
temperature

L.Viswanathan,A.V.Virkar, J. Mater. Sci., (1982) 17, 753.



9 Sn Coating on NaSICON a Promising Candidate to Improve
Battery Performance
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• Previous work at low temperatures entirely on
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• Sn shows promise as a coating material
• Alloys with Na

• High Na+ conductivity based on Na+-ion anode
work
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• Sn is sparingly soluble in Na

• Solubility: 6.7 x 10-3 wt% at 1 10 °C

M.M. Gross, E.D. Spoerke et al., submitted (2020)



10 Sn Coating Behavior Differs Based on Thickness

Sn

Na

Sn-satetated Na
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Critical Thickness (task):

Thickness above which the solubility limit is
reached

Dependent on surface area of coating and mass of Na used

tcrit of our cells: —220 nm

Coatings of thicknesses below and above the critical
thickness were tested

40 nm
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11 Sn Coating Promotes Na Wetting on NaSICON

No Sn

< tcrit

> tcrit

*53

M.M. Gross, E.D. Spoerke et al., submitted (2020)

SURFACE TEMP: 110°C

Poor contact angle and 'sticking' of Na on bare NaSICON

Best contact angle achieved on Sn-coated NaSICON with
thickness < tcrit

Contact angle not improved when Sn thickness > tcrit

Better adherence of Na to NaSICON surface with Sn coating



12 Sn Coating Promotes Na Wetting on NaSICON

Sn-coated SURFACE TEMP: 110°C

Poor contact angle and 'sticking' of Na on bare NaSICON

Best contact angle achieved on Sn-coated NaSICON with
thickness < tcrit

Contact angle not improved when Sn thickness > tcrit

Better adherence of Na to NaSICON surface with Sn coating



1 3 Sn Coating Promotes Na Wetting on NaSICON

Sn-coated

40

SURFACE TEMP: 110°C

Poor contact angle and 'sticking' of Na on bare NaSICON

Best contact angle achieved on Sn-coated NaSICON with
thickness < tcrit

Contact angle not improved when Sn thickness > tcrit

Better adherence of Na to NaSICON surface with Sn coating



14 Sn Coating on NaSICON Lowers Symmetric Cell Resistances
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Symmetric cells assembled and heated to I 10 °C

Substantially lower resistance in assembled symmetric
cell with Sn-coated NaSICON

Regardless of Sn thickness

Electrichemical Impedance Spectroscopy (EIS)
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



15 Sn Coating on NaSICON Lowers Symmetric Cell Overpotential
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



16 Sn Coating on NaSICON Lowers Symmetric Cell Overpotential
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Cells with Sn-coated NaSICON demonstrated lower
overpotential at all current densities, regardless of Sn coating
thickness

Sn coatings > tcrit performed better than coatings < tcrit
Contradicts results expected from contact angle testing
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



1 7

MI

In-situ Formation of Na+-Conducting "Chaperone Phase" Improves
Charge Transfer

Wetting Test koy

III
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M.M. Gross, E.D. Spoerke et al., submitted (2020)

30

XRD analysis of uncycled & cycled Sn-coated
NaSICON

Intermetallic NaSn phase identified in cycled samples
Not identified in samples from static contact angle
measurements

Na+-ion conducting NaSn "chaperone phase"
formed during cycling produces enhanced
battery performance

Na
Meta I Said]

Electrolyte



1 8 Sn Coating on NaSICON Enables Long Battery Lifetime!
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Over 500 hours of cycling
achieved!



19 Take Home Messages

Lowering the operating temperature of a molten Na battery increases interfacial resistance due
to poor Na wetting on the NaSICON separator

Results in high battery overpotentials

Application of a Sn coating on NaSICON lowers interfacial resistance in a Na symmetric cell at
low temperature (1 10 °C)

Best battery performance is achieved with Sn coatings where t > tcrit

Dynamic formation of a NaSn "chaperone phase" enhances charge transfer, lowering interfacial
resistance and improving battery performance

High Natconductivity intermetallic-forming coatings offer a path towards advancing the performance of
low temperature molten sodium batteries

Synthetic Designs for Improved NaSICON Sodium Ion Conductors Erik Spoerke
8:30a Friday 1/24 Citrus A
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23 Molten Na Batteries for Grid Scale Energy Storage:
New Approaches for an Old Technology

Challenges in Low Temperature Molten Na
Batteries

Temperature > I 00°C to maintain Na in molten state

Low separator ionic conductivity

Unknown interactions between ceramic & catholyte

Catholyte materials selection — molten at low
temperatu res

Materials compatibility with molten salt catholyte

Poor charge transfer at cathode current collector

Poor Na wetting on ceramic separator
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24 Sn Coating Surface Morphology &Thickness Determination
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170 nm

Below Critical Thickness

500 nm 700 nm

Above Critical Thickness

Increased surface roughness
with increased coating
thickness

Thinnest (40nm) coating
non-conformal

4 thicknesses tested:

2 coatings < tcrit
2 coatings > tcrit

M.M. Gross, E.D. Spoerke et al., submitted (2020)



2 5 Surface Roughness & Composition

11 0°C

In-House NaSICON,
Unpolished

- 140°

UNIST NaSICON,
Unpolished

- 15

024

In-House NaSICON,
Polished

Surface roughness & ceramic composition have profound effect on contact angle

Surface prep, impurity composition, ceramic porosity, and surface roughness often
underreported

UNIST NaSICON,
Polished

UNIST NaSICON received from Professor Youngsik Kim



26 Surface Roughness & Composition

110°C
VIDEOS

UNIST NaSICON,
Unpolished

UNIST NaSICON,
Polished

Surface roughness & ceramic composition have profound effect on contact angle

Surface prep, impurity composition, ceramic porosity, and surface roughness often
underreported

UNIST NaSICON received from Professor Youngsik Kim



Effect of Polishing NaSICON on Full Battery performance
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Cell with polished NaSICON cycled at C/4



28 Sn-Saturated Na on Bare NaSICON

No improvement over pure Na on Bare NaSICON



29 Wetting of Na in Cycled NaSICON

Increasing Sn thickness



30 Summary of Symmetric Cell Resistance

Total Resistance
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31 In-situ Formation of Na+-Conducting "Chaperone Phase" Improves
Charge Transfer

Wetting Test

I I
aS

00-001-0850 N a

00-006-0266 Zircon

04-008-4977 Sn
I

M.M. Gross, E.D. Spoerke et al., submitted (2020)

XRD analysis of uncycled & cycled Sn-coated
NaSICON

Intermetallic NaSn phase identified in cycled samples
Not identified in samples from static contact angle
measurements

Na+-ion conducting NaSn "chaperone phase"
formed during cycling produces enhanced
battery performance
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