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Abstract—This paper implemented an approximate direct
inverse for the surface integral equation including multilevel
fast-multipole method. We apply it as a preconditioner to two
examples suffering convergence problem with an iterative solver.

I. INTRODUCTION

The surface integral equation (SIE) has been successfully
applied to various problems for the last few decades. However,
some problems may not be solved correctly, e.g. structures
supporting high-quality factor resonances or extremely large
problems compared to the wavelength, because the system
matrix is extremely ill-conditioned. Herein, a robust precondi-
tioner is proposed with Schur-complement [1] and randomized
principal component analysis (PCA) [2]. In addition, because
the PCA process needs to compute the transpose of the
multilevel fast multipole method (MLFMM) [3], we also
present the method to compute it.

II. TWO LEVEL PRECONDITIONER

We suggest two level preconditioners for a given matrix
equation Ax = b where A, x, and b are a SIE system
matrix, a solution vector, and a right-hand side excitation
vector, respectively. The matrix equation can be rewritten as
a left preconditioned system equation, QkPIAx = QkPlb
where P1 and Qk are a local and a global preconditioner,
respectively. We will further discuss about the local and
global preconditioner and their subscript k and l in the next
subsections.

A. Local Preconditioner

To begin with, the given geometry is partitioned with the
oct-tree of MLFMM. For clarification, the finest box is at the
lowest level (l = 0). Also, between two oct-tree levels, two
additional auxiliary levels are introduced to make a binary
tree. From this point, the level refers to binary tree level if
not otherwise specified. For the given box i at the given level
l with two child boxes (j and k), the system matrix can be
written as:
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where Ai, and Cijk denote a block matrix of box i at level
l and a coupling matrix between box j and k at the level l,

respectively. We can remove l - 1 from (1) without loss of
generality. With Schur Complement, the inverse of Ai, can be
derived as:
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where /m and In are the identity matrix with dimension of
m x m and ri x T1, respectively. The most important part is
that A71 and A-1 need to be recursively computed until the

3
leaf level of the binary tree. Consequently, the block inverse
implemented through a recursive subroutine.

In addition, the block inverse of the second block matrix of
(2) can be compressed with PCA.

(Im - A;lcik Aklcki) 1
(I -u-Ev)-i =I = -usv (3)

where U, E, and 17 are a m x q matrix with left singular
vectors, a q x q diagonal matrix with singular values, and a
q x m matrix with right singular vectors. Note that S is a
q x q matrix and q < m and q < n, so the S matrix can be
calculated explicitely. The rank k is determined by the relative
error being less than a predetermined tolerance, i.e. ak /al <
where a, is a ithsingular value and e is the tolerance.

Eventually, the local preconditioner PI is defined as the
following:

-A1-1 0 • • • 0
0 A21 • • • 0

:= (4)

0 0 A-1

where is the number of boxes at the level l. In our
simulations, we fixed l as 6 and the finest oct-tree block size
is 0.5A. Effectively, when l = 6, P1 is a local preconditioner
with approximate block inverse of 2A block size.

B. Global Preconditioner

In order to take advantage of NlogN computation resources
of MLFMM, we decide to stop P1 at the given level l and add
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the second level preconditioner as the global preconditioner.
One can show that (P1A.)-1 = + 6)-1 = (I + LDR)-1
I — L(RL)— IR where 6, L, D, and R are a perturbation matrix
after applying P1 to the system matrix A, N x k left singular
vectors, a k x k diagonal matrix with singular values, and k x N
right singular vectors, respectively. Herein, N is a degree of
freedom and k is a rank of 6 and k < N. Again, the PCA
algorithm is applied to factorize 6 with fixed k. Then, the
global preconditioner Q k is defined as:

Qk := I — L(RL)-1 R (5)

Note that one can adaptively increase k, such that the spectral
radius is less than one to guarantee to the convergence of the
iterative solver.

III. TRANSPOSE MLFMM

When computing both local and global preconditioners, the
matrix-vector multiplication of transpose of the system matrix
is needed. For self and near terms, the transpose operation is
a typical task, but for the far interactions, it is troublesome
because the terms are not explicitly computed. We propose a
method to compute the transpose of MLFMM by changing the
direction of displacement vectors and propagation vectors.
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Fig. 1. Single Level FMM Example.

Let's consider the example in Fig. 1. Considering the
electric field integral equation, the coupling matrix can be
written as:

cmn = f gm„,(k • 4„,„,)vf(k,77in )dk2 (6)

where vs TmTh(k • Fmn), and Vf. (k, Firn,) are radiation
pattern, translation operator, and receiving pattern of convern-
tional FMM, respectively. For the Transpose of Cmn, we can
write:

Cmn —f f...)vs(-1c,f:J.)clk2 (7)

IV. NUMERICAL RESULTS

We applied the approximate direct inverse as a precon-
ditioner to discontinuous Galerkin integral equation (IEDG)
[4] method. We assume k = 50, l = 6, e = 10-4, and
use the generalized conjugate residual (GCR) for all the
following examples. The incident electric field is z-polarized
and propagating along —x direction. The first example in Fig.
2 is a high-quality factor slotted cylindrical cavity made of real
metal simulated through the impedance boundary condition
(IBC) to simulate finite conductivity. The second example is
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Fig. 2. IBC High-Q Slotted Cylinder.

- Bird, Deg
- Ap pr. Died Inv.

Block Diagonal:

Not converged to 1.1:0

Plateau: 4.1 x 

Approximate Dir

Inverse:

81 iterations to 10-1

0 20 40 80 80 100 120 140 180 180 200

Number of Iterations

Fig. 3. PEC F-16.
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PEC in Fig. 3 considers a perfect electric conductor (PEC)
F-16. The advantage of using the proposed preconditioner is
better convergece behaviors as shown in the above exaples.

V. CONCLUSION

In this paper, the approximate direct inverse is applied to
the SIE for electromagnetic scattering. According to Fig 2 and
Fig 3 which are two examples having convergence issues, we
can conclude that the proposed preconditioner is effective even
for ill-conditioned problems.
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