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2 | Molten Na Batteries for Grid Scale Energy Storage:
New Approaches for an Old Technology

* Traditional Chemistries Operate at High Temperature

(~300 °C)

> High Materials Cost

° Increased Operational Cost
o Shortened Lifetimes

o Safety (Na-S)

* Substantially Lowering Operating Temperature

Requires Novel Chemistry
> Anode: Molten Na
o Separator: NaSICON

o Cathode: 25 mol% Nal in AlBr; liquid catholyte

2e —> /
Cathode

NaSICON Current
Anode {solid el\@chrgﬁylﬁe} Catholyte Col r

Molten 2N T
Sodium

OCV: ~3.24 V

Anode: Na - Nat + e~
Cathode: 7 +2e™ -3I”
Overall:  2Na+1,™ - 2Na* +31-



3 I NaSICON Promotes Low Temperature Operation

* Sodium (Na) Super lonic CONductor
° Na;,, ZrSi P3O,

* "Skeleton structure" of ZrO, octahedra and PO, SiO,
tetrahedra enable fast Na™ transport

Advantages:
* Tunable crystal structure _ 4} | Rgo | Nas|mCON |
N & =
* High conductivity at low temperature T 2 & °o .
A

* Chemical stability with molten sodium 5; O &

100 — 150 °C —~2! =,

e : S B™-ALO, " a

* Flexibility in end design =g || a

o Sheets, discs, tubes, & thin films can be - 6L ‘., A

SYntheSlzed 2 2.5 | 3 3.5 Synthesized by Amanda S. Peretti
1000/T / K™

L.J. Small, E.D. Spoerke et al., J. Power Sources, 360 (2017) 569-574.



4 I Challenges in Lowering the Operating Temperature
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* High overpotential at low current density odium

o > 1Vat0.16 mA cm™2

* Post Mortem: Na wet very poorly to NaSICON

Data collected by Stephen J. Percival



s | Challenges in Lowering the Operating Temperature
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* Post Mortem: Na wet very poorly to NaSICON




¢ I Challenges in Lowering the Operating Temperature
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* Post Mortem: Na wet very poorly to NaSICON




7 I Contact Angle Measures Wettability of Na on NaSICON
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L.Viswanathan, A.V.Virkar, J. Mater. Sci., (1982) 17,753.

* Contact angle is a measure of Na wetting

* Traditional thinking:
> High Contact Angle = Poor Charge Transfer

* > 90° nonwetting, < 90° wetting

* Contact angle increases as temperature
decreases

* Na metal wets poorly to NaSICON at low
temperature
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* Contact angle is a measure of Na wetting

* Traditional thinking:
> High Contact Angle = Poor Charge Transfer

* > 90° nonwetting, < 90° wetting

* Contact angle increases as temperature
decreases

* Na metal wets poorly to NaSICON at low
temperature



9 I Sn Coating on NaSICON a Promising Candidate to Improve

Battery Performance
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* Previous work at low temperatures entirely on
B"-AlLO;

* Sn shows promise as a coating material
o Alloys with Na

> High Na* conductivity based on Na*-ion anode
work

M.M. Gross, E.D. Spoerke et al., submitted (2020)

Temperature, °C

[ 232

© ASM International 2006

* Sn is sparingly soluble in Na

* Solubility: ~ 6.7 x 103 wt% at 110 °C

Diagram No. 2002049



0 I Sn Coating Behavior Differs Based on Thickness

* Critical Thickness (t_;):

> Thickness above which the solubility limit is
reached

> Dependent on surface area of coating and mass of Na used

* t . of our cells: ~220 nm

* Coatings of thicknesses below and above the critical
thickness were tested

° 40 nm
> 170 nm et
> 500 nm

>t .
o 700 nm crit




11 I Sn Coating Promotes Na Wetting on NaSICON

SURFACE TEMP: 110°C

NoSn|
* Poor contact angle and ‘sticking’ of Na on bare NaSICON
* Best contact angle achieved on Sn-coated NaSICON with
thickness < t_.,
<t * Contact angle not improved when Sn thickness > t_,;.
* Better adherence of Na to NaSICON surface with Sn coating
>tcrit | — . \‘ » s’

M.M. Gross, E.D. Spoerke et al., submitted (2020)




2 I Sn Coating Promotes Na Wetting on NaSICON

Sn-coated | SURFACE TEMP: 110°C

* Poor contact angle and ‘sticking’ of Na on bare NaSICON

* Best contact angle achieved on Sn-coated NaSICON with
thickness < t

crit

* Contact angle not improved when Sn thickness > t .

* Better adherence of Na to NaSICON surface with Sn coating




13 1 Sn Coating Promotes Na Wetting on NaSICON

Sn-coated SURFACE TEMP: 110°C

* Poor contact angle and ‘sticking’ of Na on bare NaSICON

* Best contact angle achieved on Sn-coated NaSICON with
thickness < t

crit

* Contact angle not improved when Sn thickness > t .

* Better adherence of Na to NaSICON surface with Sn coating




14 | Sn Coating on NaSICON Lowers Symmetric Cell Resistances

NaSICON

* Symmetric cells assembled and heated to 110 °C

* Substantially lower resistance in assembled symmetric
A\ cell with Sn-coated NaSICON
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



Sn Coating on NaSICON Lowers Symmetric Cell Overpotential
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* Cells with Sn-coated NaSICON demonstrated lower
overpotential at all current densities, regardless of Sn coating EIS of .
thickness Symmetric
cells with Sn-
* Sn coatings > t_,;. performed better than coatings < t_, coated
> Contradicts results expected from contact angle testing NaSICON

M.M. Gross, E.D. Spoerke et al., submitted (2020)




Sn Coating on NaSICON Lowers Symmetric Cell Overpotential
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> Contradicts results expected from contact angle testing

M.M. Gross, E.D. Spoerke et al., submitted (2020)
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17 | In-situ Formation of Na*-Conducting “Chaperone Phase” Improves
Charge Transfer

3 * XRD analysis of uncycled & cycled Sn-coated
: NaSICON
| 5% Tl
- 1“ I * Intermetallic NaSn phase identified in cycled samples
:ij - }?\ i 1] * ofo . .
o || | ol | > Not identified in samples from static contact angle
~— M ‘ measurements
=1 * Na*-ion conducting NaSn ‘“chaperone phase”
% E | | ‘ ]» formed during cycling produces enhanced
— f fl e M battery performance
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



18 I Sn Coating on NaSICON Enables Long Battery Lifetime!
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19 I Take Home Messages

* Lowering the operating temperature of a molten Na battery increases interfacial resistance due
to poor Na wetting on the NaSICON separator

> Results in high battery overpotentials

* Application of a Sn coating on NaSICON lowers interfacial resistance in a Na symmetric cell at
low temperature (110 °C)

> Best battery performance is achieved with Sn coatings where t > t

crit

* Dynamic formation of a NaSn “chaperone phase” enhances charge transfer, lowering interfacial
resistance and improving battery performance

High Na*-conductivity intermetallic-forming coatings offer a path towards advancing the performance of
low temperature molten sodium batteries

Synthetic Designs for Improved NaSICON Sodium lon Conductors Erik Spoerke
8:30a Friday 1/24 Citrus A
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23 I Molten Na Batteries for Grid Scale Energy Storage:
New Approaches for an Old Technology

Challenges in Low Temperature Molten Na
Batteries

(e]

(e]

(e]

Temperature > 100°C to maintain Na in molten state
Low separator ionic conductivity
Unknown interactions between ceramic & catholyte

Catholyte materials selection — molten at low
temperatures

Materials compatibility with molten salt catholyte
Poor charge transfer at cathode current collector
Poor Na wetting on ceramic separator

NaSICON
| Anode {solid electrolyte) Catholyte

" Molten
Sodium

Anode: Na— Na™+e”
Cathode: 7 +2e™ - 3I”
Overall:  2Na+ 1, - 2Na* +3I°



# | Sn Coating Surface Morphology & Thickness Determination ?i

* Increased surface roughness
with increased coating
thickness

o Thinnest (40nm) coating
non-conformal

o 2 coatings <t ..

o 2 coatings >t ..

Below Critical Thickness Above Critical Thickness

* 4 thicknesses tested: |

M.M. Gross, E.D. Spoerke et al., submitted (2020)



25 | Surface Roughness & Composition

110°C

In-House NaSICON, UNIST NaSICON, In-House NaSICON, UNIST NaSICON,
Unpolished Unpolished Polished Polished

* Surface roughness & ceramic composition have profound effect on contact angle

* Surface prep, impurity composition, ceramic porosity, and surface roughness often
underreported

UNIST NaSICON received from Professor Youngsik Kim



26 | Surface Roughness & Composition

110°C

VIDEOS
UNIST NaSICON, UNIST NaSICON,

Unpolished Polished

* Surface roughness & ceramic composition have profound effect on contact angle

* Surface prep, impurity composition, ceramic porosity, and surface roughness often
underreported

UNIST NaSICON received from Professor Youngsik Kim



Effect of Polishing NaSICON on Full Battery performance
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* Cell with unpolished NaSICON cycled at C/12
* Cell with polished NaSICON cycled at C/4




28 | Sn-Saturated Na on Bare NaSICON

* No improvement over pure Na on Bare NaSICON




29 | Wetting of Na in Cycled NaSICON

Increasing Sn thickness




Summary of Symmetric Cell Resistance
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31 | In-situ Formation of Na*-Conducting “Chaperone Phase” Improves
Charge Transfer

* XRD analysis of uncycled & cycled Sn-coated
NaSICON

* Intermetallic NaSn phase identified in cycled samples

> Not identified in samples from static contact angle
Symmetric Cell measurements

! ° Na%-ion conducting NaSn ‘“‘chaperone phase”
formed during cycling produces enhanced
battery performance

Intensity (a.u.)
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ettt M}
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M.M. Gross, E.D. Spoerke et al., submitted (2020)



